21-268 Multidimensional Calculus: Midterm 1.

2017-02-14

- This is a closed book test. No electronic devices may be used. You may not give or receive assistance.
- You have 50 minutes. The exam has a total of 5 questions and 40 °s.
- You may use any result proved in class or any regular homework problem **PROVIDED** it is independent of the problem you want to use the result in. (You must also **CLEARLY** state the result you are using.)
- The questions are roughly in increasing order of difficulty. Good luck, and happy valentines day $\ddot{\sim}$.

5 \heartsuit 1. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$f(x) = \begin{pmatrix} x_1 x_2 \sin(x_2 + x_3) \\ |x|^3 \end{pmatrix}$$

(Recall $x = (x_1, x_2, x_3) \in \mathbb{R}^3$). Find the derivative of f.

5 \heartsuit 2. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R}^2 \to \mathbb{R}^2$ are two differentiable functions such that

g(0,1) = (1,2),	$\partial_1 g_1(0,1) = \alpha ,$	$\partial_2 g_1(0,1) = \beta ,$	$\partial_1 g_2(0,1) = \gamma ,$	$\partial_2 g_2(0,1) = \delta ,$
f(1,2) = 7,	$\partial_1 f(0,1) = a ,$	$\partial_2 f(0,1) = b ,$	$\partial_1 f(1,2) = c ,$	$\partial_2 f(1,2) = d .$

(Recall since g is an \mathbb{R}^2 valued function, we write $g = (g_1, g_2)$ (i.e. $g(x) = (g_1(x), g_2(x)) \in \mathbb{R}^2$.) Compute $\partial_1(f \circ g)$ at the point (0, 1). Express your answer in terms of only $\alpha, \beta, \gamma, \delta, a, b, c$ and d.

- 10 \heartsuit 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = 3x^2 2y$. Show directly using the ε - δ definition that f is continuous at the point (1,2).
- $10\heartsuit$ 4. True or false:

If $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable, then it is necessarily continuous.

Prove it, or find a counter example. [This was a question on your homework. Please provide a complete proof (or counterexample here) without relying on this particular result from the homework.]

10 \heartsuit 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x) = \frac{x_1 x_2}{|x|}$$
 when $x \neq 0$, and $f(0,0) = 0$.

(Recall $x = (x_1, x_2) \in \mathbb{R}^2$.) At what points in \mathbb{R}^2 is $\partial_1 f$ defined? Compute $\partial_1 f$ at these points. Moreover, determine at which of these points $\partial_1 f$ is continuous. Prove your answer. [When proving continuity, you may use standard theorems and do *not* have to limit yourself to only using the ε - δ definition.]