
Math 268: Homework.

The late homework policy on the class website will be strictly followed. I will
often assign harder optional problems. I recommend doing (but not turning in) the
optional problems. They often involve useful concepts that will come in handy as
the semester progresses.

Assignment 1 (assigned 2020-01-15, due 2020-01-22).

1. Determine (without proving) whether the following sets are open. (No proof
required; just guess.)
(a) {x ∈ R3 | 1 < |x| < 10}.
(b) {x ∈ R3 | 1 6 |x| < 10}.

(c) {x ∈ R3 | x2
1 + x2

2 < |x3|}.
(d) {x ∈ R268 |

∑
i<268 x

2
i < |x268|}.

2. Decide whether {x ∈ R2 | x1 + x2 < x2
2} is open. Prove your answer.

3. (a) If U1, U2, . . . are infinitely many open sets, must the union U = U1 ∪ U2 · · ·
also be open? Prove it.

(b) If U1, U2, . . . , UN are finitely many open sets, must the intersection U =
U1 ∩ U2 · · · ∩ UN also be open? Prove it.

(c) Find infinitely many open sets U1, U2, . . . , such that the intersection U =
U1 ∩ U2 · · · is not open.

4. Given a set A ⊆ Rd define the closure Ā, interior Å and boundary ∂A as follows:

Ā
def= {x ∈ Rd | ∀ε > 0, B(x, ε) ∩A 6= ∅} ,

Å
def= {x ∈ Rd | ∃ε > 0 such that B(x, ε) ⊆ A} ,

∂A
def= {x ∈ Rd | ∀ε > 0, B(x, ε) ∩A 6= ∅, and B(x, ε) ∩Ac 6= ∅} .

Show that ∂A = Ā− Å.
5. For each set in the first question, find the closure, interior and boundary. (No

proof required; just make an educated guess.)
6. Let U ⊂ Rd be a domain, a ∈ U , and f : U → Rn be a function.

(a) If limx→a f(x) = `, then for every i ∈ {1, . . . , n} must limx→a fi(x) = `i?
Prove it, or find a counter example. [Here f is the vector function (f1, f2, . . . , fn).]

(b) Conversely, if for every i ∈ {1, . . . , n} we have limx→a fi(x) = `i, then must
limx→a f(x) = `? Prove it, or find a counter example.

Optional fun questions to think about

∗ (a) Does lim
|x|→0

x1x2

|x|2
exist? Justify. [Here x ∈ R2.]

(b) Does lim
|x|→0

x1x2

|x|
exist? Justify. [Here x ∈ R2.]

∗ Prove that any open set in R can be expressed as a countable union of open sets.

Assignment 2 (assigned 2020-01-22, due 2020-01-29).

1. For each of the following functions defined on R2 − {(0, 0)} determine if the
function has a limit as (x, y)→ (0, 0). Prove your answer.

(a) f(x, y) = 3x2y2

x2 + y2

(b) f(x, y) = xy(x2 − y2)
x4 + y4

(c) f(x, y) = x3y4

|x|5 + y6

(d) f(x, y) = x2y3

(x4 + y6)1/3

2. (a) Suppose f : [a, b]→ R is differentiable, and f ′ is increasing. Show that for
all x, y ∈ [a, b], θ ∈ [0, 1] we have f(θx+ (1− θ)y) 6 θf(x) + (1− θ)f(y).

(b) Conversely, suppose for all x, y ∈ [a, b], θ ∈ [0, 1] we have f(θx+ (1− θ)y) 6
θf(x) + (1− θ)f(y). If f is differentiable, show that f ′ is increasing.

A function that satisfies either of the above properties is called convex. (The
second form is preferable since it doesn’t assume differentiability.)
(c) If p, q > 1 with 1/p+ 1/q = 1 and x, y ∈ R show that xy 6 |x|p/p+ |y|q/q.

[Hint: This is part (c) of a question. Google “Young’s inequality” if you need more help.]

(d) Does lim
x→0

x1x2

(|x1|4/3 + x4
2).99 exist? How about lim

x→0

x1x2

(|x1|4/3 + x4
2)1.01 exist?

Prove it. [Hint: This is the last part of a question. (However, there is also an elegant
short solution to this part without using any of the previous parts.)]

3. Let U ⊆ Rd be open and f : Rd → Rn be continuous. True or false: For every
open set V ⊆ Rn, the set f−1(V ) is also open. Prove it, or find a counter example.
[Once you do this problem, you might want to revisit some examples of open sets from the first
homework.]

4. Compute the following partial derivatives. (You should determine from context
whether x ∈ R, or x = (x1, . . . , xd) ∈ Rd.)
(a) ∂x tan−1

(y
x

)
(b) ∂1 ln|x|

(c) ∂

∂x
xy

(d) ∂

∂y
xy

(e) ∂t
∫ t

0
exp(−|x|2 − s2) ds

(f) ∂x1

∫ t

0
exp(−|x|2 − s2) ds

5. Let f(x, y) = x2y/(x2 + y2) for (x, y) 6= 0, and f(0, 0) = 0.
(a) At what points in R2 do ∂xf and ∂yf exist? Justify.
(b) At what points in R2 are ∂xf and ∂yf continuous? Justify.
(c) Find all v ∈ R2 so that Dvf(0, 0) exists. Justify.
(d) Is f differentiable at (0, 0)? Justify.
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Assignment 3 (assigned 2020-01-29, due 2020-02-05).

1. For each of the functions below, decide at what points the function is differentiable
(no proof required; just guess). Further compute the derivative.
(a) f(x, y) = x/y

(b) f(x) = ln|x|, x ∈ R2.

(c) f(x, y) = xy

1− x− y

(d) z = (x− 2y)5exy.

(e) f(x, y) = tan−1(y/x).

(f) f(x) = 1/|x|, x ∈ R3.

2. Let f : R2 → R be defined by f(x) = |x|2 sin(1/|x|) when x 6= 0, and f(0) = 0.
(a) Show that ∂1f and ∂2f are continuous in R2 except at 0.
(b) Show that f is differentiable at all points in R2, including at a = 0.

3. (a) Let U = {(x, y) ∈ R2 | x > 0}. Define r(x, y) =
√
x2 + y2, θ(x, y) =

tan−1(y/x), and ϕ : U → R2 by ϕ(x, y) = (r(x, y), θ(x, y)). Compute Dϕ
and det(Dϕ).

(b) Let V = {(r, θ) ∈ R2 | r > 0, |θ| < π/2}. Let x(r, θ) = r cos θ, and y(r, θ) =
r sin θ and ψ(r, θ) = (x(r, θ), y(r, θ)). Compute Dψ and det(Dψ).

4. Determine whether each of these statements are true or false. If true, prove it. If
not, find a counter example. (Assume d > 1 below.)
(a) If f : Rd → R is such that ∂if exists for some i ∈ {1, . . . , d}, then f is

necessarily continuous.
(b) If f : Rd → R is such that ∂if exists for all i ∈ {1, . . . , d}, then f is necessarily

continuous.
(c) If f : Rd → R is such that Dvf(a) exists for all v ∈ Rd − {0}, then f is

necessarily continuous at a.
(d) Any differentiable function f : Rm → Rn is continuous.
(e) Any continuous function f : Rm → Rn is differentiable.

5. Suppose f, g : Rd → R are both differentiable at a. Show that fg is also differen-
tiable at a, and find a formula for D(fg)a in terms of f(a), g(a), Dfa and Dga.
Hint: To a formula for D(fg)a, compute ∂i(fg) using the standard one variable product rule.
Now show that fg is differentiable directly using the definition of the derivative.

Assignment 4 (assigned 2020-02-05, due Never).

In light of your Midterm on 2/12, this homework is not due. However, many of
the problems are good practice, and I recommend doing (or at least thinking) about
them before your exam. Some of these problems will find their way onto your next
homework.

1. For each of the functions y below express the derivative (with respect to x) as a
product of two matrices, and evaluate the matrices at the given values of x below.

(a) y =
(

u1u2 − 3u1
u2

2 + 2u1u2 + 2u1 − u2

)
, u =

(
x1 cos(3x2)
x1 sin(3x2)

)
at x = 0.

(b) y =
(
u2

1 + u2
2 − 3u1 + u3

u2
1 − u2

2 + 2u1 − 3u3

)
, u =

x1x2x
2
3

x1x
2
2x

2
3

x2
1x2x3

, at x =

1
1
1

.

2. (a) Let F (x, y) = xy. Given two differentiable functions f, g : Rd → R, let
G : Rd → R2 be defined by G(x) = (f(x), g(x)). Observe D(fg) = D(F ◦G).
Compute this using the chain rule, and derive the product rule.

(b) Derive the quotient rule from the chain rule using a method similar to the
previous question.

3. Let U = R2 − {(x, 0) | x 6 0}, and V = {(r, θ) | r > 0, θ ∈ (−π, π)}. Given a
differentiable function f defined on U , we treat it as a function of the coordinates
x and y. Using the relation x = r cos θ and y = r sin θ for (r, θ) ∈ V , we can now
treat f as a function of r and θ.
(a) Express ∂rf and ∂θf in terms of ∂xf , ∂yf , r and θ.
(b) Let u = x2 + y2 and v = y/x. Explicitly express u, v in terms of r and θ

and compute ∂ru, ∂θu, ∂rv and ∂θv directly. Verify that this agrees with the
formulae in the previous part.

(c) If further r, θ are functions functions of variables s and t, compute ∂sf in
terms of ∂xf , ∂yf , r, θ, ∂sr and ∂sθ.

(d) Express r, θ in terms of x and y.
(e) Suppose now g is a differentiable function defined on V , which we treat as a

function as a function of r and θ. Using the previous part, we can treat g as
a function of x and y. Compute ∂xg and ∂yg in terms of ∂rg, ∂θg, x and y.
Verify your formula is correct for the function g(r, θ) = rθ.

4. Let f : Rd → Rn be differentiable, and Γ be the graph of f , and (a, f(a)) ∈ Γ.
Let T be the tangent space at this point, and N be the normal space (i.e.
N = {v ∈ Rd+n | u · v = 0 ∀u ∈ T}).
(a) Show that dim(T ) = d.
(b) Find a basis of N explicitly in terms of ∇f1(a), . . . , ∇fn(a). [Note, for n = 1,

we showed (∇f(a),−1) was a basis of N . Figure out the right generalization of this.]

5. Use the proof outline from class to give a full ε-δ proof of the chain rule.



Assignment 5 (assigned 2020-02-12, due 2020-02-19).

1. Do questions 3, 4 and 5 from homework 4.
2. If f : Rd → R is C2 define ∆f =

∑d
1 ∂

2
i f (this is called the Laplacian of f).

(a) Suppose u, v : R2 → R are C2 functions such that ∂xu = ∂yv and ∂yu = −∂xv.
Show that |∇u|2 = |∇v|2, ∇u · ∇v = 0, and ∆u = ∆v = 0.

(b) If f : R2 → R is C2, and let g = ∆f . Compute ∆(f(u, v)) in terms of g, u
and v. [If you do it correctly, your answer will only involve g and |∇u|2.]

In class we stated (but didn’t prove) the fact that if mixed partials are equal they
must be continuous. Here’s a proof
3. Let f : R2 → R be a C2 function. Suppose h, k > 0 and let δ = δ(h, k) be defined

by δ(h, k) = f(x+ h, y + k)− f(x, y + k)− f(x+ h, y) + f(x, y).
(a) Use the mean value theorem to show that there exists θ ∈ (0, h) so that

δ(h, k) = h(∂xf(x+ θ, y + k)− ∂xf(x+ θ, y))

(b) Conclude δ(h, k) = hk∂y∂xf(x+ θ, y + η) for some θ ∈ (0, h) and η ∈ (0, k).

(c) Show that lim
(h,k)→(0,0)

δ(h,k)
hk = ∂y∂xf(x, y), provided ∂y∂xf is continuous.

(d) Similarly, show lim
(h,k)→(0,0)

δ(h,k)
hk = ∂x∂yf(x, y), if ∂x∂yf is continuous.

(e) Conclude ∂x∂yf = ∂y∂xf if f ∈ C2.

Optional problems, and details from class I left for you to check.
∗ Suppose u, v : R3 → R3 are two C1 functions. Let α, β ∈ R be two constants and
A be a 3× 3 (constant) matrix. Prove the following identities. [You don’t need the
limit definition, or ε-δ’s for even one of these. You can do them all by using partial derivatives
and your one variable differentiation rules.]

(a) D(au+ bv) = aDu+ bDv

(b) D(Au) = A(Du).
(c) ∇(u · v) = (Du)T v + (Dv)Tu
(d) ∂i(u× v) = ∂iu× v + u× ∂iv

∗ (Mean value theorem) Let f : Rd → R be a differentiable function. For any
a, b ∈ Rd show that there exists ξ on the line segment joining a and b such that
f(b)− f(a) = (b− a) · ∇f(ξ).

Assignment 6 (assigned 2020-02-19, due 2020-02-26).

1. Let f : Rd → R be C2. Show that f is convex if and only if its Hessian is always
positive semi-definite. [Recall, a function f : Rd → R is convex if for every x, y ∈ Rd and
θ ∈ [0, 1] we have f(θx+ (1− θ)y) 6 θf(x) + (1− θ)f(y).]

2. Let a, b, c ∈ R be such that ac− b2 6= 0. Find all critical points of ax2 +2bxy+ cy2.
Find conditions on a, b, c that would classify this as a local minimum, maximum
or saddle.

3. Find the critical points of each of these functions. For each critical point, determine
whether it is a local maximum, local minimum, saddle or neither.
(a) x

x2+y2

(b) [x2 + (y + 1)2][x2 + (y − 1)2]
(c) sin x cosh y
(d) x2 − 2xy + y2

4. (a) Suppose f : R2 → R is a C2 function. Compute

lim
h→0

1
4h2 (f(x+ h, y+ h)− f(x− h, y+ h) + f(x− h, y− h)− f(x+ h, y− h))

and express your answer in terms of derivatives of f .
(b) Do the same for

lim
h→0

1
h2 (f(x+ h, y) + f(x, y + h) + f(x− h, y) + f(x, y − h)− 4f(x, y)).

5. Let f : Rd → R be a C3 function, a, h ∈ Rd and define g(t) = f(a+ th).
(a) Using the third order (one dimensional) Taylor expansion for g(1) − g(0),

show that there exists ξ on the line segment joining a and a+ h such that

f(a+ h) = f(a) +∇f(a) · h+ 1
2(Hfah) · h+ 1

6

d∑
i,j,k=1

∂i∂j∂kf(ξ)hihjhk

(b) Conclude there exists a function R3(h) such that

f(a+ h) = f(a) +
∑

∂if(a)hi + 1
2

d∑
i,j=1

∂i∂jf(a)hihj

+ 1
6

d∑
i,j,k=1

∂i∂j∂kf(a)hihjhk +R3(h)

and limh→0R3(h)/|h|3 = 0. [This can of course be continued inductively to obtain
higher order Taylor expansions of f .]

Optional problems, and details from class I left for you to check.
∗ (a) Let A =

(
a b
b c

)
. Compute the eigenvalues of A in terms of a, b, c.

(b) Show that A is positive semi-definite if and only if a > 0, c > 0 and ac−b2 > 0.



Assignment 7 (assigned 2020-02-26, due 2020-03-04).

1. (Spherical coordinates) Let V = {(r, θ, φ) | r > 0, θ ∈ (−π, π), φ ∈ (0, π)} and
define ϕ(r, θ, φ) = (x, y, z) where x = r sinφ cos θ, y = r sinφ sin θ and z = r cosφ.
(Geometrically, φ is the angle between (x, y, z) and the positive z-axis, and θ is
the angle between the projection (x, y) and the positive x-axis.)
(a) Let U ⊆ R3 be the set of points where either x > 0 or y 6= 0. Show

det(Dϕ) 6= 0 in V , and conclude (by the inverse function theorem) that
r, θ, ϕ can be (locally) expressed as differentiable functions of x, y, z.

(b) Explicitly express r, θ, φ as functions of x, y, z and show that ϕ : V → U is
bijective (and hence a coordinate change function). Let (r, θ, φ) = ψ(x, y, z)
denote the inverse function. Compute detDψ explicitly and verify detDψ 6= 0
in U .

(c) If f is a differentiable function compute ∂xf , ∂yf and ∂zf in terms of ∂rf ,
∂θf , ∂φf , r, θ and φ.

(d) If g is a differentiable function compute ∂rg, ∂θg and ∂φg in terms of ∂xg,
∂yg and ∂zg, x, y and z.

2. For each of the equations below near the given point, which variables can be
solved for and expressed as differentiable functions of the remaining variables
(according to the implicit function theorem). For each of these variables, compute
all the partials at the given point. (That is, if you say w, x can be expressed
as differentiable functions of y, z, compute ∂yw, ∂zw, ∂yx and ∂zx at the given
point.)
(a) x2 + y2 − cos(xy) = 0 near (1, 0).
(b) exz + y sin(yz) + z = 0 near (0, 0,−1).
(c) sin(xy) + sin(yz) + sin(xz) = 0 and exyz + x+ y + z = 2, near (0, 0, 1).

3. Decide whether each of the following implicitly defined sets are curves or surfaces.
At the given point, find a basis of the tangent space, and as many many linearly
independent normal vectors as possible. Also find the tangent line (or tangent
plane).
(a) x sin(x) = y + xey at (0, 0).
(b) ln(xy) = y − x at (1, 1)
(c) x sin y + y sin z + z sin x = 0 at (0, π, 2π).
(d) z2 = x2 + y2 − 1 and 2(x− 1) + y − z = 0 at (1, 0, 0).

4. Let f, g : R3 → R be two differentiable functions, c, d ∈ R. Consider the two
surfaces Γ = {x ∈ R3 | f(x) = c} and ∆ = {x ∈ R3 | g(x) = d}. Suppose
C = Γ ∩∆ is a curve, a ∈ C and that the vectors ∇f(a) and ∇g(a) are linearly
independent. Find the tangent space of C at a in terms of ∇f and ∇g. Verify
your formula by explicitly computing it when f(x, y, z) = z2 − x2 − y2 + 1 and
g(x, y, z) = 2(x− 1) + y − z at the point (1, 0, 0).

Assignment 8 (assigned 2020-03-04, due 2020-03-18).

1. Parametrize the following curves. [For closed curves C, a parametrization is a C1 function
γ : [0, 1]→ C such that γ′ 6= 0, γ(0) = γ(1) and γ : [0, 1)→ C is bijective.]

(a) (x−x0)2

a2 + (y−y0)2

b2 = 1, where a, b > 0 are constants.
(b) cosx cos y = 1/2 for x, y ∈ (−π2 ,

π
2 ).

2. Let γ : R→ Rd be a differentiable function so that γ(t) represents the position
of a particle at time t. Let v(t) = γ′(t) denotes the velocity, and a(t) = v′(t)
denote the acceleration. Note γ(t) = (γ1(t), . . . , γd(t)) and γ′(t) is defined to be
the vector function (γ′1(t), . . . , γ′d(t)). We know that if γ parametrises a curve Γ,
then v(t) is tangent to Γ at the point γ(t). The acceleration a, however, need not
be tangent to Γ, as we will see below.
(a) If |v(t)| = 1 for all t, show that a(t) and v(t) are perpendicular.
If when moving while keeping the magnitude of the velocity constant, a particle
experiences acceleration it is because the path taken by the particle is curved.
The sharper the curve, the more the acceleration experienced (think about the
force you feel when driving around a sharp curve).
Definition: If a curve Γ is parametrized by the function γ, then we define the
curvature at the point γ(t) by κ = 1

|γ′(t)| |(
γ′(t)
|γ′(t)| )

′| = 1
|v| |(

v
|v| )
′|.

If |γ′(t)| = 1 for all t, then the curvature is exactly the magnitude of the accelera-
tion. (Note, one can show that the curvature κ only depends on the curve, and
not the parametrization.)
(b) Compute the curvature at any point on a circle of radius R.
(c) Compute the curvature of the curve y2 = x2 − 1 at the point (x, 1).
(d) If d = 3, show κ2 = |v|−6(|a|2|v|2 − (a · v)2), and hence conclude κ = |a×v|

|v|3 .

3. (a) Let f : R→ R is differentiable, and Γ = {(x, f(x)) | x ∈ R} be the graph of
f . Show that the curvature of Γ is |f ′′|/(1 + (f ′)2)3/2.

(b) Let g : R2 → R be C2, c ∈ R and Γ be the curve {(x, y) | g(x, y) = c}.
Suppose further ∇g 6= 0 on the curve Γ. Show that the curvature of Γ is

|∂2
xg(∂yg)2 + ∂2

yg(∂xg)2 − 2∂x∂yg∂xg∂yg|
|∇g|3

.

Hint: Let (a, b) ∈ Γ, and suppose ∂yg(a, b) 6= 0. Use the implicit function theorem to
write Γ as the curve y = f(x) near the point (a, b). Now express f ′′ in terms of derivatives
of g by implicit differentiation, and use the previous part.

4. Let S ⊆ R3 be the surface z2 = x2 + y2 − 1, and (a, b, c) ∈ S. There are exactly
two lines that pass through (a, b, c) that are completely contained in the surface
S. Find them. Express them as `i = {(a, b, c) + t(ui, vi, wi) | t ∈ R} for i ∈ {1, 2}
and two linearly independent vectors (u1, v1, w1) and (u2, v2, w2). [Hint: What is
the intersection of S with it’s tangent plane? Start with (a, b, c) = (1, 0, 0).]

5. (Optional challenge) If Γ is any curve contained on the sphere x2 + y2 + z2 = 1,
then show that the curvature at any point on Γ is at least 1.



Assignment 9 (assigned 2020-03-18, due Never).

In light of your Midterm on 3/25, this homework is not due. However, many of
the problems are good practice, and I recommend doing (or at least thinking) about
them before your exam. Some of these problems will find their way onto your next
homework.

1. The plane x+ y + 2z = 2 intersects the paraboloid z = x2 + y2 in an ellipse. Find
the points on this ellipse that are nearest to and farthest from the origin.

Sometimes when maximising a function in the region {g 6 c}, the maximum (or
minimum) could be attained on the boundary {g = c}. In this case you can of course
find all interior local maxima and minima by solving ∇f = 0 and looking at Hf .
For maxima and minima on the boundary, it is often convenient to use Lagrange
multipliers.
2. Find the absolute maxima and minima of e−xy on the set x2 + 4y2 6 1.
3. For each of the curves below, find the local maxima and minima of the curvature.

(a) A circle of radius R.
(b) A straight line.
(c) The parabola y = x2.
(d) The ellipse x2/a2 + y2/b2 = 1, for a, b > 0.
(e) The curve cosx cos y = 1/2 in the region x, y ∈ (−π/2, π/2).

4. Maximise the volume of an open box given the surface area is 3a2. (That is,
maximise xyz under the constraint xy + 2(yz + zx) = 3a2.)

5. Maximise the volume of a cylinder given that the total surface area is 6πa2. [For
fun, check if the proportions of your optimal cylinder agrees with your standard coke can; if not,
write to Coco-cola with a proposal to save money and the environment. . . ]

6. Let p, q > 1 be such that 1/p + 1/q = 1. In the region x, y > 0 maximise xy
subject to the constraint xp/p+ yq/q = C. Use this to give a different proof of
Young’s inequality from homework 3.

7. (Cauchy-Schwartz inequality) If x, y ∈ Rn show |x · y| 6 |x||y|. [Hint: Maximise x · y
subject to the constraint |x| = a and |y| = b.]

Assignment 10 (assigned 2020-03-25, due 2020-04-01).

1. Do question 2 from assignment 9.
2. Suppose f : Rn+d → R is C2, and g : Rn+d → Rn is C1. Let M = {g = 0},

and assume for all x ∈M we have rank(Dgx) = n. Suppose further f attains a
constrained local minimum at a, subject to the constraint g = 0.
(a) True or false: Hfa must necessarily be positive semi-definite (here Hfa is

the Hessian of f at the point a.) Prove it, or find a counter example.
(b) True or false: For every u in the tangent space of M at the point a, we must

have u · (Hfau) > 0. Prove it, or find a counter example.
(c) Redo the previous part with the additional assumption that g is linear.

3. Let f : Rd → Rm and g : Rd → Rn be C1. Let c ∈ Rm, d ∈ Rn, M = {f = c},
and N = {g = d}. Suppose for all x ∈ M , y ∈ N we have rank(Dfx) = m and
rank(Dgy) = n. Let a ∈M and b ∈ N be two points that minimize the distance
between M and N (i.e. |x − y| > |a − b| whenever x ∈ M and y ∈ N). True or
false: a− b is orthogonal to the tangent space of M at a, and also orthogonal to
the tangent space of N at b. Prove it, or find a counter example.

4. In each of the cases below, find
∫
R
f(x, y) dA.

(a) f(x, y) = 16− x2 − y2, and R is the triangle with vertices (0, 0), (1, 1) and
(2, 1).

(b) f(x, y) = y, where R is bounded by the curves x = y2 and y = x− 2.
(c) f(x, y) = x2 + 2y, where R is bounded by the curves y = x, y = x3 in the

region x > 0.
5. Compute the integrals integrals:

(a)
∫ 1

x=−1

∫ 2

y=1
sin(xy2) dy dx. (b)

∫ 1

y=0

∫ cos−1 y

x=− cos−1 y

esin x dx dy.

[Just for fun, try plugging these into a computer. Most computer algebra systems won’t be able
to evaluate these integrals symbolically.]

6. (Optional) Compute both iterated integrals of the function

f(x, y) = x2 − y2

(x2 + y2)2 .

on the region [0, 1]× [0, 1]. Are they equal? [Hint: First compute ∂x∂y tan−1(y/x).]



Assignment 11 (assigned 2020-04-01, due 2020-04-08).

1. Evaluate
∫
R
f(x, y, z) dV in the following cases:

(a) f(x, y, z) = x2y2z where R is the cylinder x2 + y2 < 1, 0 < z < 1.
(b) f(x, y, z) = x2 + z2, where R is the pyramid with vertices (±1,±1, 0) and

(0, 0, 1).
2. (a) Let D = B(0, 1) ⊆ R2 be the two dimensional disk of radius 1 and center

(0, 0). For what p ∈ R is
∫
D

1
|x|p

dA <∞. [Here x = (x1, x2) ∈ R2.]

(b) Let S = B(0, 1) ⊆ R3 be the three dimensional sphere with radius 1 and
center (0, 0, 0). For what p ∈ R is

∫
S

1
|x|p

dV <∞. [Here x = (x1, x2, x3) ∈ R3.]

3. Let D ⊆ R2 represent an irregular plate whose density is given by ρ(x, y). Let
` ⊆ R2 be a straight line, representing a knife edge upon which D is balanced.
The magnitude of the torque experienced when D is balanced on ` is given by
T` =

∫
D
ρd dx dy. Here d = p · n̂, where n̂ is a unit vector perpendicular to `, and

p = p(x, y) is the vector from (x, y) to the closest point on `. The plate D will
balance on a knife edge along ` if (and only if) T` = 0.
(a) Given a ∈ R, let ` = {(a, t) | t ∈ R}. Show that T` = 0 if and only if

a = (
∫
D
xρ dA)/

∫
D
ρdA.

(b) Given b ∈ R let ` = {(t, b) | t ∈ R}. Show that T` = 0 if and only if
b = (

∫
D
yρ dA)/

∫
D
ρdA.

The point (a, b) above for which T` = 0 is called the center of mass of D.
(c) Find the center of mass of the triangle with vertices (0, 0), (a, b), (0, c) that

has a uniform density. [Assume 0 < b < c and a > 0.]

(d) If ` is any line (not necessarily parallel to the coordinate axis) passing through
the center of mass of D must T` = 0? Prove or disprove.

4. Let U ⊆ R2 be a (bounded) oddly shaped region containing the origin. Define
C ⊆ R3 to be the cone with vertex (0, 0, h) and base U given by

C =
{

(x, y, z)
∣∣∣ 0 < z < h,

( hx

h− z
,
hy

h− z

)
∈ U

}
Find vol(C) in terms of h and area(U). [Hint: Let u = hx/(h− z), v = hy/(h− z) and
w = z, and transform

∫
C

1 dx dy dz into u, v, w coordinates.]

5. Compute
∫
R2

1
y2 + 4

√
x2 + y2 + 4

dx dy√
x2 + y2

. [Hint: Let x = u2 − v2 and y = 2uv and

change coordinates.]

6. Compute
∫∞

0
sin x
x dx.

Hint: Substitute 1/x =
∫∞

0 e−xy dy above and switch the order of integration. This is one
situation where the hypothesis of Fubini’s theorem won’t be satisfied; however, flipping the order
of the integrals can still be justified using other methods. Extra kudos for justifying it!

Assignment 12 (assigned 2020-04-08, due 2020-04-15).

1. A non-uniform wire is bent along the semi-circle x2 + y2 = 1 with y > 0. The
density of the wire is given by ρ(x, y) = 2− y. Find the total mass and the center
of mass of the wire. Is the center of mass on the wire? [You’ve derived a formula for
the center of mass of a plate previously. See if you can use your intuition from there to guess a
formula for the center of mass in this context.]

2. Let S ⊆ R3 be a surface whose boundary is the closed curve Γ. Amperes law says
that the total current passing through the surface S is given by 1

µ0

∮
ΓB ·d`, where

µ0 is the magnetic constant and B : R3 → R3 is the magnetic field. Compute
the current through the rectangle with (−1,−1,−1), (−1, 1,−1), (1, 1, 1) and
(1,−1, 1) (traversed in the stated order) when

B(x, y, z) = 1√
x2 + y2

−yx
0

 .

3. Let Γ ⊆ R2 be a closed, piecewise C1 curve that does not pass through the origin.
Define the winding number of Γ about the origin to be

W (Γ) = 1
2π

∮
Γ

−y dx+ x dy

x2 + y2

(a) Compute the winding number of a circle of radius R and center (0, 0),
traversed counter clockwise. What happens if you traverse it clockwise
instead?

(b) Compute the winding number of a circle of radius 1 and center (0, 2) traversed
in either direction.

The remainder of this problem is devoted to showing that the winding number is an
integer. Let γ : [0, 1]→ Γ be a parametrization of Γ and write γ(t) = (x(t), y(t)).
Assume y(0) = 0 and x(0) > 0 for simplicity. Let t1 be the first time when
x(t1) = 0. Note y(t1) 6= 0, since (0, 0) 6∈ Γ, and so we let t2 be the first time
after t1 when y(t2) = 0. Again x(t2) 6= 0, so let t3 be the first time after t2 when
x(t3) = 0. Continue this, and assume that after finitely many steps we obtain an
even number N so that tN = 1 and y(tN ) = y(0) = 0.

(c) Show that
∫ ti+1

ti

−y(t)x′(t) + x(t)y′(t)
x(t)2 + y(t)2 dt = ±π2 .

(d) If i is even, show
∫ ti+2

ti

−y(t)x′(t) + x(t)y′(t)
x(t)2 + y(t)2 dt = ±π if sign(xixi+2) < 0

and 0 otherwise.
(e) Show W (Γ) ∈ Z.

4. (Optional Challenge that is worth a reward) If Γ ⊆ R3 is a C2 closed curve, show
that

∮
Γ κ |d`| is multiple of 2π. Here κ is the curvature defined in your previous

homework. [This is called the turning number of the curve Γ.]



Assignment 13 (assigned 2020-04-15, due 2020-04-22).

1. Let Γ be the curve parametrized by γ(t) = (a cos3 t, a sin3 t), for t ∈ [0, 2π].
Compute the area of the region enclosed by Γ.

2. Let P ⊆ R2 be a (not necessarily convex) polygon whose vertices, ordered counter
clockwise, are (x1, y1), . . . , (xN , yN ). Show that

area(P ) = (x1y2 − x2y1) + (x2y3 − x3y2) + · · ·+ (xNy1 − x1yN )
2 .

[This is called the surveyors formula. While the statement involves only elementary coordinate
geometry, it isn’t as easy to prove directly this way. Hint: Use Greens theorem.]

3. Let U, V ⊂ R2 be domains, ϕ : U → V be C2, and F : V → R2 be C1. Define
G : U → R2 by G(x) = (Dϕx)T (F ◦ ϕ(x)). Show that

∂1G2 − ∂2G1 = [(∂1F2 − ∂2F1) ◦ ϕ] det(Dϕ)

[This was a detail in class used in the proof of Greens theorem.]

4. Let U ⊆ R2 be a bounded domain such that ∂U is the finite union of closed,
piecewise C1 curve.
(a) Given x ∈ ∂U , let n̂(x) be a unit vector that is normal to ∂U and pointing

outwards to the domain U . If F : Ū → R2 is C1, show that
∮
∂U

F · n̂ |d`| =∫
U
∇ · F dA. (Here ∇ · F = ∂1F1 + ∂2F2.)

(b) Suppose 0 6∈ ∂U , and U has no holes (i.e. ∂U is connected). What is the
winding number of ∂U oriented counter clockwise? Prove it. [Hint 1: Let
V = ln|x|, F = ∇V , and express the winding number in terms of

∮
∂U
∇F · n̂ |d`|. Hint 2:

Divide into two cases: 0 ∈ U , and 0 6∈ U . Hint 3: The case 0 6∈ U is easier.]

5. Let a > b > 0, and Σ be the torus obtained by rotating a circle with center (a, 0, 0)
and radius b about the z axis. Parametrize the surface, and evaluate the surface
integral that computes area(Σ).

Optional problems, and details from class I left for you to check.
∗ In each of the following cases, show that∫

U

(∂xQ− ∂yP ) dA 6=
∮
∂U

P dx+Qdy.

Also explain why this does not contradict Greens theorem.

(a) U = {(x, y) | y > 0}, P = 1
1 + x2 , and Q = 0.

(b) U = B(0, 1) ⊆ R2, P = −y
x2 + y2 , and Q = x

x2 + y2 .

Assignment 14 (assigned 2020-04-22, due 2020-04-29).

1. (a) Let U ⊆ R2 be a domain, and f : U → R be C1, and Σ be the graph of f
(i.e. Σ = {(x, y, z) | (x, y) ∈ U, & z = f(x, y)}). Show that

area(Σ) =
∫
U

√
1 + (∂xf)2 + (∂yf)2 dA.

(b) Use the previous part to compute the surface area of a sphere of radius r.
[The next problem provides an easier way to do this as well.]

2. (a) Let f : [a, b]→ (0,∞) be C1, and Σ ⊂ R3 be the surface formed by rotating
the graph of f about the x-axis. Explicitly,

Σ = {(x, y, z) | x ∈ [a, b] and y2 + z2 = f(x)2}.

Show that area(Σ) = 2π
∫ b

a

f(x)
√

1 + f ′(x)2 dx.

(b) Find the surface area of a cylinder with base radius r and height h.
(c) Find the surface area of a cone with base radius r and height h.

3. Let Σ = {(x, y, z) | y2 + z2 = 1, −1 < x < 1 & z > 0}, and F = e3. Compute∫
Σ F · n̂ dS, where at any point on Σ, n̂ is the upward pointing unit normal.

4. (a) Let A be a 3 × 3 matrix, and u, v ∈ R3. Show Au × Av = adj(A)T (u × v),
where adj(A) is the adjugate of the matrix A.

(b) Let U ⊆ R3 be a domain, (Σ, n̂) be an oriented surface. Let ψ : R3 → R3 be an
injective C1 function such that det(Dψ) > 0 on all of U , and F : ψ(Σ)→ R3

be a vector field. Show that∫
ψ(Σ)

F · n̂ dS =
∫

Σ
(adj(Dψ)(F ◦ ψ)) · n̂ dS

5. Let N(x) = −1/(4π|x|), and Σ be a closed surface that encloses the origin.
Compute

∫
Σ∇N · n̂ dS.

Optional problems, and details from class I left for you to check.
∗ (Greens identity) Let U ⊆ R3 be a bounded domain whose boundary is a C1

surface. If f, g : U → R be C2, show∫
U

(f∆g) dV =
∫
∂U

f∇g · n̂ dS −
∫
U

(∇f · ∇g) dV.

Recall ∆g =
∑
i ∂

2
i g = ∇ · (∇g), and by convention n̂ is the outward pointing unit

normal on ∂U .
∗ (Challenge) Suppose u : R3 → R is a C2 function such that ∆u = 0. For any
a ∈ R3, r > 0 show that u(a) =

∫
∂B(a,r) u dS. [Hint: Use Greens identity and the

function N . Google “Mean value property” if you get stuck.]



Assignment 15 (assigned 2020-04-26, due Never).

1. Let u, v : R3 → R3 be C2 vector fields, f, g : R3 → R be C2 scalar functions.
Prove the following identities.
(a) ∇(fg) = f∇g + g∇f .
(b) ∇ · (fu) = (∇f) · u+ f∇ · u.
(c) ∇× (fu) = f∇× u+ (∇f)× u
(d) ∇× (u× v) = u(∇ · v)− v(∇ · u) + (v · ∇)u− (u · ∇)v
(e) ∇ · (u× v) = (∇× u) · v − u · (∇× v)
(f) ∇× (∇u) = 0
(g) ∇ · (∇× u) = 0
(h) ∇× (∇× u) = −∆u+∇(∇ · u)

2. Let F = (2x, y2, z2).
(a) Compute

∫
Σ F · n̂ dS, where Σ ⊆ R3 is the sphere of radius 1.

(b) Compute
∮

Γ F · d`, where Γ is the intersection of Σ above and the plane
x+ 2y + 3z = 0.

3. In each of the following cases show that∫
U

(∇ · v) dV 6=
∫
∂U

v · n̂ dS.

Also explain why this does not contradict the divergence theorem.
(a) U = B(0, 1) ⊆ R3, and v = x/|x|4.
(b) U = {x ∈ R3 | z > x2 + y2}, and v(x, y, z) = (0, 0, e−z).

4. (a) Suppose U ⊆ R3 is a bounded domain with piecewise C1 boundary. If
u : Ū → R3 and f : Ū → R are C1 functions, then show that∫

U

∇f · u dV =
∫
∂U

fu · n̂ dS −
∫
U

f∇ · u dV .

(b) If f : R3 → R and u : R3 → R3 are two C1 functions such that |f(x)u(x)| 6
C/|x|2+ε for some constants C, ε > 0 and all x 6∈ B(0, 1) , then show that∫

R3
∇f · u dV = −

∫
R3
f ∇ · u dV .

5. Suppose U, V ⊆ R3 are domains, ϕ : U → V is C2 and v : V → R3 is C1. Define
w = adj(Dϕ)(v ◦ ϕ) : U → R3. Show that

∇ · w = det(Dϕ)(∇ · v) ◦ ϕ.

[This was a detail used in the proof of the divergence theorem.]

6. (Optional challenge) Suppose u : R3 → R3 is C1. Show that ∇ · u = 0 if and only
if there exists a C1 vector field v : R3 → R3 such that u = ∇× v. [Hint: If you get
stuck this is done at the very end of the lecture notes.]


