
MSCF 944 Homework

The homework policy on the class website will be strictly enforced.

Assignment 1 (assigned 2017-10-25, due 2017-11-01).

1. Let X be a random variable. The moment generating function of X (denoted by
MX) is defined by MX(t) = EetX . It is certainly possible that MX(t) =∞ for
some t, but for this problem we assume that MX(t) is finite in some small interval
containing 0.
(a) IfMX is infinitely differentiable, find a relationship between the nth derivative

of MX and EXn. Provide some reasoning.
(b) If X ∼ Exp(λ), compute MX(t) for every t ∈ R.
(c) If X ∼ N(µ, σ2) compute MX(t) for all t ∈ R.

2. Let X, Y be two random variables. Recall the covariance cov(X,Y ) is defined by
cov(X,Y ) = E(XY )− (EX)(EY ). Two random variables are called uncorrelated
if cov(X,Y ) = 0.
(a) If a, b, c, d ∈ R, compute cov(aX+ b, cY +d) in terms of cov(X,Y ) and a, b, c

and d.
(b) Show that independent random variables are uncorrelated.
(c) Show by example that uncorrelated random variables need not be indepen-

dent.
(d) If (X,Y ) is jointly normal and X and Y are uncorrelated, must X and Y be

independent? Justify. [Do more than simply quote a theorem.]

3. (a) (Chebychev’s inequlity) For any p, λ > 0, prove P (X > λ) 6 E(|X|p)/λp.
[Hint: For p = 1, verify and use the fact that λ1{X>λ} 6 |X|.]

(b) (Jensen’s inequality) If ϕ : R→ R is a convex function, and X is a random
variable, show that ϕ(EX) 6 Eϕ(X). [Hint: Use the fact that convex functions are
always above their tangent. Namely, for any a ∈ R, we have ϕ(a) + (X − a)ϕ′(a) 6 ϕ(X).
Choose a correctly and use positivity. If this hint isn’t sufficient, this should be done in
the text and in the self study videos.]

We have (or will) use σ-algebras extensively, but haven’t developed any examples.
Infinite σ-algebras are “hard” to write down explicitly, and what one usually does
in practice is specify a generating family: Given a collection of sets Aα, where α
belongs to some (possibly infinite) index set A, we define σ({Aα}) to be the smallest
σ-algebra that contains each of the sets Aα. That is, if G = σ({Aα}), then we must
have each Aα ∈ G. Since G is a σ-algebra, all sets you can obtain from these by
taking complements, countable unions and countable intersections intersections must
also belong to G. (The fact that G is the smallest σ-algebra containing each Aα also
means that if G′ is any other σ-algebra that contains each Aα, then G ⊆ G′.)

4. (Borel σ-algebra) Let Aα = (−∞, α) for α ∈ R, and define B = σ({Aα | α ∈ R}).
This is called the Borel σ-algebra on R. Show that {0} ∈ B and (0, 1] ∈ B. [In fact,
all intervals (finite or infinite) are all contained in B, and so are countable unions or intersections
of these. You might be tempted to thing that this will surely include all subsets of R. This isn’t
true! There are subsets of R that are not in B, but they aren’t easy to write down!]

Let Ω = [0, 1), and let B be the Borel σ-algebra (i.e. the σ-algebra generated by
all open intervals in Ω). It can be shown that there exists a measure P on (Ω,B)
such that P ((a, b)) = b − a for every a, b ∈ Ω with a 6 b. Moreover, under this
measure, the expectation operator is simply the Riemann integral, when it exists.
Namely, given a random variable X : Ω→ R, we have EX =

∫ 1
0 X(y) dy, provided

X is Riemann integrable. This measure is known as the Lebesgue measure, and is
extremely important. Its rigorous construction, however, isn’t straightforward.
5. Let H : R → R be defined by H(x) = 0 if bxc is even, and H(x) = 1 otherwise.

For n ∈ {1, 2, . . .}, define Xn : Ω→ R by Xn(y) = H(2ny).
(a) Show that Xn is a random variable for every n.
(b) Given α ∈ R, and m 6= n compute P (Xm < α)P (Xn < α).
(c) Given α ∈ R, and m 6= n compute P (Xm < α & Xn < α).
(d) Compute EXn, EX2

n and EXmXn when m 6= n.



Assignment 2 (assigned 2017-11-01, due 2017-11-08).

Unless otherwise noted, {Ft} is the Brownian filtration, andW is a standard Brownian
motion. In all problems that ask you to simply compute something, you should also
explain how you arrived at the answer and not simply state the answer.

1. Let Ω = {HH,HT, TH, TT} be the sample space corresponding to two tosses
of a coin. Let X and Y be the number of heads on the first and second tosses
respectively. That is

X(HH) = X(HT ) = 1, X(TH) = X(TT ) = 0 ,
Y (HH) = Y (TH) = 1, Y (HT ) = Y (TT ) = 0 .

(a) Enumerate σ(X), and σ(Y ) explicitly.
(b) Define a probability measure P by

P {HH} = 1
12 , P {HT} = 1

6 , P {TH} = 1
4 , P {TT} = 1

2 .

Are X and Y independent under P ? Justify your answer.
(c) Consider the probability measure P̃ defined by

P̃ {HH} = 1
12 , P̃ {HT} = 1

6 , P̃ {TH} = 3
8 , P̃ {TT} = 3

8 .

Are X and Y independent under P̃ ? Justify your answer.
2. Consider the sample space

Ω def= {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} .

For p ∈ (0, 1) let P be the probability measure on Ω correspond to independent
coin tosses that yield heads with probability p, and tails with probability q. In
other words, P (HHH) = p3, P (HHT ) = p2q, and so on. Consider a three-period
stock price model defined as follows: Let S0(ω) = 4, and for n ∈ {1, 2, 3} define

Sn(ω) =


2Sn−1(ω) if the nth letter in ω is H ,
Sn−1(ω)

2 otherwise .

Note σ(S3) is generated by the atoms

C1
def= {S3 = 32} = {HHH} , C2

def= {S3 = 8} = {HHT,HTH, THH} ,

C3
def= {S3 = 2} = {HTT, THT, TTH} , C4

def= {S3 = 0.50} = {TTT} .

Let E(S2 | S3) = E(S2 | σ(S3)) denote the conditional expectation of S2 given
σ(S3).
(a) Find constants c1, . . . , c4 so that E(S2 |S3) =

∑4
i=1 ci1Ci

. [Hint: By definition
of conditional expectations, we know

∫
C1

E(S2 | S3) dP =
∫
C1

S2 dP . In this context, this
translates to the relation

∑
ω∈C1

E(S2 | S3)(ω)P (ω) =
∑

ω∈C1
S2(ω)P (ω). Use this to

find c1, and proceed similarly for c2, . . . c4. ]

(b) Explicitly compute EE(S2 | S3) and verify that it equals ES2.
3. If s < t, compute E(W (t)3 | Fs).
4. Let Y be a standard normal random variable, and let K ∈ R.

(a) For any x ∈ R let g(x) def= E((e(x+Y ) −K)+). Express g explicitly in terms
of the cumulative normal distribution function

N(d) def= 1√
2π

∫ d

−∞
e−

1
2 ξ

2
dξ,

for two different values of d. [Your answer will look something like the Black-Scholes
formula.]

(b) Suppose now X is another standard normal random variable that is inde-
pendent of Y . Compute E

(
(eX+Y −K)+

∣∣X)(ω). [Even though the variable ω
is usually suppressed from all formulae, include it explicitly in this problem for clarity.
Recall that E

(
(eX+Y −K)+

∣∣X) is shorthand for E
(
(eX+Y −K)+

∣∣ σ(X)
)
.]

5. Given λ ∈ R, find α so that the process M(t) = exp(λW (t)− αt) is a martingale.



Assignment 3 (assigned 2017-11-08, due 2017-11-15).

Unless otherwise noted, {Ft} is the Brownian filtration, andW is a standard Brownian
motion. In all problems that ask you to simply compute something, you should also
explain how you arrived at the answer and not simply state the answer.

1. Let t1 > 0 and ξ0 ∈ R be a F0-measurable random variable, and ξ1 be a Ft1
measurable random variable. Let I, A be the process defined by

I(t) =
{
ξ0W (t) t < t1 ,

ξ0W (t1) + ξ1(W (t)−W (t1)) t > t1 .

and

A(t) =
{
ξ2

0t t < t1 ,

ξ2
0t1 + ξ2

1(t− t1) t > t1 .

Explicitly check that the processes I and I2 −A are martingales, and conclude
that [I, I] = A.
Note: This is a special case of Chapter 3, Lemma 4.1 in the notes, and is an immediate
consequence of the properties of Itô integrals. However, please do not use Lemma 4.1 or
Theorem 4.2 here, and do this problem directly. This is the key idea behind the construction of
the Itô integral (and the proofs of the above lemmas), and it is very helpful if you explicitly
check this yourself explicitly.
Hint: I recommend you start by showing I is a martingale. For this you need to show
E(I(t) | Fs) = I(s). Split the analysis into three cases: s < t < t1, s < t1 6 t and t1 6 s < t,
and use properties of conditional expectations you know. The same strategy can be used to
show I2 −A is a martingale. Once you figure this out, the general case (stated in class) follows
by the same idea and some technical suffering with summation indices.

2. (a) Suppose (X1, X2) is jointly Gaussian with EXi = 0, EX2
i = σ2

i , and
EX1X2 = ρ. Find E(X1 | X2) (recall from your previous homework that
E(X1 | X2) is shorthand for E(X1 | σ(X2))). Express your answer in the
form g(X2), where g is some function you have an explicit formula for.
Hint: Let Y = X1−αX2, and choose α ∈ R so that EY X2 = 0. By the normal correlation
theorem we know Y is independent of X2. Now use the fact that X1 = Y + αX2 to
compute E(X1 |X2).

(b) Use the previous part to compute E(W (s) |W (t)) when s < t. [This was asked
in a job interview.]

3. Let α, σ ∈ R and define S(t) = S(0) exp
((
α− σ2

2

)
t+ σW (t)

)
.

(a) Given a function f : R→ R, find a function g : R→ R so that

E
(
f(S(t))

∣∣ Fs) = g(S(s)) .

Your formula for g will involve f and an integral involving the density of the
normal distribution. [Hint: Let Y = exp((α − σ2

2 )(t − s) + σ(W (t) −W (s))), and
note S(t) = S(s)Y where S(s) is Fs measurable and Y is independent of Fs. Use this to
compute E(f(S(s)Y ) | Fs).]

(b) Find functions f, g : R2 → R so that

S(t) = S(0) +
∫ t

0
f(s, S(s)) ds+

∫ t

0
g(s, S(s)) dW (s) .

Hint: Use the Itô formula to compute dS(t) = S(0) d(exp(· · · )). If you get the right
answer you’ll realize the importance of the process S to financial mathematics. The fact
that I called it S and not X might have already given you a clue. . .

(c) Using the previous part find all α ∈ R for which S is a martingale?
(d) Let µ(t) = ES(t). Find a function h so that ∂tµ(t) = h(t, µ(t)). [You can

do this directly using the formula for S, of course. But it might be easier (and more
instructive) to use your answer to part (b) instead.]

(e) Find a function h so that [S, S](t) =
∫ t

0
h(s, S(s)) ds.

In part (a) above, we observe that if we apply any function f to the process S at
time t and condition it on Fs, the whole history up to time s, we get something
that only depends on S(s) (the “state” at time s) and not anything before. This
is called the Markov property. Explicitly, a process X is called Markov if for any
function f : R → R and any s < t we have E(f(X(t)) | Fs) = g(X(s)) for some
function g.
(f) Is Brownian motion a Markov process? Justify.

4. (a) Find functions f, g so thatW (t)4 =
∫ t

0
f(s,W (s)) ds+

∫ t

0
g(s,W (s)) dW (s) .

(b) Compute EW (t)4 explicitly as a function of t.

(c) Find a function h so that [W 4,W 4](t) =
∫ t

0
h(s,W (s)) ds.

5. Determine whether the following identities are true or false, and justify your
answer.

(a) e2t sin(2W (t)) = 2
∫ t

0
e2s cos(2W (s)) dW (s).

(b) |W (t)| =
∫ t

0
sign(W (s)) dW (s). [Recall sign(x) = 1 if x > 0, sign(x) = −1 if x < 0

and sign(x) = 0 if x = 0.]



Assignment 4 (assigned 2017-11-15, due never).

In light of your midterm on 10/20, this homework is optional. It will not be graded,
and solutions will not be posted. All the problems are good exam practice, so I
recommend trying them. Also, a few problems will make their way to your next
homework.

Unless otherwise noted, {Ft} is the Brownian filtration, andW is a standard Brownian
motion. In all problems that ask you to simply compute something, you should also
explain how you arrived at the answer and not simply state the answer.

1. For each process X defined below explicitly find adapted processes b, σ such that
for any s < t we have

X(t) = X(s) +
∫ t

s

b(r) dr +
∫ t

0
σ(r) dW (r)

(a) X(t) = 2t
1 + 3W (t)2 .

(b) X(t) = (1 + 2tW (t))10

(c) X(t) = ln
(
1 + 2W (t)4)

(d) X(t) = W (t)
∫ W (t)

0
exp(−ts2) ds.

2. Determine if the following processes are martingales.
(a) X(t) = (W (t) + t) exp(−W (t)− t/2).

(b) X(t) =
(
W (t) + t2

2

)
exp
(
−
∫ t

0
s dW (s)− t2

2

)
(c) X(t) =

(
W (t) +

∫ t

0
b(s) ds

)
exp
(
−
∫ t

0
b(s) dW (s)− 1

2

∫ t

0
b(s)2 ds

)
, where b

is any adapted process.
The third part above requires the use of the multidimensional Itô formula, or the product rule
which I have not yet covered. These are special cases of the Girsanov theorem, which we will be
important later, and we will revisit these problems after doing the Girsanov theorem.

Note that if X is a process with mean 0 independent increments (i.e. X(t)−X(s)
is independent of FXs ), then X must be a martingale with respect to the filtration
generated by X. The converse is false. Here is a counter example.
3. Let M(t) =

∫ t
0 W (s) dW (s).

(a) For s < t, compute E
(
(M(t)−M(s))2

∣∣ Fs).
(b) Compute E(M(t)−M(s))2W (s)2 and E(M(t)−M(s))2EW (s)2, and verify

that they are not equal. Conclude M(t)−M(s) is not independent of Fs.
(c) (Unrelated) Given λ ∈ R and s < t show that

E
(
eλ(M(t)−M(s)) ∣∣ Fs) = 1 + λ2

2

∫ t

s

E
(
eλ(M(r)−M(s))W (r)2 ∣∣ Fs) dr .

4. (Itô and martingale representation theorems.) Fix T > 0, and suppose f =
f(x) : R→ R is a continuous function.
(a) We know that E(f(W (T )) | Ft) = ϕ(t,W (t)), for some function ϕ = ϕ(t, x)

that is given by an explicit formula involving an integral of f and the density
of the normal distribution. (We encountered this in class, and again on your
previous homework.) Show that ∂tϕ+ 1

2∂
2
xϕ = 0.

(b) Show that f(W (T )) = Ef(W (T )) +
∫ T

0 ∂xϕ(s,W (s)) dW (s).
[Now using an approximation argument one can show that for any FT measurable random
variable ξ, we must have ξ = Eξ +

∫ T
0 σ(s) dW (s) for some adapted process σ. This is

called the Itô representation theorem.
Using this, one can quickly show that if M is any (square integrable) martingale with

respect to the Brownian filtration, then we must have M(T ) = EM(0) +
∫ T

0 σ(s) dW (s).
This is called the martingale representation theorem. (Note that Itô integrals are always
martingales. The martingale representation theorem guarantees the converse.) This will
(almost surely) come up in the second mini.]



Assignment 5 (assigned 2017-11-20, due 2017-11-29).

Unless otherwise noted, {Ft} is the Brownian filtration, andW is a standard Brownian
motion. In all problems that ask you to simply compute something, you should also
explain how you arrived at the answer and not simply state the answer.

Note that if X is a process with mean 0 independent increments (i.e. X(t)−X(s) is
independent of FXs and E(X(t)−X(s)) = 0), then X must be a martingale with
respect to the filtration generated by X. The converse is false. Here is a counter
example.

1. Let M(t) =
∫ t

0 W (s) dW (s).
(a) For s < t, compute E

(
(M(t)−M(s))2

∣∣ Fs).
(b) Compute E(M(t)−M(s))2W (s)2 and E(M(t)−M(s))2EW (s)2, and verify

that they are not equal. Conclude M(t)−M(s) is not independent of Fs.
(c) (Unrelated) Given λ ∈ R and s < t show that

E
(
eλ(M(t)−M(s)) ∣∣ Fs) = 1 + λ2

2

∫ t

s

E
(
eλ(M(r)−M(s))W (r)2 ∣∣ Fs) dr .

2. (Itô and martingale representation theorems.) Fix T > 0, and suppose f =
f(x) : R→ R is a continuous function.
(a) We know that E(f(W (T )) | Ft) = ϕ(t,W (t)), for some function ϕ = ϕ(t, x)

that is given by an explicit formula involving an integral of f and the density
of the normal distribution. (We encountered this in class, and again on your
previous homework.) Show that ∂tϕ+ 1

2∂
2
xϕ = 0.

(b) Show that f(W (T )) = Ef(W (T )) +
∫ T

0 ∂xϕ(s,W (s)) dW (s).
[Now using an approximation argument one can show that for any FT measurable random
variable ξ, we must have ξ = Eξ +

∫ T
0 σ(s) dW (s) for some adapted process σ. This is

called the Itô representation theorem.
Using this, one can quickly show that if M is any (square integrable) martingale with

respect to the Brownian filtration, then we must have M(T ) = EM(0) +
∫ T

0 σ(s) dW (s).
This is called the martingale representation theorem. (Note that Itô integrals are always
martingales. The martingale representation theorem guarantees the converse.) This will
(almost surely) come up in the second mini.]

3. (Leibniz’ Rule). Let f(t, x) be a function of two variables, t and x, and assume
that the partial derivatives ∂tf(t, x) and ∂xf(t, x) exist. If we replace x by a
function x(t) that is differentiable, then the total derivative of f(t, x(t)) is

(6) d

dt
f
(
t, x(t)

)
= ∂tf

(
t, x(t)

)
+ ∂xf

(
t, x(t)

)
x′(t).

In differential notation, we write this as

df
(
t, x(t)

)
= ∂tf

(
t, x(t)

)
dt+ ∂xf

(
t, x(t)

)
x′(t) dt.

Now let g(s, x) be a function of two variables, s and x, and assume that the partial
derivative ∂xg(s, x) exists. We can then define

f(t, x) =
∫ t

0
g(s, x) ds.

The Fundamental Theorem of Calculus implies that the partial derivative of f
with respect to t is

∂tf(t, x) = g(t, x).

The partial derivative of f with respect to x is

∂xf(t, x) =
∫ t

0
∂xg(s, x) ds.

Again we can replace x by a differentiable function x(t). In this special case, (6)
becomes

d

dt

(∫ t

0
g
(
s, x(t)

)
ds

)
= g
(
t, x(t)

)
+
(∫ t

0
∂xg
(
s, x(t)

)
ds

)
x′(t).

This equation is called Leibniz’ Rule for Riemann integration. In differential
notation, we write Leibniz’ Rule for Riemann integration as

(7) d

(∫ t

0
g
(
s, x(t)

)
ds

)
= g
(
t, x(t)

)
dt+

(∫ t

0
∂xg
(
s, x(t)

)
ds

)
x′(t) dt.

This rule says that when we are computing the differential with respect to t of∫ t
0 g(s, x(t)) ds, we must compute the differential with respect to both places t
appears in this expression. According to the Fundamental Theorem of Calculus,
the differential with respect to t in the upper limit of integration is g(t, x(t)) dt. To
that we must add the differential with respect to the t appearing as the argument of
x(t), and this requires that we differentiate with respect to x, obtaining ∂xg(s, x(t))
under the integral sign, and then multiply this by the differential x′(t) dt of x(t).
Under the same assumptions, namely that g(s, x) is a function of two variables s
and x and the partial derivative ∂xg(s, x) exists, and that x(t) is a nonrandom
differentiable function of t, Leibniz’ Rule for Itô integration says that

(8) d

(∫ t

0
g
(
s, x(t)

)
dW (s)

)
= g
(
t, x(t)

)
dW (t)

+
(∫ t

0
∂xg
(
s, x(t)

)
dW (s)

)
x′(t) dt.

For x ∈ R and t > 0, we now define

I(t, x) =
∫ t

0
(x− s) dW (s).



(a) Use Leibniz’ Rule for Itô integration (8) to compute the differential of I(t, t).
(b) From the definition of I(t, x), we have

I(t, x) =
∫ t

0
x dW (s)−

∫ t

0
s dW (s) = xW (t)−

∫ t

0
s dW (s),

and therefore

I(t, t) =
∫ t

0
t dW (s)−

∫ t

0
s dW (s) = tW (t)−

∫ t

0
s dW (s).

Compute the differential of tW (t)−
∫ t

0 s dW (s) and check that it agrees with
your answer in the first part.

(c) Is I(t, t) =
∫ t

0 (t− s) dW (s) a martingale? Why or why not?
(d) What is EI(t, t)?

4. This problem outlines how you would go about “solving” the Black-Scholes-
Merton PDE. Suppose c = c(t, x) solves ∂tc + rx∂xc + σ2x2

2 ∂2
xc = rc, with

boundary conditions c(t, 0) = 0, linear growth as x→∞, and terminal condition
c(T, x) = (x−K)+.
(a) Set y = ln x and compute ∂xc, ∂2

xc in terms of y, ∂yc and ∂2
yc. Use this to

find constants β1, β2 ∈ R such that ∂tc+ β1∂yc+ β2∂
2
yc = rc.

(b) Let τ = T − t, z = y + γ2τ and v(τ, z) = eγ1τ c(t, x). Find γ1 and γ2 so that
∂τv = κ∂2

zv for some constant κ > 0. Express γ1, γ2 and κ in terms of σ2

and r.

The equation you obtained for v above is called the heat equation, whose solution
formula can be found in any standard PDE book. Namely, if we set f(y) = v(0, y),
then at times τ > 0 the function v is given by

v(τ, y) = 1√
4πκτ

∫
R
f(y − z) exp

(−z2

4κτ

)
dz

(This is very similar to the formula you should have obtained in question 2.(a). In
fact, by rescaling time one can derive the above formula using what you obtained
in question 2.(a).)
(c) (Optional) Using the above formula for v, substitute back and derive the

Black, Scholes, Merton formula for c. [While this is good practice, it is a little
tedious. We will derive the formula in class using risk neutral measures.]



Assignment 6 (assigned 2017-11-29, due 2017-12-06).

1. Let S be a geometric Brownian motion with mean return rate α and volatility
σ. Let γ > 0 and consider a security that pays S(T )γ at time T . Compute the
arbitrage free price of this security.

Hint: Use the replicating portfolio argument to reduce this problem to finding the solution of
a PDE with appropriate terminal and boundary conditions. Now look for a solution to these
equations that is of the form c(t, x) = f(t)g(x) for some functions f, g, and then find f and g
explicitly.

2. Question asked on a job interview (a few years ago)

Determine the final value of a delta-hedge of a long call position if the
realized volatility is different from the implied volatility.

The question asked was the sentence above. Here is the same question posed in
more detail. Let

c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x))

be the price of a European call, expiring at time T with strike price K, if the
stock price at time t is x, where

d±(T − t, x) = 1
σ1
√
T − t

[
log x

K
+
(
r ± 1

2σ
2
1

)
(T − t)

]
.

This call price formula assumes the underlying stock is a geometric Brownian
motion with volatility σ1 > 0. For this problem we take this to be the market
price of the call. In other words, σ1 is the implied volatility, the one that makes
the Black-Scholes formula agree with the market price of the call.
Suppose, however, that the underlying stock is really a geometric Brownian

motion with volatility σ2 > 0, i.e.,

dS(t) = αS(t) dt+ σ2S(t) dW (t) .

We assume for most of this problem that σ2 is constant. After we observe the
stock price between times 0 and T , if we estimate the so-called realized volatility,
we get σ2. Consequently, the market price of the call at time zero is incorrect,
although we do not know this at time zero.
We set up a portfolio whose value at each time t we denote by X(t). We begin

with X(0) = 0. At each time t, the portfolio is long one European call and is
short ∂xc(t, S(t)) = N(d+(T − t, S(t))) shares of stock. This is the delta-hedge of
the long call position.
There is a cash position associated with this hedge which is often neglected.

Here we keep track of it. We start with zero initial capital, and so at the initial
time the portfolio has a cash position

−c(0, S(0)) + S(0)∂xc(0, S(0)) = Ke−rTN
(
d−(T, S(0))

)
,

because we spend c(0, S(0)) = S(0)N(d+(T, S(0))) −Ke−rTN(d−(T, S(0))) to
buy the call and we receive S(0)∂xc(0, S(0)) = S(0)N(d+(T, S(0))) when we short

the stock. This cash is invested in a money market account with a constant
continuously compounding interest rate r. At subsequent times, as we adjust the
position in stock, we finance this by taking money from the money market account
or depositing money into the money market account, depending on whether we
are buying or selling stock, respectively. Therefore, the differential of the portfolio
value is

dX(t) = dc(t, S(t))− ∂xc(t, S(t)) dS(t) + r
[
X(t)− c(t, S(t)) + S(t)∂xc(t, S(t))

]
dt

for 0 6 t 6 T . The term dc(t, S(t)) accounts for the profit or loss from the long
call position. The term −∂xc(t, S(t)) dS(t) accounts for the profit or loss from the
short stock position. Finally, since X(t) is the total portfolio value, if we take into
account the long call and the short stock positions, we see that the cash position
is

X(t)− c(t, S(t)) + S(t)∂xc(t, S(t)) .

This is invested at interest rate r. The term

r
[
X(t)− c(t, S(t)) + S(t)∂xc(t, S(t))

]
dt

in the above formula for dX(t) keeps track of these interest earnings.
(a) Determine the value of X(T ). In particular, discuss the relationship among

σ1, σ2 and the sign of X(T ). Hint: Compute d(e−rtX(t)).

(b) How would the analysis change if, instead of being constant, σ2 is an adapted
process σ2(t)?

3. (Asian options) Let S be a geometric Brownian motion with mean return rate α
and volatility σ, modelling the price of a stock. Let Y (t) =

∫ t
0 S(s) ds.

(a) Let f = f(t, x, y) be any function that is C2 in x, y and C1 in t. Find a
condition on f such that X(t) = f(t, S(t), Y (t)) represents the wealth of an
investor that has a portion of his wealth invested in the stock, and the rest
in a money market account with return rate r.
Hint: We know that if X represents the wealth such an investor and ∆(t) is the number
of shares of the stock held at time t, then dX(t) = ∆(t) dS(t) + r(X(t)−∆(t)S(t)) dt.

Let V = V (x, y) be a function and consider a derivative security that pays
V (S(T ), Y (T )) at time T . Note, if V (x, y) = (y/T −K)+ then this is exactly an
Asian option with strike price K.
(b) Suppose c = c(t, x, y) is a function such that c(t, S(t), Y (t)) is the arbitrage

free price of this security at time t. Assuming c is C1 in t and C2 in x, y
when t < T , find a PDE and boundary conditions satisfied by c.
[The PDE you obtain will be similar to the Black-Scholes PDE, but will also involve
derivatives with respect to the new variable y. Unlike the case of European options, the
PDE you obtain here will not have an explicit solution.]

(c) Conversely, if c is the solution to the PDE you found in the previous part then
show that the arbitrage free price of this security is exactly c(t, S(t), Y (t)).



Assignment 7 (assigned 2017-12-06, due 2017-12-13).

In light of your FINAL on Dec 16th, solutions to this homework will post on Wednes-
day 2017-12-13, and late homework will not be accepted.

1. The main idea behind arbitrage free pricing is to reproduce the pay-off of a
derivative security by trading the underlying risky asset and a riskless money
market account. At time t, let S(t) be the price of the risky asset, M(t) = ert

the price of one share in the money market (that is assumed to have a constant
return rate r), X(t) be the value of a portfolio that holds ∆(t) shares of the risky
asset, Γ(t) shares of the money market. Then we should have

X(t) = ∆(t)S(t) + Γ(t)M(t) .

Assuming that no external cash is injected into the portfolio we should also have

dX(t) = ∆(t) dS(t) + r(X(t)−∆(t)S(t)) dt .

Use these two equations to derive the self-financing condition

S(t) d∆(t) + d[S,∆](t) +M(t) dΓ + d[M,Γ](t) = 0 .

2. Let W and B be two independent (one dimensional) Brownian motions. Let M ,
N be defined by

M(t) =
∫ t

0
W (s) dB(s) and N(t) =

∫ t

0
B(s) dW (s) .

Show [M,N ] = 0. Also verify EM(t)2EN(t)2 6= EM(t)2N(t)2, and show that
M , N are not independent even though [M,N ] = 0.

3. Consider a financial market consisting of a stock and a money market account.
Suppose the money market account has a constant return rate r, and the stock
price follows a geometric Brownian motion with mean return rate α and volatility
σ. Here α, σ and r > 0 are constants. Let K,T > 0 and consider a derivative
security that pays (S(T )2 −K)+ at maturity T . Compute the arbitrage free price
of this security at any time t ∈ [0, T ). Your answer may involve r, σ, K, t, T , S,
and the CDF of the normal distribution, but not any integrals or expectations.

Hint: The simplest way to solve this problem is to use the risk neutral pricing formula, along
with the explicit Black-Scholes formula you already know.


