
CHAPTER 6

Surface Integrals

1. Surface integrals

Suppose a curved metal plate (or soap film) lies along the surface Σ ⊆ R3, and
f : Σ→ R is the density of the plate. If we divide the surface Σ into many small
regions Ri, then the mass of the plate can be approximated by

M =
∑

i

f(ξi) area(Ri),

where ξi ∈ Ri is some point.

Definition 1.1. Let Σ ⊆ R3 be a surface, and f : Σ→ R be a function. Define∫
Σ
f dS = lim

‖P ‖→0

N∑
i=1

f(ξi) area(Ri),

where P is a partition of Σ into the regions R1, . . . , RN , and ‖P‖ is the diameter
of the largest region Ri.

Remark 1.2. Other common notation for the surface integral is∫
Σ
f dS =

∫∫
Σ
f dS =

∫
Σ
f dσ =

∫
Σ
f dA

As with line integrals, we obtained a formula in terms of a parametrization. We
follow the same approach for surfaces, but there are a few subtle points that need
to be addressed.

Definition 1.3. Let Σ ⊆ R3 be a surface. We say ϕ is a (C1) parametrization
of Σ if there exists a domain U ⊆ R2 such that ϕ : U → Σ is C1, bijective, and
rank(Dϕ) = 2 at all points in U .

Example 1.4. Let U ⊆ R2, f : U → R is a function, and Σ be the graph of f .
Then ϕ(x, y) = (x, y, f(x, y)) is a parametrization of Σ.

Example 1.5. Define

ϕ(θ, φ) =

sinφ cos θ
sinφ sin θ

cosφ


for θ ∈ (−π, π) and φ ∈ (0, π). Then ϕ parametrizes the surface

Σ def= {x ∈ R3 | |x|2 = 1 & x3 6= ±1},
which is the unit sphere with an arc joining the north and south poles removed.

Remark 1.6. Typically U = (0, 1)2 is the unit square.
Remark 1.7. While every curve has a parametrization, not every surface has a

parametrization! The torus, for instance, can not be parametrized. Further, surfaces
like the Klein-Bottle, can not even be visualised in three dimensions (but can in
four dimensions).

Proposition 1.8. If ϕ : U → Σ is a parametrization of the surface Σ, then∫
Σ
f dS =

∫
U

f ◦ ϕ |∂1ϕ× ∂2ϕ| dA.

Here ∂iϕ = Dϕei = (∂iϕ1, ∂iϕ2, ∂iϕ3)T .
Remark 1.9. If the surface can not be parametrized, the integral can be

computed by breaking up Σ into finitely many pieces which can be parametrized. The
formula above will yield an answer that is independent of the chosen parametrization
and how you break up the surface (if necessary).

While a rigorous proof is beyond the scope of this course, we provide some
intuition here. First, we know that if R ⊆ R3 is a parallelogram whose sides are the
vectors u, v ∈ R3, then

area(R) = |u||v| sin θ = |u× v| =

∣∣∣∣∣∣
u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v3

∣∣∣∣∣∣
Now let Ri,j ⊆ U be a small rectangle, and R′

i,j = ϕ(Ri,j). Let R be one
of these rectangles, and a be the bottom left corner, and a + h be the top right
corner. Now R′ = ϕ(R) is approximately the parallelogram with sides ∂1ϕ(a)h1 and
∂2ϕ(a)h2, and so

area(R′) ≈ |∂1ϕ× ∂2ϕ|h1h2. = |∂1ϕ× ∂2ϕ| area(R).
Thus∫

Σ
f dS

‖P ‖→0←−−−−−
∑
i,j

f(ξi,j) area(R′
i,j)

≈
∑
i,j

f(ϕ(ηi,j))|∂1ϕ× ∂2ϕ| area(Ri,j) ‖P ‖→0−−−−−→
∫

U

f ◦ ϕ |∂1ϕ× ∂2ϕ| dA.

Example 1.10. Compute the surface area of a sphere of radius R.

2. Surface integrals of vector functions

Definition 2.1. We say (Σ, n̂) is an oriented surface if Σ ⊆ R3 is a C1 surface,
n̂ : Σ→ R3 is a continuous function such that for every x ∈ Σ, the vector n̂(x) is
normal to the surface Σ at the point x, and |n̂(x)| = 1.

Example 2.2. Let Σ = {x ∈ R3 | |x| = 1}, and choose n̂(x) = x/|x|.
Remark 2.3. At any point x ∈ Σ there are exactly two possible choices of

n̂(x). An oriented surface simply provides a consistent choice of one of these in a
continuous way on the entire surface. Surprisingly this isn’t always possible! If Σ is
the surface of a Möbius strip, for instance, can not be oriented.
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2 6. SURFACE INTEGRALS

Example 2.4. If Σ is the graph of a function, we orient Σ by chosing n̂ to
always be the unit normal vector with a positive z coordinate.

Example 2.5. If Σ is a closed surface, then we will typically orient Σ by letting
n̂ to be the outward pointing normal vector.

Definition 2.6. Let U ⊆ R3 be a domain. We say u : U → R3 is a vector field.

Typical examples of vector fields are electric and magnetic fields, or the velocity
field of a fluid. Let u be a vector field representing the velocity of a fluid (i.e. for
x ∈ R3, u(x) ∈ R3 is the velocity of the fluid at the point x.). If Σ is some oriented
surface with unit normal n̂, then the amount of fluid flowing through Σ per unit
time is exactly ∫

Σ
u · n̂ dS.

Note, both u and n̂ above are vector functions, and u · n̂ : Σ→ R is a scalar function.
The surface integral of this was defined in the previous section.

Definition 2.7. Let (Σ, n̂) be an oriented surface, and u : Σ→ R3 be a vector
field. The surface integral of u over Σ is defined to be∫

Σ
u · n̂ dS.

Remark 2.8. Other common notation for the surface integral is∫
Σ
u · n̂ dS =

∫∫
Σ
u · dS =

∫
Σ
u · dS =

∫
Σ
u · dσ

Proposition 2.9. Let ϕ : U → Σ be a parametrization of the oriented surface
(Σ, n̂). Then either

(2.1) n̂ ◦ ϕ = ∂1ϕ× ∂2ϕ

|∂1ϕ× ∂2ϕ|
on all of Σ, or

(2.2) n̂ ◦ ϕ = − ∂1ϕ× ∂2ϕ

|∂1ϕ× ∂2ϕ|
on all of Σ. Consequently, in the case (2.1) holds, we have

(2.3)
∫

Σ
u · n̂ dS =

∫
U

(u ◦ ϕ) · (∂1ϕ× ∂2ϕ) dA.

Proof. Clearly (2.3) follows from (2.1) and Proposition 1.8. To prove (2.1),
observe first that the curve γ(t) = ϕ(a+ tei) is contained in the surface Σ. Conse-
quently γ′ = ∂iϕ must be tangent to Σ for i ∈ {1, 2}. This forces ∂1ϕ× ∂2ϕ to be
normal to Σ and hence parallel to n̂. Thus

s
def= n̂ · ∂1ϕ× ∂2ϕ

|∂1ϕ× ∂2ϕ|
must be a function that only takes on the values ±1. Since s is also continuous, it
must either be identically 1 or identically −1, finishing the proof. �

Example 2.10. Gauss’s law sates that the total charge enclosed by a surface Σ
is given by

Q = ε0

∫
Σ
E · dS,

where ε0 the permittivity of free space, and E is the electric field. By convention,
the normal vector is chosen to be pointing outward.

If E(x) = e3, compute the charge enclosed by the top half of the hemisphere
bounded by |x| = 1 and x3 = 0.

3. Stokes theorem

Definition 3.1. If F : R3 → R3 is a vector field, we define the curl of F

∇× F def=

∂2F3 − ∂3F2
∂3F1 − ∂1F3
∂1F2 − ∂2F1

 .

This is sometimes also denoted by curl(F ).

Remark 3.2. A mnemonic to remember this formula is to write

∇× F =

∂1
∂2
∂3

×
F1
F2
F3

 ,

and compute the cross product treating both terms as 3-dimensional vectors.

Remark 3.3. Let u : R3 → R3 be a vector field representing the velocity of a
fluid. The quantity ∇×u measures the infinitesimal circulation of the fluid. Namely,
if a small ball is placed in the fluid, then due to friction between the fluid and the
ball’s surface, the ball will start rotating. Indeed, a counter clockwise rotation about
the x3-axis will be produced if u2 is smaller on the left of the ball than the right, or
if u1 is larger in the front of the ball than at the back. This velocity differential is
captured by ∂1u2 − ∂2u1, which is exactly the third component of ∇× u. A more
precise calculation can be used to show that the rotation axis of the ball (according
to the right hand rule), will be parallel to ∇ × u, and the angular speed will be
exactly |∇ × u|/2.

Example 3.4. If F (x) = x/|x|3, then ∇× F = 0.

Remark 3.5. In the example above, F is proportional to a gravitational force
exerted by a body at the origin. We know from experience that when a ball is pulled
towards the earth by gravity alone, it doesn’t start to rotate; which is consistent
with our computation ∇× F = 0.

Example 3.6. If v(x, y, z) = (sin z, 0, 0), then ∇× v = (0, cos z, 0).

Remark 3.7. Think of v above as the velocity field of a fluid between two
plates placed at z = 0 and z = π. A small ball placed closer to the bottom plate
experiences a higher velocity near the top than it does at the bottom, and so
should start rotating counter clockwise along the y-axis. This is consistent with our
calculation of ∇× v.
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Remark 3.8. Formally if F is a vector field, then so is ∇ × F . However,
structurally ∇× F is a 2-form, and not a vector field! It is usually identified with a
vector field using Hodge duality. Since the discussion of differential forms is beyond
the scope of this course, we will gloss over this point and simply treat the curl of a
vector field as a vector field.

Theorem 3.9 (Stokes Theorem). Let U ⊆ R3 be a domain, (Σ, n̂) ⊆ U be a
bounded, oriented, piecewise C1, surface whose boundary is the (piecewise C1) curve
Γ. If F : U → R3 be a C1 vector field, then∫

Σ
∇× F · n̂ dS =

∮
Γ
F · d`.

Here Γ is traversed in the counter clockwise direction when viewed by an observer
standing with his feet on the surface and head in the direction of the normal vector.

Remark 3.10. The rule determining the direction of traversal of Γ is often
called the right hand rule. Namely, if you put your right hand on the surface with
thumb aligned with n̂, then Γ is traversed in the pointed to by your index finger.

Remark 3.11. If the surface Σ has holes in it, then (as we did with Greens
theorem) we orient each of the holes clockwise, and the exterior boundary counter
clockwise following the right hand rule. Now Stokes theorem becomes∫

Σ
∇× F · n̂ dS =

∫
∂Σ
F · d`,

where the line integral over ∂Σ is defined to be the sum of the line integrals over
each component of the boundary.

Remark 3.12. If Σ is contained in the x, y plane and is oriented by choosing
n̂ = e3, then Stokes theorem reduces to Greens theorem.

Stokes theorem allows us to quickly see how the curl of a vector field measures
the infinitesimal circulation.

Proposition 3.13. Suppose a small, rigid paddle wheel of radius a is placed
in a fluid with center at x0 and rotation axis parallel to n̂. Let v : R3 → R3 be the
vector field describing the velocity of the ambient fluid. If ω the angular speed of
rotation of the paddle wheel about the axis n̂, then

lim
a→0

ω = ∇× v(x0) · n̂
2 .

Proof. Let Σ be the surface of a disk with center x0, radius a, and face
perpendicular to n̂, and Γ = ∂Σ. (Here Σ represents the face of the paddle wheel,
and Γ the boundary.) In equilibrium, there is no transfer of momentum from the
fluid to the paddle. This means that the angular speed ω will be such that∮

Γ
(v − aωτ̂) · d` = 0,

where τ̂ is a unit vector tangent to Γ, pointing in the direction of traversal. Conse-
quently

ω = 1
2πa2

∮
Γ
v · d` = 1

2πa2

∫
Σ
∇× v · n̂ dS a→0−−−→ ∇× v(x0) · n̂

2 . �

Remark 3.14. If the axis of the paddle wheel is chosen to maximise the angular
velocity, we see that n̂ must be parallel to ∇× v, and the maximum angular velocity
is exactly |∇ × v|/2.

Remark 3.15. Treating a small sphere as a combination of paddle wheels will
prove the rotation formula claimed in Remark 3.3.

Proof of Stokes theorem. In the case that Σ admits a C2 parametrization,
we can quickly deduce Stokes theorem from Greens theorem as follows. Let ϕ : U →
Σ be a C1 parametrization of Σ such that n̂ · (∂1ϕ× ∂2ϕ) > 0. Now∫

Σ
∇× F · n̂ dS =

∫
U

(∇× F ) ◦ ϕ · (∂1ϕ× ∂2ϕ) dA.

If we define G : U → R2 by

G = (Dϕ)T (F ◦ ϕ),

then a direct calculation using the chain and product rules shows

∂1G2 − ∂2G1 = (∇× F ) ◦ ϕ · (∂1ϕ× ∂2ϕ).

Consequently ∫
Σ
∇× F · n̂ dS =

∫
U

(∂1G2 − ∂2G1) dA =
∮

∂U

Gd`.

Parametrising the curve ∂U the same calculation we did in the proof of Greens
theorem shows ∮

∂U

Gd` =
∮

Γ
F · d`,

finishing the proof. �

4. Conservative and Potential Forces.

Definition 4.1. Let U ⊆ R3, and F : U → R3 be a C1 vector field.
• We say F is a conservative force if∮

Γ
F · d` = 0,

for all closed curves Γ which are completely contained inside U .
• We say F is a potential force there exists a C2 function V : U → R such

that F = −∇V . (The function V is called the potential.)

Definition 4.2. A domain U ⊆ R3 is called simply connected if for every simple
closed curve Γ ⊆ U , there exists a surface Σ ⊆ U whose boundary is exactly the
curve Γ.

We’ve seen before that any potential force must be conservative. We address
the converse here.

Theorem 4.3. Let U ⊆ R3 be a simply connected domain, and F : U → R3 be
a C1 vector field. Then F is a conservative force, if and only if F is a potential
force, if and only if ∇× F = 0.
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The physics of conservative and potential forces aside, this result has interesting
mathematical content: One can easily check that

∇× (∇V ) = 0,

for any C2 function V . Is the converse true? Namely if ∇× F = 0, must F = ∇V
for some function V : U → R? Theorem 4.3 says yes, provided the domain of F is
simply connected.

Proof of Theorem 4.3. Clearly, if F is a potential force, equality of mixed
partials shows ∇× F = 0. Suppose now ∇× F = 0. By Stokes theorem∮

Γ
F · d` =

∫
Σ
∇× F · n̂ dS = 0,

and so F is conservative. Thus to finish the proof of the theorem, we only need to
show that a conservative force is a potential force. We do this next.

Suppose F is a conservative force. Fix x0 ∈ U and define

V (x) = −
∫

Γ
F · d`,

where Γ is any path joining x0 and x that is completely contained in U . Since F
is conservative, we seen before that the line integral above will not depend on the
path itself but only on the endpoints.

Now let h > 0, and let Γ be a path that joins x0 to a, and is a straight line
between a and a+ he1. Then

−∂1V (a) = lim
h→0

1
h

∫ a1+h

a1

F1(a+ te1) dt = F1(a).

The other partials can be computed similarly to obtain F = −∇V concluding the
proof. �

Remark 4.4. Let U = R3 − {te3 | t ∈ R}, and define F : U → R3 by

F (x) = 1
x2

1 + x2
2

−x2
x1
0

 .

It’s easy to check that F ∈ C1(U) and ∇× F = 0. However, we claim there does
not exist any V : U → R such that F = −∇V . To see this let Γ be the unit circle
with center 0 contained in the x1-x2 plane. A calculation we’ve done before shows∮

Γ
F · d` = 2π 6= 0.

But by the fundamental theorem we know
∮
∇V · d` = 0 for any closed curve, and

thus F can not equal −∇V for any V ∈ C1(U).

5. Divergence Theorem

Definition 5.1. If v : R3 → R3 is a C1, vector field we define the divergence of
v by

∇ · v =
3∑

i=1
∂ivi.

Remark 5.2. The divergence is often denoted by div(v), and measures the
infinitesimal outward flux of a vector field at a given point. Indeed, suppose v
represents the velocity field of a fluid and consider a small imaginary cube placed in
the fluid. The difference in the horizontal components of the velocity on the right
and left will contribute towards the horizontal outward flux, and is captured by the
∂1v1 term. Similarly the ∂2v2 and ∂3v3 terms capture the outward fluxes parallel to
the x2 and x3 axes respectively.

Regions of high divergence are associated with sources (e.g. where a fluid is
being pumped in), and regions of low divergence are associated with sinks (e.g.
where a fluid drains out).

Theorem 5.3 (Divergence Theorem). Let U ⊆ R3 be a bounded domain whose
boundary is a (piecewise) C1 surface denoted by ∂U . If v : U → R3 is a vector field,
then ∫

U

(∇ · v) dV =
∮

∂U

v · n̂ dS,

where n̂ is the outward pointing unit normal vector.

Remark 5.4. Similar to our convention with line integrals, we denote surface
integrals over closed surfaces with the symbol

∮
.

Remark 5.5. Let BR = B(x0, R) and observe

lim
R→0

1
vol(BR)

∫
∂BR

v · n̂ dS = lim
R→0

1
vol(BR)

∫
BR

∇ · v dV = ∇ · v(x0),

which justifies our intuition that ∇ · v measures the outward flux of a vector field.

Remark 5.6. If V ⊆ R2, U = V × [a, b] is a cylinder, and v : R3 → R3 is a
vector field that doesn’t depend on x3, then the divergence theorem reduces to
Greens theorem.

Proof of the divergence theorem. Suppose first that the domain C is
the unit cube (0, 1)3 ⊆ R3. In this case∫

C

∇ · v dV =
∫

C

(∂1v1 + ∂2v2 + ∂3v3) dV.

Taking the first term on the right, the fundamental theorem of calculus gives∫
C

∂1v1 dV =
∫ 1

x3=0

∫ 1

x2=0
(v1(1, x2, x3)− v1(0, x2, x3)) dx2 dx3

=
∫

L

v · n̂ dS +
∫

R

v · n̂ dS,
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where L and B are the left and right faces of the cube respectively. The ∂2v2 and
∂3v3 terms give the surface integrals over the other four faces. This proves the
divergence theorem in the case that the domain is the unit cube.

Now given an arbitrary domain U , suppose there exists a C2 coordinate change
function ϕ : C → U . By interchanging x1 and x2 if necessary, we can guarantee
det(Dϕ) > 0 in all of C. Using the coordinate change formula for surface integrals
observe ∫

∂U

v · n̂ dS =
∫

∂C

(
adj(Dϕ)v ◦ ϕ

)
· n̂ dS =

∫
C

∇ · w dV,

where adj(Dϕ) is the adjunct of Dϕ, and

w
def= adj(Dϕ) v ◦ ϕ.

Now, with the product and chain rule, we claim
(5.1) ∇ · w = det(Dϕ) (∇ · v) ◦ ϕ .
Momentarily postponing the proof of (5.1), note that the coordinate change for
volume integrals implies∫

∂U

v · n̂ dS =
∫

C

∇ · w dV =
∫

U

∇ · v dV,

concluding the proof. �

It remains to prove (5.1). For clarity, we restate it as the following lemma.

Lemma 5.7. If ϕ : R3 → R3 is C2, and v : R3 → R3 is C1, then
∇ ·
(
adj(Dϕ) v ◦ ϕ

)
= det(Dϕ) (∇ · v) ◦ ϕ .

Proof. This can directly be brute force derived using the product rule, chain
rule and Clairaut’s theorem. However, the calculation is a little tedious if done
directly. Here’s a slightly more conceptual way of doing it. It’s probably not any
shorter, but you may find it easier to internalize. For convenience let adj(Dϕ) =
(ai,j). By the product rule

(5.2) ∇ ·
(
adj(Dϕ) v ◦ ϕ

)
=
∑
i,j

∂iai,jvj ◦ ϕ+
∑
i,j

ai,j∂i(vj ◦ ϕ) .

We claim the first sum on the right vanishes, and the second sum gives us what we
want.

Let’s study the second term first. By the chain rule,∑
i,j

ai,j∂i(vj ◦ ϕ) =
∑
i,j,k

ai,j(∂kvj) ◦ ϕ∂iϕk =
∑
j,k

bk,j(∂kvj) ◦ ϕ ,

where
bk,j

def=
∑

i

ai,j∂iϕk = (Dϕ)k,i adj(Dϕ)i,j .

This is simply the k, j-th entry of the matrix product Dϕ adj(Dϕ), and hence
bk,j = det(Dϕ) if k = j and is 0 otherwise. This immediately shows∑

i,j

ai,j∂i(vj ◦ ϕ) = det(Dϕ)(∇ · v) ◦ ϕ ,

as desired.
Now let’s study the first sum on the right of (5.2) Note, by the formula for the

adjunct,

adj(Dϕ) =

 ↑ ↑ ↑
∇ϕ2 ×∇ϕ3 ∇ϕ3 ×∇ϕ1 ∇ϕ1 ×∇ϕ2

↓ ↓ ↓


By the vector calculus identities

∇×∇f = 0 and ∇ · (G×H) = (∇×G) ·H −G · (∇×H) ,
we see that each column of adj(Dϕ) has divergence 0. (If you’re not familiar with
these identities, they can be quickly checked using Clairaut’s theorem and the
product rule.) This means for any j,∑

i

∂iai,jvj ◦ ϕ = ∇ ·
(
adj(Dϕ)ej

)
vj ◦ ϕ = 0 ,

as desired. This finishes the proof. �

Proposition 5.8 (Gauss’s gravitational law). Let g : R3 → R3 be the gravita-
tional field of a mass distribution (i.e. g(x) is the force experienced by a point mass
located at x). If Σ is any closed (C1) surface, then∮

Σ
g · n̂ dS = −4πGM,

where M is the mass enclosed by the region M . Here G is the gravitational constant,
and n̂ is the outward pointing unit normal vector.

Proof. The crux of the matter is the following calculation. Given a fixed
y ∈ R3, define the vector field F by

F (x) = x− y
|x− y|3

.

Then

(5.3)
∮

Σ
F · n̂ dS =

{4π if y is in the region enclosed by Σ,
0 otherwise.

For simplicity, we subsequently assume y = 0.
To prove (5.3), observe

∇ · F = 0,
when x 6= 0. Let U be the region enclosed by Σ. If 0 6∈ U , then the divergence
theorem will apply to in the region U and we have∮

Σ
g · n̂ dS =

∫
U

∇ · g dV = 0.

On the other hand, if 0 ∈ U , the divergence theorem will not directly apply,
since F 6∈ C1(U). To circumvent this, let ε > 0 and U ′ = U − B(0, ε), and Σ′ be
the boundary of U ′. Since 0 6∈ U ′, F is C1 on all of U ′ and the divergence theorem
gives

0 =
∫

U ′
∇ · F dV =

∫
∂U ′

F · n̂ dS,
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and hence ∮
Σ
F · n̂ dS = −

∮
∂B(0,ε)

F · n̂ dS =
∮

∂B(0,ε)

1
ε2 dS = −4π,

as claimed. (Above the normal vector on ∂B(0, ε) points outward with respect to
the domain U ′, and inward with respect to the ball B(0, ε).)

Now, in the general case, suppose the mass distribution has density ρ. Then
the gravitational field g(x) will be the super-position of the gravitational fields at x
due to a point mass of size ρ(y) dV placed at y. Namely, this means

g(x) = −G
∫
R3

ρ(y)(x− y)
|x− y|3

dV (y).

Now using Fubini’s theorem,∫
Σ
g(x) · n̂(x) dS(x) = −G

∫
y∈R3

ρ(y)
∫

x∈Σ

x− y
|x− y|3

· n̂(x) dS(x) dV (y)

= −4πG
∫

y∈U

ρ(y) dV (y) = −4πGM,

where the second last equality followed from (5.3). �

We saw earlier that ∇×(∇V ) = 0, and conversely, in simply connected domains,
any function for which ∇× F = 0 must satisfy F = −∇V for some V . A similar
result is true for the divergence and curl.

Proposition 5.9. For any C2 vector field F : R3 → R3 we must have
∇ · (∇× F ) = 0.

Conversely, if v : R3 → R3 is a C1 vector field for which ∇ · v = 0, there must exist
a C1 vector field F : R3 → R3 such that v = ∇× F .

Remark 5.10. If the vector field v is only defined on a domain U ⊆ R3, then
the above proposition is still true, provided the domain U has “no holes”. More
precisely, for any closed surface Σ ⊆ U , the entire region enclosed by Σ must also
be contained in U .

Proof. Using Clairaut’s theorem, we can directly check ∇ · (∇ × F ) = 0.
For the converse, suppose ∇ · v = 0. We need to find a C1 vector field F such
that ∇ × F = v. Note that ∇ × (F + ∇φ) = ∇ × F for any C2 function φ. Set
G = F +∇φ, and define

φ(x) = −
∫ x3

0
F3(x1, x2, t) dt ,

and observe now that G3 = 0. Thus if v = ∇× F for some F , we can always find
a vector field G such that G3 = 0 and v = ∇ × G. Since this is simpler, we will
directly construct a vector field G, with G3 = 0, such that ∇×G = v.

Note that if G3 = 0, then

∇×G =

 −∂3G2
∂3G1

∂1G2 − ∂2G1

 .

Since we want ∇×G = v, we must have

G2(x) = −
∫ x3

0
v1(x1, x2, t) dt+ C2(x1, x2) ,

G1(x) =
∫ x3

0
v2(x1, x2, t) dt+ C1(x1, x2) ,

where C1, C2 are two functions that only depend on x1 and x2. This shows
(∇×G) · ei = vi for i = 1, 2, and to finish the proof we only need to verify the same
identity for i = 3.

For this, recall ∇ · v = 0, and hence ∂3v3 = −∂1v1 − ∂2v2. Consequently,

∇×G · e3 = ∂1G2 − ∂2G1 =
∫ x3

0
(−∂1v2 − ∂2v2) dt+ ∂1C2 − ∂2C1

=
∫ x3

0
∂3v3(x1, x2, t) dt+ ∂1C2 − ∂2C1

= v3(x1, x2, x3)− v3(x1, x2, 0) + ∂1C2 − ∂2C1 .

To finish the proof we only need to choose C1 and C2 so that
v3(x1, x2, 0) = ∂1C2 − ∂2C1 .

This is easily arranged. Indeed, choose C1 = 0 and

C2(x1, x2) =
∫ t

0
v3(t, x2, 0) dt .

With this choice of G, C1 and C2 we have v = ∇×G as desired. �
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