
CHAPTER 2

Brownian motion

1. Scaling limit of random walks.

Our first goal is to understand Brownian motion, which is used to model “noisy
fluctuations” of stocks, and various other objects. This is named after the botanist
Robert Brown, who observed that the microscopic movement of pollen grains appears
random. Intuitively, Brownian motion can be thought of as a process that performs
a random walk in continuous time.

We begin by describing Brownian motion as the scaling limit of discrete random
walks. Let X1, X2, . . . , be a sequence of i.i.d. random variables which take on the
values ±1 with probability 1/2. Define the time interpolated random walk S(t) by
setting S(0) = 0, and

(1.1) S(t) = S(n) + (t− n)Xn+1 when t ∈ (n, n+ 1] .

Note S(n) =
∑n

1 Xi, and so at integer times S is simply a symmetric random walk
with step size 1.

Our aim now is to rescale S so that it takes a random step at shorter and
shorter time intervals, and then take the limit. In order to get a meaningful limit,
we will have to compensate by also scaling the step size. Let ε > 0 and define

(1.2) Sε(t) = αεS
( t
ε

)
,

where αε will be chosen below in a manner that ensures convergence of Sε(t) as
ε→ 0. Note that Sε now takes a random step of size αε after every ε time units.

To choose αε, we compute the variance of Sε. Note first

VarS(t) = btc+ (t− btc)2,

and1 consequently

VarSε(t) = α2
ε

(⌊ t
ε

⌋
+
( t
ε
−
⌊ t
ε

⌋)2)
.

In order to get a “nice limit” of Sε as ε→ 0, one would at least expect that VarSε(t)
converges as ε→ 0. From the above, we see that choosing

αε =
√
ε

immediately implies
lim
ε→0

VarSε(t) = t .

1Here bxc denotes the greatest integer smaller than x. That is, bxc = max{n ∈ Z | n 6 x}.

Theorem 1.1. The processes Sε(t)
def=
√
εS(t/ε) “converge” as ε → 0. The

limiting process, usually denoted by W , is called a (standard, one dimensional)
Brownian motion.

The proof of this theorem uses many tools from the modern theory of probability,
and is beyond the scope of this course. The important thing to take away from this
is that Brownian motion can be well approximated by a random walk that takes
steps of variance ε on a time interval of size ε.

2. A crash course in measure theoretic probability.

Each of the random variablesXi can be adequately described by finite probability
spaces. The collection of all Xi’s can not be, but is still “intuitive enough” to to
be understood using the tools from discrete probability. The limiting process W ,
however, can not be adequately described using tools from “discrete” probability:
For each t, W (t) is a continuous random variable, and the collection of all W (t)
for t > 0 is an uncountable collection of correlated random variables. This process
is best described and studied through measure theoretic probability, which is very
briefly described in this section.

Definition 2.1. The sample space Ω is simply a non-empty set.
Definition 2.2. A σ-algebra G ⊆ P(Ω) is a non-empty collection of subsets of

Ω which is:
(1) closed under compliments (i.e. if A ∈ G, then Ac ∈ G),
(2) and closed under countable unions (i.e. A1, A2, . . . are all elements of G,

then the union ∪∞1 Ai is also an element of G).
Elements of the σ-algebra are called events, or G-measurable events.

Remark 2.3. The notion of σ-algebra is central to probability, and represents
information. Elements of the σ-algebra are events whose probability are known.

Remark 2.4. You should check that the above definition implies that ∅,Ω ∈ G,
and that G is also closed under countable intersections and set differences.

Definition 2.5. A probability measure on (Ω,G) is a countably additive function
P : G → [0, 1] such that P (Ω) = 1. That is, for each A ∈ G, P (A) ∈ [0, 1] and
P (Ω) = 1. Moreover, if A1, A2, · · · ∈ G are pairwise disjoint, then

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) .

The triple (Ω,G,P ) is called a probability space.
Remark 2.6. For a G-measurable event A, P (A) represents the probability of

the event A occurring.
Remark 2.7. You should check that the above definition implies:
(1) P (∅) = 0,
(2) If A,B ∈ G are disjoint, then P (A ∪B) = P (A) + P (B).
(3) P (Ac) = 1 − P (A). More generally, if A,B ∈ G with A ⊆ B, then

P (B −A) = P (B)− P (A).
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(4) If A1 ⊆ A2 ⊆ A3 · · · and each Ai ∈ G then P (∪Ai) = limn→∞P (An).
(5) If A1 ⊇ A2 ⊇ A3 · · · and each Ai ∈ G then P (∩Ai) = limn→∞P (An).

Definition 2.8. A random variable is a function X : Ω → R such that for
every α ∈ R, the set {ω ∈ Ω |X(ω) 6 α} is an element of G. (Such functions are
also called G-measurable, measurable with respect to G, or simply measurable if the
σ-algebra in question is clear from the context.)

Remark 2.9. The argument ω is always suppressed when writing random
variables. That is, the event {ω ∈ Ω |X(ω) 6 α} is simply written as {X 6 α}.

Remark 2.10. Note for any random variable, {X > α} = {X 6 α}c which
must also belong to G since G is closed under complements. You should check
that for every α < β ∈ R the events {X < α}, {X > α}, {X > α}, {X ∈ (α, β)},
{X ∈ [α, β)}, {X ∈ (α, β]} and {X ∈ (α, β)} are all also elements of G.

Since P is defined on all of G, the quantity P ({X ∈ (α, β)}) is mathematically
well defined, and represents the chance that the random variable X takes values in
the interval (α, β). For brevity, I will often omit the outermost curly braces and
write P (X ∈ (α, β)) for P ({X ∈ (α, β)}).

Remark 2.11. You should check that if X, Y are random variables then so are
X ± Y , XY , X/Y (when defined), |X|, X ∧ Y and X ∨ Y . In fact if f : R→ R is
any reasonably nice (more precisely, a Borel measurable) function, f(X) is also a
random variable.

Example 2.12. If A ⊆ Ω, define 1A : Ω → R by 1A(ω) = 1 if ω ∈ A and 0
otherwise. Then 1A is a (G-measurable) random variable if and only if A ∈ G.

Example 2.13. For M ∈ N, i ∈ {1, . . . ,M}, ai ∈ R and Ai ∈ G be such that
Ai ∩Aj = ∅ for i 6= j, and define

X
def=

M∑
i=1

ai1Ai
.

Then X is a (G-measurable) random variable. (Such variables are called simple
random variables.)

Note that if the ai’s above are all distinct, then {X = ai} = Ai, and hence∑
i aiP (X = ai) =

∑
i aiP (Ai), which agrees with our notion of expectation from

discrete probability.

Definition 2.14. For the simple random variable X defined above, we define
expectation of X by

EX =
M∑
i=1

aiP (Ai) .

For general random variables, we define the expectation by approximation.

Definition 2.15. If Y is a nonnegative random variable, define

EY
def= lim

n→∞
EXn where Xn

def=
n2−1∑
k=0

k

n
1{ k

n6Y < k+1
n }

.

Remark 2.16. Note each Xn above is simple, and we have previously defined
the expectation of simple random variables.

Definition 2.17. If Y is any (not necessarily nonnegative) random variable,
set Y + = Y ∨ 0 and Y − = Y ∧ 0, and define the expectation by

EY = EY + −EY − ,

provided at least one of the terms on the right is finite.
Remark 2.18. The expectation operator defined above is the Lebesgue integral

of Y with respect to the probability measure P , and is often written as

EY =
∫

Ω
Y dP .

More generally, if A ∈ G we define∫
A

Y dP
def= E(1AY ) ,

and when A = Ω we will often omit writing it.
Proposition 2.19 (Linearity). If α ∈ R and X,Y are random variables, then

E(X + αY ) = EX + αEY .
Proposition 2.20 (Positivity). If X > 0 almost surely, then EX > 0 Moreover,

if X > 0 almost surely, EX > 0. Consequently, (using linearity) if X 6 Y almost
surely then EX 6 EY .

Remark 2.21. By X > 0 almost surely, we mean that P (X > 0) = 1.
The proof of positivity is immediate, however the proof of linearity is surprisingly

not as straightforward as you would expect. It’s easy to verify linearity for simple
random variables, of course. For general random variables, however, you need an
approximation argument which requires either the dominated or monotone conver-
gence theorem which guarantee lim EXn = E limXn, under modest assumptions.
Since discussing these results at this stage will will lead us too far astray, we invite
the curious to look up their proofs in any standard measure theory book. The
main point of this section was to introduce you to a framework which is capable of
describing and studying the objects we will need for the remainder of the course.

3. A first characterization of Brownian motion.

We introduced Brownian motion by calling it a certain scaling limit of a simple
random walk. While this provides good intuition as to what Brownian motion
actually is, it is a somewhat unwieldy object to work with. Our aim here is to
provide an intrinsic characterization of Brownian motion, that is both useful and
mathematically convenient.

Definition 3.1. A Brownian motion is a continuous process that has stationary
independent increments.

We will describe what this means shortly. While this is one of the most intuitive
definitions of Brownian motion, most authors choose to prove this as a theorem,
and use the following instead.
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Definition 3.2. A Brownian motion is a continuous process W such that:
(1) W has independent increments, and
(2) For s < t, W (t)−W (s) ∼ N(0, σ2(t− s)).

Remark 3.3. A standard (one dimensional) Brownian motion is one for which
W (0) = 0 and σ = 1.

Both these definitions are equivalent, thought the proof is beyond the scope of
this course. In order to make sense of these definitions we need to define the terms
continuous process, stationary increments, and independent increments.

3.1. Continuous processes.

Definition 3.4. A stochastic process (aka process) is a function X : Ω× [0,∞)
such that for every time t ∈ [0,∞), the function ω 7→ X(t, ω) is a random variable.
The ω variable is usually suppressed, and we will almost always use X(t) to denote
the random variable obtained by taking the slice of the function X at time t.

Definition 3.5. A continuous process (aka continuous stochastic process) is a
stochastic process X such that for (almost) every ω ∈ Ω the function t 7→ X(t, ω) is
a continuous function of t. That is,

P
(

lim
s→t

X(s) = X(t) for every t ∈ [0,∞)
)

= 1 .

The processes S(t) and Sε(t) defined in (1.1) and (1.2) are continuous, but the
process

S̃(t) def=
btc∑
n=0

Xn ,

is not.
In general it is not true that the limit of continuous processes is again continuous.

However, one can show that the limit of Sε (with αε =
√
ε as above yields a

continuous process.

3.2. Stationary increments.

Definition 3.6. A process X is said to have stationary increments if the
distribution of Xt+h −Xt does not depend on t.

For the process S in (1.1), note that for n ∈ N, S(n + 1) − S(n) = Xn+1
whose distribution does not depend on n as the variables {Xi} were chosen to be
independent and identically distributed. Similarly, S(n + k) − S(n) =

∑n+k
n+1 Xi

which has the same distribution as
∑k

1 Xi and is independent of n.
However, if t ∈ R and is not necessarily an integer, S(t+k)−S(t) will in general

depend on t. So the process S (and also Sε) do not have stationary increments.
We claim, that the limiting process W does have stationary (normally dis-

tributed) increments. Suppose for some fixed ε > 0, both s and t are multiples of ε.
In this case

Sε(t)− Sε(s) ∼
√
ε

bt−sc/ε∑
i=1

Xi
ε→0−−−→ N(0, t− s) ,

by the central limit theorem. If s, t aren’t multiples of ε as we will have in general,
the first equality above is true up to a remainder which can easily be shown to
vanish.

The above heuristic argument suggests that the limiting process W (from
Theorem 1.1) satisfies W (t)−W (s) ∼ N(0, t− s). This certainly has independent
increments since W (t + h) −W (t) ∼ N(0, h) which is independent of t. This is
also the reason why the normal distribution is often pre-supposed when defining
Brownian motion.

3.3. Independent increments.
Definition 3.7. A process X is said to have independent increments if for

every finite sequence of times 0 6 t0 < t1 · · · < tN , the random variables X(t0),
X(t1)−X(t0), X(t2)−X(t1), . . . , X(tN )−X(tN−1) are all jointly independent.

Note again for the process S in (1.1), the increments at integer times are
independent. Increments at non-integer times are correlated, however, one can show
that in the limit as ε→ 0 the increments of the process Sε become independent.

Since we assume the reader is familiar with independence from discrete probabil-
ity, the above is sufficient to motivate and explain the given definitions of Brownian
motion. However, notion of independence is important enough that we revisit it
from a measure theoretic perspective next. This also allows us to introduce a few
notions on σ-algebras that will be crucial later.

3.4. Independence in measure theoretic probability.
Definition 3.8. Let X be a random variable on (Ω,G,P ). Define σ(X) to be

the σ-algebra generated by the events {X 6 α} for every α ∈ R. That is, σ(X) is
the smallest σ-algebra which contains each of the events {X 6 α} for every α ∈ R.

Remark 3.9. The σ-algebra σ(X) represents all the information one can learn
by observing X. For instance, consider the following game: A card is drawn from a
shuffled deck, and you win a dollar if it is red, and lose one if it is black. Now the
likely hood of drawing any particular card is 1/52. However, if you are blindfolded
and only told the outcome of the game, you have no way to determine that each
gard is picked with probability 1/52. The only thing you will be able to determine
is that red cards are drawn as often as black ones.

This is captured by σ-algebra as follows. Let Ω = {1, . . . , 52} represent a deck
of cards, G = P(Ω), and define P (A) = card(A)/52. Let R = {1, . . . 26} represent
the red cards, and B = Rc represent the black cards. The outcome of the above
game is now the random variable X = 1R − 1B , and you should check that σ(X) is
exactly {∅, R,B,Ω}.

We will use σ-algebras extensively but, as you might have noticed, we haven’t
developed any examples. Infinite σ-algebras are “hard” to write down explicitly,
and what one usually does in practice is specify a generating family, as we did when
defining σ(X).

Definition 3.10. Given a collection of sets Aα, where α belongs to some
(possibly infinite) index set A, we define σ({Aα}) to be the smallest σ-algebra that
contains each of the sets Aα.
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That is, if G = σ({Aα}), then we must have each Aα ∈ G. Since G is a σ-algebra,
all sets you can obtain from these by taking complements, countable unions and
countable intersections intersections must also belong to G.2 The fact that G is the
smallest σ-algebra containing each Aα also means that if G′ is any other σ-algebra
that contains each Aα, then G ⊆ G′.

Remark 3.11. The smallest σ-algebra under which X is a random variable
(under which X is measurable) is exactly σ(X). It turns out that σ(X) = X−1(B) =
{X ∈ B |B ∈ B}, where B is the Borel σ-algebra on R. Here B is the Borel σ-algebra,
defined to be the σ-algebra on R generated by all open intervals.

Definition 3.12. We say the random variables X1, . . . , XN are independent if
for every i ∈ {1 . . . N} and every Ai ∈ σ(Xi) we have

P
(
A1 ∩A2 ∩ · · · ∩AN

)
= P (A1) P (A2) · · ·P (AN ) .

Remark 3.13. Recall two events A,B are independent if P (A | B) = P (A),
or equivalently A,B satisfy the multiplication law: P (A ∩ B) = P (A)P (B). A
collection of events A1, . . . , AN is said to be independent if any sub collection
{Ai1 , . . . , Aik} satisfies the multiplication law. This is a stronger condition than
simply requiring P (A1 ∩ · · · ∩AN ) = P (A1) · · ·P (AN ). You should check, however,
that if the random variables X1, . . . , XN , are all independent, then any collection
of events of the form {A1, . . . AN} with Ai ∈ σ(Xi) is also independent.

Proposition 3.14. Let X1, . . . , XN be N random variables. The following
are equivalent:

(1) The random variables X1, . . . , XN are independent.
(2) For every α1, . . . , αN ∈ R, we have

P
( N⋂
j=1
{Xj 6 αj}

)
=

N∏
j=1

P (Xj 6 αj)

(3) For every collection of bounded continuous functions f1, . . . , fN we have

E
[ N∏
j=1

fj(Xj)
]

=
N∏
j=1

Efj(Xj) .

(4) For every ξ1, . . . , ξN ∈ R we have

E exp
(
i

N∑
j=1

ξjXj

)
=

N∏
j=1

E exp(iξjXj) , where i =
√
−1 .

Remark 3.15. It is instructive to explicitly check each of these implications
when N = 2 and X1, X2 are simple random variables.

2 Usually G contains much more than all countable unions, intersections and complements of
the Aα’s. You might think you could keep including all sets you generate using countable unions
and complements and arrive at all of G. It turns out that to make this work, you will usually have
to do this uncountably many times!

This won’t be too important within the scope of these notes. However, if you read a rigorous
treatment and find the authors using some fancy trick (using Dynkin systems or monotone classes)
instead of a naive countable unions argument, then the above is the reason why.

Remark 3.16. The intuition behind the above result is as follows: Since
the events {Xj 6 αj} generate σ(Xj), we expect the first two properties to be
equivalent. Since 1(−∞,αj ] can be well approximated by continuous functions, we
expect equivalence of the second and third properties. The last property is a bit
more subtle: Since exp(a + b) = exp(a) exp(b), the third clearly implies the last
property. The converse holds because of “completeness of the complex exponentials”
or Fourier inversion, and again a through discussion of this will lead us too far
astray.

Remark 3.17. The third implication above implies that independent random
variables are uncorrelated. The converse, is of course false. However, the nor-
mal correlation theorem guarantees that jointly normal uncorrelated variables are
independent.

Remark 3.18. If moment generating functions of the random variables are de-
fined in an interval around 0, then one can test independence using real exponentials
instead of the complex exponentials used in the last condition in Proposition 3.14.
Explicitly, in this case X1, . . . , XN are independent if and only if for every t1, . . . , tN
in some small interval containing 0 we have

E exp
( N∑
j=1

tjXj

)
=

N∏
j=1

E exp(tjXj) .

3.5. The covariance of Brownian motion. The independence of increments
allows us to compute covariances of Brownian motion easily. SupposeW is a standard
Brownian motion, and s < t. Then we know Ws ∼ N(0, s), Wt −Ws ∼ N(0, t− s)
and is independent of Ws. Consequently (Ws,Wt−Ws) is jointly normal with mean
0 and covariance matrix ( s 0

0 t−s ). This implies that (Ws,Wt) is a jointly normal
random variable. Moreover we can compute the covariance by

EWsWt = EWs(Wt −Ws) + EW 2
s = s .

In general if you don’t assume s < t, the above immediately implies EWsWt = s∧ t.

4. The Martingale Property

A martingale is “fair game”. Suppose you are playing a game and M(t) is your
cash stockpile at time t. As time progresses, you learn more and more information
about the game. For instance, in blackjack getting a high card benefits the player
more than the dealer, and a common card counting strategy is to have a “spotter”
betting the minimum while counting the high cards. When the odds of getting a
high card are favorable enough, the player will signal a “big player” who joins the
table and makes large bets, as long as the high card count is favorable. Variants of
this strategy have been shown to give the player up to a 2% edge over the house.

If a game is a martingale, then this extra information you have acquired can
not help you going forward. That is, if you signal your “big player” at any point,
you will not affect your expected return.

Mathematically this translates to saying that the conditional expectation of your
stockpile at a later time given your present accumulated knowledge, is exactly the
present value of your stockpile. Our aim in this section is to make this precise.
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4.1. Conditional probability. Suppose you have an incomplete deck of cards
which has 10 red cards, and 20 black cards. Suppose 5 of the red cards are high
cards (i.e. ace, king, queen, jack or 10), and only 4 of the black cards are high. If a
card is chosen at random, the conditional probability of it being high given that it is
red is 1/2, and the conditional probability of it being high given that it is black is
1/5. Our aim is to encode both these facts into a single entity.

We do this as follows. Let R,B denote the set of all red and black cards
respectively, and H denote the set of all high cards. A σ-algebra encompassing all
the above information is exactly

G def=
{
∅, R,B,H,Hc, R ∩H,B ∩H,R ∩Hc, B ∩Hc,

(R ∩H) ∪ (B ∩Hc), (R ∩Hc) ∪ (B ∩H),Ω
}

and you can explicitly compute the probabilities of each of the above events. A
σ-algebra encompassing only the color of cards is exactly

G def= {∅, R,B,Ω} .

Now we define the conditional probability of a card being high given the color
to be the random variable

P (H | C) def= P (H |R)1R + P (H |B)1B = 1
21R + 1

51B .

To emphasize:
(1) What is given is the σ-algebra C, and not just an event.
(2) The conditional probability is now a C-measurable random variable and

not a number.
To see how this relates to P (H |R) and P (H |B) we observe∫

R

P (H | C) dP
def= E

(
1RP (H | C)

)
= P (H |R) P (R) .

The same calculation also works for B, and so we have

P (H |R) = 1
P (R)

∫
R

P (H | C) dP and P (H |B) = 1
P (B)

∫
B

P (H | C) dP .

Our aim is now to generalize this to a non-discrete scenario. The problem with
the above identities is that if either R or B had probability 0, then the above would
become meaningless. However, clearing out denominators yields∫

R

P (H | C) dP = P (H ∩R) and
∫
B

P (H | C) dP = P (H ∩B) .

This suggests that the defining property of P (H | C) should be the identity

(4.1)
∫
C

P (H | C) dP = P (H ∩ C)

for every event C ∈ C. Note C = {∅, R,B,Ω} and we have only checked (4.1) for
C = R and C = B. However, for C = ∅ and C = Ω, (4.1) is immediate.

Definition 4.1. Let (Ω,G,P ) be a probability space, and F ⊆ G be a σ-algebra.
Given A ∈ G, we define the conditional probability of A given F , denoted by P (A|F)
to be an F-measurable random variable that satisfies

(4.2)
∫
F

P (H | F) dP = P (H ∩ F ) for every F ∈ F .

Remark 4.2. Showing existence (and uniqueness) of the conditional probability
isn’t easy, and relies on the Radon-Nikodym theorem, which is beyond the scope of
this course.

Remark 4.3. It is crucial to require that P (H |F) is measurable with respect to
F . Without this requirement we could simply choose P (H |F) = 1H and (4.2) would
be satisfied. However, note that if H ∈ F , then the function 1F is F-measurable,
and in this case P (H | F) = 1F .

Remark 4.4. In general we can only expect (4.2) to hold for all events in F ,
and it need not hold for events in G! Indeed, in the example above we see that∫

H

P (H | C) dP = 1
2P (R ∩H) + 1

5P (B ∩H) = 1
2 ·

5
30 + 1

5 ·
4
30 = 11

100
but

P (H ∩H) = P (H) = 3
10 6=

11
100 .

Remark 4.5. One situation where you can compute P (A | F) explicitly is when
F = σ({Fi}) where {Fi} is a pairwise disjoint collection of events whose union is all
of Ω and P (Fi) > 0 for all i. In this case

P (A | F) =
∑
i

P (A ∩ Fi)
P (Fi)

1Fi
.

4.2. Conditional expectation. Consider now the situation where X is a
G-measurable random variable and F ⊆ G is some σ-sub-algebra. The conditional
expectation of X given F (denoted by E(X | F) is the “best approximation” of X
by a F measurable random variable.

Consider the incomplete deck example from the previous section, where you
have an incomplete deck of cards which has 10 red cards (of which 5 are high),
and 20 black cards (of which 4 are high). Let X be the outcome of a game played
through a dealer who pays you $1 when a high card is drawn, and charges you $1
otherwise. However, the dealer only tells you the color of the card drawn and your
winnings, and not the rules of the game or whether the card was high.

After playing this game often the only information you can deduce is that your
expected return is 0 when a red card is drawn and −3/5 when a black card is drawn.
That is, you approximate the game by the random variable

Y
def= 01R −

3
51B ,

where, as before R,B denote the set of all red and black cards respectively.
Note that the events you can deduce information about by playing this game

(through the dealer) are exactly elements of the σ-algebra C = {∅, R,B,Ω}. By



6 2. BROWNIAN MOTION

construction, that your approximation Y is C-measurable, and has the same averages
as X on all elements of C. That is, for every C ∈ C, we have∫

C

Y dP =
∫
C

X dP .

This is how we define conditional expectation.

Definition 4.6. Let X be a G-measurable random variable, and F ⊆ G be a
σ-sub-algebra. We define E(X | F), the conditional expectation of X given F to be
a random variable such that:

(1) E(X | F) is F-measurable.
(2) For every F ∈ F , we have the partial averaging identity:

(4.3)
∫
F

E(X | F) dP =
∫
F

X dP .

Remark 4.7. Choosing F = Ω we see EE(X | F) = EX.

Remark 4.8. Note we can only expect (4.3) to hold for all events F ∈ F . In
general (4.3) will not hold for events G ∈ G − F .

Remark 4.9. Under mild integrability assumptions one can show that con-
ditional expectations exist. This requires the Radon-Nikodym theorem and goes
beyond the scope of this course. If, however, F = σ({Fi}) where {Fi} is a pairwise
disjoint collection of events whose union is all of Ω and P (Fi) > 0 for all i, then

E(X | F) =
∞∑
i=1

1Fi

P (Fi)

∫
Fi

X dP .

Remark 4.10. Once existence is established it is easy to see that conditional
expectations are unique. Namely, if Y is any F-measurable random variable that
satisfies ∫

F

Y dP =
∫
F

X dP for every F ∈ F ,

then Y = E(X | F ). Often, when computing the conditional expectation, we will
“guess” what it is, and verify our guess by checking measurablity and the above
partial averaging identity.

Proposition 4.11. If X is F-measurable, then E(X | F) = X. On the other
hand, if X is independent3 of F then E(X | F) = EX.

Proof. If X is F-measurable, then clearly the random variable X is both
F-measurable and satisfies the partial averaging identity. Thus by uniqueness, we
must have E(X | F) = X.

Now consider the case when X is independent of F . Suppose first X =
∑
ai1Ai

for finitely many sets Ai ∈ G. Then for any F ∈ F ,∫
F

X dP =
∑

aiP (Ai ∩ F ) = P (F )
∑

aiP (Ai) = P (F )EX =
∫
F

EX dP .

3We say a random variable X is independent of σ-algebra F if for every A ∈ σ(X) and B ∈ F
the events A and B are independent.

Thus the constant random variable EX is clearly F-measurable and satisfies the
partial averaging identity. This forces E(X | F) = EX. The general case when X
is not simple follows by approximation. �

The above fact has a generalization that is tremendously useful when computing
conditional expectations. Intuitively, the general principle is to average quantities
that are independent of F , and leave unchanged quantities that are F measurable.
This is known as the independence lemma.

Lemma 4.12 (Independence Lemma). Suppose X,Y are two random variables
such that X is independent of F and Y is F-measurable. Then if f = f(x, y) is any
function of two variables we have

E
(
f(X,Y )

∣∣ F) = g(Y ) ,

where g = g(y) is the function4 defined by

g(y) def= Ef(X, y) .

Remark. If pX is the probability density function of X, then the above says

E
(
f(X,Y )

∣∣ F) =
∫
R
f(x, Y ) pX(x) dx .

Indicating the ω dependence explicitly for clarity, the above says

E
(
f(X,Y )

∣∣ F)(ω) =
∫
R
f(x, Y (ω)) pX(x) dx .

Remark 4.13. Note we defined and motivated conditional expectations and
conditional probabilities independently. They are however intrinsically related:
Indeed, E(1A | F) = P (A | F), and this can be checked directly from the definition.

Conditional expectations are tremendously important in probability, and we
will encounter it often as we progress. This is probably the first visible advantage of
the measure theoretic approach, over the previous “intuitive” or discrete approach
to probability.

Proposition 4.14. Conditional expectations satisfy the following properties.
(1) (Linearity) If X,Y are random variables, and α ∈ R then

E(X + αY | F) = E(X | F) + αE(Y | F) .

(2) (Positivity) If X 6 Y , then E(X | F) 6 E(Y | F) (almost surely).
(3) If X is F measurable and Y is an arbitrary (not necessarily F-measurable)

random variable then (almost surely)

E(XY | F) = XE(Y | F) .

(4) (Tower property) If E ⊆ F ⊆ G are σ-algebras, then (almost surely)

E(X | E) = E
(

E(X | F)
∣∣∣ E) .

4To clarify, we are defining a function g = g(y) here when y ∈ R is any real number. Then,
once we compute g, we substitute in y = Y (= Y (ω)), where Y is the given random variable.
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Proof. The first property follows immediately from linearity. For the second
property, set Z = Y −X and observe∫

E(Z|F)
E(Z | F) dP =

∫
E(Z|F)

Z dP > 0 ,

which can only happen if P (E(Z | F) < 0) = 0. The third property is easily checked
for simple random variables, and follows in general by approximating. The tower
property follows immediately from the definition. �

4.3. Adapted processes and filtrations. Let X be any stochastic process
(for example Brownian motion). For any t > 0, we’ve seen before that σ(X(t))
represents the information you obtain by observing X(t). Accumulating this over
time gives us the filtration.

Definition 4.15. The filtration generated X is the family of σ-algebras {FXt |
t > 0} where

FXt
def= σ

(⋃
s6t

σ(Xs)
)
.

Clearly each FXt is a σ-algebra, and if s 6 t, FXs ⊆ FXt . A family of σ-algebras
with this property is called a filtration.

Definition 4.16. A filtration is a family of σ-algebras {Ft | t > 0} such that
whenever s 6 t, we have Fs ⊆ Ft.

The σ-algebra Ft represents the information accumulated up to time t. When
given a filtration, it is important that all stochastic processes we construct respect
the flow of information because trading / pricing strategies can not rely on the price
at a later time, and gambling strategies do not know the outcome of the next hand.
This is called adapted.

Definition 4.17. A stochastic processX is said to be adapted to a filtration {Ft|
t > 0} if for every t the random variable X(t) is Ft measurable (i.e. {X(t) 6 α} ∈ Ft
for every α ∈ R, t > 0).

Clearly a process X is adapted with respect to the filtration it generates {FXt }.

4.4. Martingales. Recall, a martingale is a “fair game”. Using conditional
expectations, we can now define this precisely.

Definition 4.18. A stochastic process M is a martingale with respect to a
filtration {Ft} if:

(1) M is adapted to the filtration {Ft}.
(2) For any s < t we have E(M(t) | Fs) = M(s), almost surely.

Remark 4.19. A sub-martingale is an adapted process M for which we have
E(M(t) |Fs) >M(s), and a super-martingale if E(M(t) |Fs) 6M(s). Thus EM(t)
is an increasing function of time if M is a sub-martingale, constant in time if M is
a martingale, and a decreasing function of time if M is a super-martingale.

Remark 4.20. It is crucial to specify the filtration when talking about mar-
tingales, as it is certainly possible that a process is a martingale with respect to
one filtration but not with respected to another. For our purposes the filtration will
almost always be the Brownian filtration (i.e. the filtration generated by Brownian
motion).

Example 4.21. Let {Ft} be a filtration, F∞ = σ(∪t>0Ft), and X be any
F∞-measurable random variable. The process M(t) def= E(X∞ | Ft) is a martingale
with respect to the filtration {Ft}.

In discrete time a random walk is a martingale, so it is natural to expect that
in continuous time Brownian motion is a martingale as well.

Theorem 4.22. Let W be a Brownian motion, Ft = FWt be the Brownian
filtration. Brownian motion is a martingale with respect to this filtration.

Proof. By independence of increments, W (t)−W (s) is certainly independent
of W (r) for any r 6 s. Since Fs = σ(∪r6sσ(W (r))) we expect that W (t)−W (s) is
independent of Fs. Consequently

E(W (t) | Fs) = E(W (t)−W (s) | Fs) + E(W (s) | Fs) = 0 +W (s) = W (s) . �

Theorem 4.23. Let W be a standard Brownian motion (i.e. a Brownian motion
normalized so thatW (0) = 0 and Var(W (t)) = t). For any C1,2

b function5 f = f(t, x)
the process

M(t) def= f(t,W (t))−
∫ t

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds

is a martingale (with respect to the Brownian filtration).

Proof. This is an extremely useful fact about Brownian motion follows quickly
from the Itô formula, which we will discuss later. However, at this stage, we can
provide a simple, elegant and instructive proof as follows.

Adaptedness of M is easily checked. To compute E(M(t) | Fr) we first observe

E
(
f(t,W (t))

∣∣ Fr) = E
(
f(t, [W (t)−W (r)] +W (r))

∣∣ Fr).
Since W (t)−W (r) ∼ N(0, t− r) and is independent of Fr, the above conditional
expectation can be computed by

E
(
f(t, [W (t)−W (r)] +W (r))

∣∣ Fr) =
∫
R
f(t, y +W (r))G(t− r, y) dy ,

where
G(τ, y) = 1√

2πτ
exp
(−y2

2τ

)
is the density of W (t)−W (r).

5Recall a function f = f(t, x) is said to be C1,2 if it is C1 in t (i.e. differentiable with respect
to t and ∂tf is continuous), and C2 in x (i.e. twice differentiable with respect to x and ∂xf , ∂2

xf

are both continuous). The space C1,2
b

refers to all C1,2 functions f for which and f , ∂tf , ∂xf , ∂2
xf

are all bounded functions.
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Similarly

E
(∫ t

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds
∣∣∣ Fr)

=
∫ r

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds

+
∫ t

r

∫
R

(
∂tf(s, y +W (r)) + 1

2∂
2
xf(s, y +W (r))

)
G(s− r, y) dy ds

Hence

E(M(t) | Fr)−M(r) =
∫
R
f(t, y +W (r))G(t− r, y) dy

−
∫ t

r

∫
R

(
∂tf(s, y +W (r)) + 1

2∂
2
xf(s, y +W (r))

)
G(s− r, y) ds

− f(r,W (r)) .
We claim that the right hand side of the above vanishes. In fact, we claim the
(deterministic) identity

f(r, x) =
∫
R
f(t, y + x)G(t− r, y) dy

−
∫ t

r

∫
R

(
∂tf(s, y + x) + 1

2∂
2
xf(s, y + x))

)
G(s− r, y) dy ds

holds for any function f and x ∈ R. For those readers who are familiar with PDEs,
this is simply the Duhamel’s principle for the heat equation. If you’re unfamiliar with
this, the above identity can be easily checked using the fact that ∂τG = 1

2∂
2
yG and

integrating the first integral by parts. We leave this calculation to the reader. �

4.5. Stopping Times. For this section we assume that a filtration {Ft} is
given to us, and fixed. When we refer to process being adapted (or martingales),
we implicitly mean they are adapted (or martingales) with respect to this filtration.

Consider a game (played in continuous time) where you have the option to walk
away at any time. Let τ be the random time you decide to stop playing and walk
away. In order to respect the flow of information, you need to be able to decide
weather you have stopped using only information up to the present. At time t, event
{τ 6 t} is exactly when you have stopped and walked away. Thus, to respect the
flow of information, we need to ensure {τ 6 t} ∈ Ft.

Definition 4.24. A stopping time is a function τ : Ω→ [0,∞) such that for
every t > 0 the event {τ 6 t} ∈ Ft.

A standard example of a stopping time is hitting times. Say you decide to
liquidate your position once the value of your portfolio reaches a certain threshold.
The time at which you liquidate is a hitting time, and under mild assumptions on
the filtration, will always be a stopping time.

Proposition 4.25. Let X be an adapted continuous process, α ∈ R and τ be
the first time X hits α (i.e. τ = inf{t > 0 |X(t) = α}). Then τ is a stopping time
(if the filtration is right continuous).

Theorem 4.26 (Doob’s optional sampling theorem). If M is a martingale and
τ is a bounded stopping time. Then the stopped process Mτ (t) def= M(τ ∧ t) is also a
martingale. Consequently, EM(τ) = EM(τ ∧ t) = EM(0) = EM(t) for all t > 0.

Remark 4.27. If instead of assuming τ is bounded, we assume Mτ is bounded
the above result is still true.

The proof goes beyond the scope of these notes, and can be found in any
standard reference. What this means is that if you’re playing a fair game, then you
can not hope to improve your odds by “quitting when you’re ahead”. Any rule by
which you decide to stop, must be a stopping time and the above result guarantees
that stopping a martingale still yields a martingale.

Remark 4.28. Let W be a standard Brownian motion, τ be the first hitting
time of W to 1. Then EW (τ) = 1 6= 0 = EW (t). This is one situation where the
optional sampling theorem doesn’t apply (in fact, Eτ =∞, and W τ is unbounded).

This example corresponds to the gambling strategy of walking away when you
make your “million”. The reason it’s not a sure bet is because the time taken to
achieve your winnings is finite almost surely, but very long (since Eτ =∞). In the
mean time you might have incurred financial ruin and expended your entire fortune.

Suppose the price of a security you’re invested in fluctuates like a martingale
(say for instance Brownian motion). This is of course unrealistic, since Brownian
motion can also become negative; but lets use this as a first example. You decide
you’re going to liquidate your position and walk away when either you’re bankrupt,
or you make your first million. What are your expected winnings? This can be
computed using the optional sampling theorem.

Problem 4.1. Let a > 0 and M be any continuous martingale with M(0) =
x ∈ (0, a). Let τ be the first time M hits either 0 or a. Compute P (M(τ) = a) and
your expected return EM(τ).
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