
CHAPTER 5

Line Integrals

1. Line integrals

Definition 1.1. If a force F acting on a body produces an instantaneous
displacement v, then the work done by the force is F · v.

Let Γ ⊆ R3 be a curve, with a given direction of traversal, and F : R3 → R3 be
a (vector) function. Here F represents the force that acts on a body and pushes it
along the curve Γ. The work done by the force can be approximated by

W =
N−1∑
i=0

F (xi) · (xi+1 − xi)

where x0, x1, . . . , xN−1 are N points on Γ, chosen along the direction of traversal.
The limit as the largest distance between neighbours approaches 0 is defined to be
the line integral.

Definition 1.2. Let Γ ⊆ Rd be a curve (with a given direction of traversal),
and F : Γ→ Rd be a (vector) function. The line integral of F over Γ is defined to
be ∫

Γ
F · d` = lim

‖P‖→0

N−1∑
i=0

F (xi) · (xi+1 − xi).

Here P = {x0, x1, . . . , xN−1}, the points xi are chosen along the direction of traversal,
and ‖P‖ = max|xi+1 − xi|.

Remark 1.3. If F = (F1, . . . , Fd)T , where Fi : Γ→ R are functions, then one
often writes the line integral in the differential form notation as∫

Γ
F · d` =

∫
Γ
F1 dx1 + · · ·+ Fd dxd =

∫
Γ

d∑
i=1

Fi dxi.

Proposition 1.4. If γ : [a, b]→ Rd is a parametrization of Γ (in the direction
of traversal), then

(1.1)
∫

Γ
F · d` =

∫ b

a

F ◦ γ(t) · γ′(t) dt

In the differential form notation (when d = 2) say

F =
(
f
g

)
and γ(t) =

(
x(t)
y(t)

)
,

where f, g : Γ→ R are functions. Then Proposition 1.4 says∫
Γ
F · d` =

∫
Γ
f dx+ g dy =

∫
Γ

(
f(x(t), y(t))x′(t) + g(x(t), y(t)) y′(t)

)
dt

Remark 1.5. Sometimes (1.1) is used as the definition of the line integral. In
this case, one needs to verify that this definition is independent of the parametrization.
Since this is a good exercise, we’ll do it anyway a little later.

Example 1.6. Suppose a body of mass M is placed at the origin. The force
experienced by a body of mass m at the point x ∈ R3 is given by F (x) = −GMx

|x|3 ,
where G is the gravitational constant. Compute the work done when the body is
moved from a to b along a straight line.

Solution. Let Γ be the straight line joining a and b. Clearly γ : [0, 1] → Γ
defined by γ(t) = a+ t(b− a) is a parametrization of Γ. Now

W =
∫

Γ
F · d` = −GMm

∫ 1

0

γ(t)
|γ(t)|3 · γ

′(t) dt = GMm

|b|
− GMm

|a|
. �

Remark 1.7. If the line joining through a and b passes through the origin, then
some care has to be taken when doing the above computation. We will see later
that gravity is a conservative force, and that the above line integral only depends
on the endpoints and not the actual path taken.

2. Parametrization invariance and arc length

So far we have always insisted all curves and parametrizations are differentiable
or C1. We now relax this requirement and subsequently only assume that all curves
(and parametrizations) are piecewise differentiable, or piecewise C1.

Definition 2.1. A function f : [a, b]→ Rd is called piecewise C1 if there exists
a finite set F ⊆ [a, b] such that f is C1 on [a, b]− F , and further both left and right
limits of f and f ′ exist at all points in F .

Definition 2.2. A (connected) curve Γ is piecewise C1 if it has a parametriza-
tion which is continuous and piecewise C1.

Remark 2.3. A piecewise C1 function need not be continuous. But curves are
always assumed to be at least continuous; so for notational convenience, we define a
piecewise C1 curve to be one which has a parametrization which is both continuous
and piecewise C1.

Example 2.4. The boundary of a square is a piecewise C1 curve, but not a
differentiable curve.

Proposition 2.5 (Parametrization invariance). If γ1 : [a1, b1] → Γ and γ2 :
[a2, b2] → Γ are two parametrizations of Γ that traverse it in the same direction,
then ∫ b1

a1

F ◦ γ1(t) · γ′1(t) dt =
∫ b2

a2

F ◦ γ2(t) · γ′2(t) dt.
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Proof. Let ϕ : [a1, b1]→ [a2, b2] be defined by ϕ = γ−1
2 ◦ γ1. Since γ1 and γ2

traverse the curve in the same direction, ϕ must be increasing. One can also show
(using the inverse function theorem) that ϕ is continuous and piecewise C1. Now∫ b2

a2

F ◦ γ2(t) · γ′2(t) dt =
∫ b2

a2

F (γ1(ϕ(t))) · γ′1(ϕ(t))ϕ′(t) dt.

Making the substitution s = ϕ(t) finishes the proof. �

Definition 2.6. If Γ ⊆ Rd is a piecewise C1 curve, then

arc len(Γ) = lim
‖P‖→0

N∑
i=0
|xi+1 − xi|,

where as before P = {x0, . . . , xN−1}. More generally, if f : Γ → R is any scalar
function, we define1 ∫

Γ
f |d`| def= lim

‖P‖→0

N∑
i=0

f(xi) |xi+1 − xi|,

The arc length of a curve can be computed by taking the line integral of the
unit tangent vector.

Proposition 2.7. Let Γ ⊆ Rd be a piecewise C1 curve, γ : [a, b] → R be
any parametrization (in the given direction of traversal), f : Γ → R be a (scalar)
function, and τ : Γ → Rd is the unit tangent vector (i.e. |τ | ≡ 1 and τ is always
tangent to Γ) along the direction of traversal. Then∫

Γ
f |d`| =

∫
Γ
fτ · d` =

∫ b

a

f(γ(t)) |γ′(t)| dt,

and consequently

arc len(Γ) =
∫

Γ
1 |d`| =

∫ b

a

|γ′(t)| dt.

Example 2.8. Compute the circumference of a circle of radius r.

Remark 2.9. A very useful way to describe curves is to parametrize them
by arc length. Namely, let γ(s) ∈ Γ be the unique point so that the portion of Γ
traversed up to the point γ(s) has arc length exactly s.

3. The fundamental theorem

Theorem 3.1 (Fundamental theorem for line integrals). Suppose U ⊆ Rd is a
domain, ϕ : U → R is C1 and Γ ⊆ Rd is any differentiable curve that starts at a,
ends at b and is completely contained in U . Then∫

Γ
∇ϕ · d` = ϕ(b)− ϕ(a).

1Unfortunately
∫

Γ f |d`| is also called the line integral. To avoid confusion, we will call this
the line integral with respect to arc-length instead.

Proof. Let γ : [0, 1]→ Γ be a parametrization of Γ. Note∫
Γ
∇ϕ · d` =

∫ 1

0
∇ϕ(γ(t)) · γ′(t) dt =

∫ 1

0

d

dt
ϕ(γ(t)) dt = ϕ(b)− ϕ(a). �

Definition 3.2. A closed curve is a curve that starts and ends at the same point.
A simple closed curve is a closed curve that never crosses itself. (More precisely, a
simple closed curve is a compact 1-dimensional manifold with no boundary.)

If Γ is a closed curve, then line integrals over Γ are denoted by∮
Γ
F · d`.

Corollary 3.3. If Γ ⊆ Rd is a closed curve, and ϕ : Γ→ R is C1, then∮
Γ
∇ϕ · d` = 0.

Definition 3.4. Let U ⊆ Rd, and F : U → Rd be a vector function. We say F
is a conservative force (or conservative vector field) if∮

F · d` = 0,

for all closed curves Γ which are completely contained inside U .

Clearly if F = −∇V for some C1 function V : U → R, then F is conservative.
The converse is also true provided U is simply connected, which we’ll return to later.

Example 3.5. If ϕ fails to be C1 even at one point, the above can fail quite
badly. Let ϕ(x, y) = tan−1(y/x), extended to R2 − {(x, y) | x 6 0} in the usual way.
Then

∇ϕ = 1
x2 + y2

(
−y
x

)
which is defined on R2 − (0, 0). In particular, if Γ = {(x, y) | x2 + y2 = 1}, then ∇ϕ
is defined on all of Γ. However, you can easily compute∮

Γ
∇ϕ · d` = 2π 6= 0.

The reason this doesn’t contradict the previous corollary is that Corollary 3.3
requires ϕ itself to be defined on all of Γ, and not just ∇ϕ! This example leads into
something called the winding number which we will return to later.

4. Greens theorem

Theorem 4.1 (Greens Theorem). Let Ω ⊆ R2 be a bounded domain whose
exterior boundary is a piecewise C1 curve Γ. If Ω has holes, let Γ1, . . . , ΓN be the
interior boundaries. If F : Ω̄→ R2 is C1, then∫

Ω

(
∂1F2 − ∂2F1

)
dA =

∮
Γ
F · d`+

N∑
i=1

∮
Γi

F · d`,

where all line integrals above are computed by traversing the exterior boundary
counter clockwise, and every interior boundary clockwise.
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Remark 4.2. A common convention is to denote the boundary of Ω by ∂Ω and
write

∂Ω = Γ ∪
( N⋃

i=1
Γi

)
.

Then Theorem 4.1 becomes∫
Ω

(
∂1F2 − ∂2F1

)
dA =

∮
∂Ω
F · d`,

where again the exterior boundary is oriented counter clockwise and the interior
boundaries are all oriented clockwise.

Remark 4.3. In the differential form notation, Greens theorem is stated as∫
Ω

(
∂xQ− ∂yP

)
dA =

∫
∂Ω
P dx+Qdy,

P,Q : Ω̄ → R are C1 functions. (We use the same assumptions as before on the
domain Ω, and orientations of the line integrals on the boundary.)

Remark 4.4. Note, Greens theorem requires that Ω is bounded and F (or P
and Q) is C1 on all of Ω. If this fails at even one point, Greens theorem need not
apply anymore!

Proof. The full proof is a little cumbersome. But the main idea can be seen by
first proving it when Ω is a square, and then applying a coordinate transformation.
Indeed, suppose first Ω = (0, 1)2. Then the fundamental theorem of calculus gives∫

Ω

(
∂1F2 − ∂2F1

)
dA =

∫ 1

y=0

(
F2(1, y)− F2(0, y)

)
dy −

∫ 1

x=0

(
F1(x, 1)− F1(x, 0)

)
dx

The first integral is the line integral of F on the two vertical sides of the square,
and the second one is line integral of F on the two horizontal sides of the square.
This proves Theorem 4.1 in the case when Ω is a square.

Now let U be an arbitrary region for which there exists a C2 coordinate
transformation ϕ : Ω→ U , where Ω is the unit square. We assume that ϕ also maps
∂Ω to ∂U and preserves the orientation of the boundaries. (One can show that this
will imply detDϕ > 0 in U .) Now, using Greens theorem on the square,∮

∂U

F · d` =
∮

∂Ω
(Dϕ)TF ◦ ϕ · d` =

∫
Ω

(∂1G2 − ∂2G1) dA,

where
G = (Dϕ)TF ◦ ϕ =

∑
i,j

∂iϕjFj ◦ ϕei

Now we compute using the chain rule

∂1G2−∂2G1 =
∑
i,j

∂2ϕj ∂iFj

∣∣
ϕ
∂1ϕi−∂1ϕj ∂iFj

∣∣
ϕ
∂2ϕi =

(
∂1F2−∂2F1

)
◦ϕ det(Dϕ).

Thus, by the change of variable theorem,∫
Ω

(
∂1G2 − ∂2G1

)
dA =

∫
Ω

(
∂1F2 − ∂2F1

)
◦ ϕ det(Dϕ) dA =

∫
U

(
∂1F2 − ∂2F1

)
dA,

finishing the proof. �

Remark 4.5. The above strategy will only work if the domain has no holes. In
the presence of holes, you can make one or more cuts and then find a coordinate
transformation ϕ : Ω→ U as above. The only difference is now part of the boundary
of Ω will be mapped to the cut you just made. The boundary integral over this
piece, however, will cancel since it will now be traversed twice in opposite directions.

Corollary 4.6. If Ω ⊆ R2 is bounded with a C1 boundary, then

area(Ω) = 1
2

∫
∂Ω

(
−y dx+ x dy

)
=
∫

∂Ω
−y dx =

∫
∂Ω
x dy

Remark 4.7. A planimeter is a measuring instrument used to determine the area
of an arbitrary two-dimensional shape. The operational principle of the planimeter
can be proved using the previous corollary.

Corollary 4.8 (Surveyor’s Formula). Let P ⊆ R2 be a (not necessarily convex)
polygon whose vertices, ordered counter clockwise, are (x1, y1), . . . , (xN , yN ). Then

area(P ) = (x1y2 − x2y1) + (x2y3 − x3y2) + · · ·+ (xNy1 − x1yN )
2 .
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