
CHAPTER 1

Limits and Continuity

1. Open sets in Rd.

We begin by defining open sets. As we will see shortly, in order to study limits
and derivatives of functions, we need their domains of definition to be open sets.

Definition 1.1. A set U ⊂ Rd is open if for every a ∈ U there exists r > 0
such that B(a, r) ⊂ U .

Recall, B(a, r) ⊆ Rd is defined by

B(a, r) def= {x ∈ Rd | |x− a| < r} ,
is the open ball with center a and radius r. Throughout these notes we use the
convention that a vector x ∈ Rd has coordinates (x1, x2, . . . , xd). Recall |x| =
(
∑
x2

i )1/2 is the length of the vector x.
Example 1.2. The empty set and Rd are both open.
Example 1.3. The ball B(a, r) is open.
Proof. Let x ∈ B(a, r), and choose ε = r − |x − a|. (Notice ε > 0, since

|x− a| < r by definition of B(a, r).) Now by the triangle inequality
|y − a| 6 |y − x|+ |x− a| < ε+ |x− a| = r ,

and hence y ∈ B(a, r). This shows B(x, ε) ⊆ B(a, r) and hence B(a, r) is open. �

For now, the above should be all that’s needed. But here are a few related
concepts that will come up later on in the semester.

Definition 1.4. The boundary of a set A ⊆ Rd, denoted by ∂A, is defined by

∂A
def= {x ∈ Rd | ∀ε > 0, B(x, ε) ∩A 6= ∅ and B(x, ε) ∩Ac 6= ∅} .

Example 1.5. The boundary of a ball B(a, r) ⊆ Rd is the d− 1 dimensional
sphere {x ∈ Rd | |x− a| = r}.

One of the reasons the notion of boundary arises is because many fundamental
theorems in calculus relate integrals of functions on domains to integrals over the
boundary of of this domain.

Another notion that will be important later is that of connectedness. Domains
of functions are usually open connected sets. Connectedness, however, is a bit harder
to define precisely at this stage. Here is the “official” definition:

Definition 1.6. An open set U ⊂ Rd is connected if it can not be expressed as
the union of two non-empty, disjoint open sets.

While this definition is the “official” one, it is a little harder to grasp (e.g. try
proving Rd is connected)! Instead we will use the circular, but intuitive definition
to work with instead.

Definition 1.7. A set U ⊂ Rd is connected if for any x and y in U , there exists
a continuous path that connects x and y that stays entirely within the set U .

This definition isn’t quite legal because we have not yet defined what a continuous
path is.

Definition 1.8. A domain (sometimes called an open domain) is an open
connected set.

Most functions we study will have an open connected set as their domain of
definition. Moreover, the boundary of this domain will usually be a (piecewise)
smooth curve or surface.

2. Limits

Let f : Rm → Rn be a function. Intuitively, we say limx→a f(x) = ` if by making
x close enough to a, we can make f(x) arbitrarily close to `.1 We make this precise
mathematically as follows.

Definition 2.1. We say limx→a f(x) = l if for every ε > 0, there exists δ > 0
such that 0 < |x− a| < δ implies |f(x)− l| < ε.

Remark 2.2. If f is only defined on an open set U , then we also insist x, a ∈ U
above.

The standard theorems about limits (sums, products, quotients) from one
variable calculus still hold in this context.

Proposition 2.3. Let U ⊆ Rd be open, and f, g : U → Rn be two functions.
Suppose for some a ∈ U , limx→a f(x) = ` and limx→a g(x) = m.

(1) For any α ∈ R, limx→a(f(x) + αg(x)) = `+ αm.
(2) limx→a f(x) · g(x) = ` ·m.
(3) If instead f : U → R, then limx→a f(x)g(x) = lm.
(4) If n = 1 and m 6= 0, then limx→a(f(x)/g(x)) = `/m.

Proof. The proofs of these are almost identical to the one dimensional ana-
logues which we assume the reader is familiar with. For brevity we only prove the
first assertion. Let ε > 0. Since limx→a f(x) = `, there exists δ1 > 0 such that
0 < |x− a| < δ1 implies |f(x)− `| < ε/2. Also, limx→a g(x) = `, there exists δ2 > 0
such that 0 < |x− a| < δ1 implies |g(x)− `| < ε/(2(|α|+ 1)).

Now choose δ = min{δ1, δ2}. Then if 0 < |x− a| < δ we have

|f(x) + αg(x)− (`+ αm)| 6 |f(x)− `|+ |α||g(x)−m| 6 ε

2 + |α|ε
2|α|+ 1 < ε . �

1Note, often people say limx→a f(x) = ` if as x gets closer to a, f(x) gets closer to `. This is
wrong! If you draw a graph of f(x) = x sin(1/x), for instance, you will see that as x → 0, f(x) → 0.
But as x gets closer to 0, f(x) certainly doesn’t get closer to 0.

1



2 1. LIMITS AND CONTINUITY

Since limits of functions of one variable have been studied previously, we now
attempt to reduce limits of functions of several variables to limits of functions of
one variable.

Proposition 2.4. If limx→a f(x) = l then for every v ∈ Rd with v 6= 0, we
must have limt→0 f(a+ tv) = l.

Proof. Pick ε > 0. We know ∃δ > 0 such that 0 < |x − a| < δ =⇒
|f(x) − l| < ε. Choose δ1 = δ/|v|. Now it immediately follows that 0 < t < δ1
implies |f(a+ tv)− l| < ε. �

The converse (surprisingly) is false!

Example 2.5. Let f(x) = 1 if 0 < x2 < x2
1 and f(x) = 0 otherwise. Then

limx→0 f(x) does not exist, but limt→0 f(tv) = 0 for all v ∈ R2 − {0}.

Example 2.6. Let f(x) = x2
1x2/(x4

1 + x2
2), and f(0) = 0. Then limx→0 f(x)

does not exist, but limt→0 f(tv) = 0 for all v ∈ R2 − {0}.

Proposition 2.4 can be used to show that various limits don’t exist.

Example 2.7. Show that lim
x→0

x1x2

|x|2
does not exist.

Proof. Choosing v1 = (1, 1) and v2 = (1, 0) we see

lim
t→0

f(tv1) = 1
2 and lim

t→0
f(tv2) = 0 6= 1

2 .

So by Proposition 2.4, limx→0 x1x2/|x|2 can not exist. �

3. Continuity

Intuitively, a continuous function is one which sends close by points to close by
points. To define continuity precisely, one needs to use limits (or the ε-δ definition
directly).

Definition 3.1. Let U ⊂ Rm be a domain, and f : U → Rd be a function. We
say f is continuous at a if limx→a f(x) = f(a).

Definition 3.2. If f is continuous at every point a ∈ U , then we say f is
continuous on U (or sometimes simply f is continuous).

Again the standard results on continuity from one variable calculus hold. Sums,
products, quotients (with a non-zero denominator) and composites of continuous
functions will all yield continuous functions.

The notion of continuity gives us a generalization of Proposition 2.4 that is
useful is computing the limits along arbitrary curves instead.

Proposition 3.3. Let f : Rd → R be a function, and a ∈ Rd. Let γ : [0, 1]→ Rd

be a any continuous function with γ(0) = a, and γ(t) 6= a for all t > 0. If
limx→a f(x) = `, then we must have limt→0 f(γ(t)) = `.

Proof. The proof of this is very similar to the fact that the composition of
continuous functions is again continuous. Let ε > 0 be arbitrary. Since f(x)→ ` as
x→ a, there exists δ > 0 such that
(3.1) |f(x)− `| < ε whenever 0 < |x− a| < δ .

Now since γ(t) → a as t → 0, there exists δ1 such that |γ(t) − a| < δ whenever
|t− 0| < δ1. Since γ(t) 6= a when t 6= 0, we can use (3.1) to guarantee that

|f(γ(t))− `| < ε, whenever |t− 0| < δ1 . �

Corollary 3.4. If there exists two continuous functions γ1, γ2 : [0, 1] →
Rd such that for i ∈ 1, 2 we have γi(0) = a and γi(t) 6= a for all t > 0. If
limt→0 f(γ1(t)) 6= limt→0 f(γ2(t)) then limx→a f(x) can not exist.

One can use Corollary 3.4 to quickly check that the limit of the function in
Example 2.6 does not exist.

Finally, we conclude by showing that the converse of Proposition 3.3 is true.

Proposition 3.5. Let f : Rd → R be a function, and a ∈ Rd. Suppose for
every continuous function γ : [0, 1] → Rd such that γ(0) = a and γ(t) 6= a for all
t > 00, we have limt→0+ f(γ(t)) = `, then we must have limx→a f(x) = `.

This result isn’t too useful practically of course. To use it to prove existence of
limits, you would have to test the limit of f ◦ γ(t) for every continuous function γ
as above. If you can do this, you can certainly check the existence of limx→a f(x)
by other methods. The only reason this proposition is stated here is so that you
can contrast it with Proposition 2.4.

Indeed, we saw (Example 2.5), that the converse of Proposition 2.4 was false.
Namely, if the limits along every line exist and are equal, it need not imply the full
limit exists. However, Proposition 3.5 shows that if limits along every continuous
curve exist and are equal, then the full limit must indeed exist.

The proof is a bit technical, but is essentially straightforward.

Proof of Proposition 3.5. When d = 1 the proposition is easily proved by
choosing the two curves a+ t and a− t. Thus, we will now assume d > 1. Suppose
for contradiction limx→a f(x) 6= `. Then, there exists ε > 0 such that for every
δ > 0 there exists x ∈ Rd such that 0 < |x− a| < δ, but |f(x)− `| > ε. For every
n ∈ N, choose δ = 1/n, to obtain a point xn ∈ Rd such that 0 < |xn− a| < 1/n, but
|f(xn)− `| > ε.

Now, we γ such that on the interval [ 1
n+1 ,

1
n ], γ is a continuous curve connecting

xn+1 and xn without passing through a, and staying at most a distance of 1/n away
from a. (This is always possible when d > 2, and is easy to write down explicitly
using two line segments for instance.) Define γ(0) = a.

It is easy to see that γ is a continuous function such that γ(t) 6= a for all t > 0
and limt→0 γ(t) = a. However, since |f(γ(1/n)) − `| = |f(xn) − `| > ε, and so
limt→0 f(γ(t)) 6= `. This contradicts the hypothesis of the proposition, concluding
the proof. �
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