
CHAPTER 2

Differentiation

1. Directional and Partial Derivatives

Definition 1.1. Let U ⊂ Rd be a domain, f : U → R be a function, and
v ∈ Rd − {0} be a vector. We define the directional derivative of f in the direction
v at the point a by

Dvf(a) def= d

dt
f(a+ tv)

∣∣∣
t=0

Example 1.2. If f(x) = |x|2, then Dvf(x) = 2x · v.

Remark 1.3. Be aware that some authors define Dvf by additionally dividing
by the length of v. We will never do that!

Definition 1.4. We define the ith partial derivative of f (denoted by ∂if) to
be the directional derivative of f in direction ei (where ei is the ith elementary basis
vector).

Practically, to compute the ith partial derivative of f differentiate it with respect
to xi treating all the other coordinates as constant.

Example 1.5. For x 6= 0 we have ∂i|x| = xi/|x|.

2. Derivatives

Definition 2.1. Let U ⊆ Rd be a domain, f : Rd → R be a function, and a ∈ U .
We say f is differentiable at a if there exists a linear transformation T : Rd → R
and a function e such that

lim
h→0

f(a+ h)− f(a)− Th
|h|

= 0 .

In this case, the linear transformation T is called the derivative of f at a, and
denoted by Dfa.

Proposition 2.2. Let U ⊆ Rd be a domain, f : Rd → R be a function, and
a ∈ U . The function f is differentiable at a if and only if there exists a linear
transformation T : Rd → R and a function e such that

(1) f(a+ h) = f(a) + Th+ e(h)
(2) and limh→0|e(h)|/|h| = 0.

Proposition 2.3. If f is differentiable at a, then all the directional derivatives
Dvf(a) exist. Further,

Dfa =
(
∂1f(a) ∂2f(a) · · · ∂df(a)

)

and

Dvf(a) = Dfav =
d∑
i=1

vi∂if(a).

Remark 2.4. This shows that the linear transformation appearing in the
definition of f is unique!

The converse of Proposition 2.3 is (surprisingly?) false. All directional deriva-
tives can exist, however, the function need not be differentiable (or even continuous!)

Example 2.5. Let f(x, y) = x2y/(x4 + y2). Then for every v ∈ R2 − {0},
Dvf(0) exists, but f is not differentiable (or even continuous) at 0.

The converse of Proposition 2.3 is true under the additional assumption that
the partial derivatives are continuous.

Theorem 2.6. If all partial derivatives of f exist in a neighbourhood of a, and
are continuous at a, then f is differentiable at a.

Proof. For simplicity we assume d = 2. By the mean value theorem
f(a+ h)− f(a) = f(a1 + h1, a2 + h2)− f(a1 + h1, a2) + f(a1 + h1, a2)− f(a1, a2)

= h2∂2f(a1 + h1, a2 + ξ2) + h1∂1f(a1 + ξ1, a2)
for some ξ1, ξ2 such that ξi lies between 0 and hi. Now let T be the matrix
(∂1f(a) ∂2f(a)) and observe

f(a+ h) = f(a) + Th+ e(h),
where

e(h) = h2(∂2f(a1 + h1, a2 + ξ2)− ∂2f(a)) + h1(∂1f(a1 + ξ1, a2)− ∂1f(a)).
Clearly

|e(h)|
|h|

6 |∂2f(a1 + h1, a2 + ξ2)− ∂2f(a)|+ |∂1f(a1 + ξ1, a2)− ∂1f(a)|,

which converges to 0 as h→ 0. �

Note, however, it is possible for a function to be differentiable, and for the
partial derivatives to exist and be discontinuous.

Example 2.7. Let f : R2 → R be defined by f(x) = |x|2 sin(1/|x|) when x 6= 0,
and f(0) = 0. Then f is differentiable on all of R2 (including x = 0), and hence
all partial derivatives of f exist at all points in R2. However, ∂1f and ∂2f are not
continuous at x = 0.

Definition 2.8. Let U ⊂ Rm be a domain, and a ∈ U . We say a function
U → Rn is differentiable if if there exists a linear transformation T : Rm → Rn and
a function e such that

(1) f(a+ h) = f(a) + Th+ e(h)
(2) and limh→0|e(h)|/|h| = 0.

Note this is almost the same as Definition 2.1. The only change is that the
linear transformation T is now a map from Rm to Rn instead.
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Proposition 2.9. Let f = (f1, . . . , fn) : Rm → Rn and a ∈ Rm. The function
f is differentiable at a if and only if each coordinate function fi is differentiable at
a. Further, the derivative Df is a n×m matrix given by

Dfa =


∂1f1(a) ∂2f1(a) · · · ∂mf1(a)
∂1f2(a) ∂2f2(a) · · · ∂mf2(a)

...
...

...
∂1fn(a) ∂2fn(a) · · · ∂mfn(a) .


As before, the derivative Df is also called the Jacobian Matrix.

3. Tangent planes and Level Sets

Let f : Rd → Rn be differentiable.

Definition 3.1. The graph of f is the set Γ ⊂ Rd × Rn defined by

Γ = {(x, f(x)) | x ∈ Rd}.

Given a point (a, f(a)) ∈ Γ we define the tangent plane of f at the point a by the
equation

y = f(a) +Dfa(x− a)

Note that the tangent plane is a d-dimensional hyper-plane in Rd × Rn. It is
the best linear approximation to the graph Γ at the point a. Projecting the tangent
plane into 2 dimensions (by freezing other coordinates) gives you a tangent line.

Definition 3.2. The tangent space to the graph Γ at the point (a, f(a)),
denoted by TΓ(a,f(a)) is defined by

TΓ(a,f(a)) = {(x, y) | y = Dfax, x ∈ Rd} .

Namely, the tangent space is the space of all vectors parallel to the tangent
plane, and passing through the origin.

Definition 3.3. Given c ∈ R we define the level set of f to be the set {x ∈ Rd |
f(x) = c}.

If d = 2, then level sets are typically curves. If d = 3, then level sets are typically
surfaces. In higher dimensions (for “nice functions”) level sets of f are typically
d− 1-dimensional hyper-surfaces.

Example 3.4. Let d = 3 and f(x) = |x|2. Then {f(x) = c} is the sphere of
radius

√
c for c > 0, a point for c = 0 and the empty set for c < 0.

Level sets are very useful in plotting, and are often used to produce contour plots.
We will see later that if v is tangent to a level set of f , then Dvf = 0. Moreover if
f : Rd → R, then ∇f (defined to be (Df)T ) is orthogonal to level sets.

4. Chain rule

The one variable calculus rules for differentiation of sums, products and quotients
(when they make sense) are still valid in higher dimensions.

Proposition 4.1. Let f, g : Rd → R be two differentiable functions.
• f + g is differentiable and D(f + g) = Df +Dg.
• fg is differentiable and D(fg) = fDg + gDf .
• At points where g 6= 0, f/g is also differentiable and

D
(f
g

)
= gDf − fDg

g2

These follow in a manner very similar to the one variable analogues, and are
left for you to verify. The one rule that is a little different in this context is the
differentiation of composites.

Theorem 4.2 (Chain Rule). Let U ⊆ Rm, V ⊆ Rn be domains, g : U → V ,
f : V → Rd be two differentiable functions. Then f ◦g : U → Rd is also differentiable
and

D(f ◦ g)a = (Dfg(a))(Dga)

Note Dfg and Dg are both matrices, and the product above is the matrix
product of Df and Dg.

Proof. The basic intuition is as follows. Since f, g are differentiable we know
there exist functions e1 and e2 such that

g(a+ h) = g(a) +Dga + e2(h) and f(g(a) + h) = f(g(a)) +Dfg(a) + e1(h) ,

with limh→0 ei(h)/|h| = 0. Consequently,

f(g(a+ h)) = f
(
g(a) +Dgah+ e2(h)

)
= f(g(a)) +Dfg(a)

(
Dgah+ e2(h)

)
+ e1

(
Dgah+ e2(h)

)
= f(g(a)) +

(
Dfg(a) Dga

)
h+ e3(h) ,

where
e3(h) = Dfg(a)e2(h) + e1

(
Dgah+ e2(h)

)
.

Now to finish the proof one only needs to show limh→0 e3(h)/|h| = 0, which can be
done directly from the ε-δ definition. �

Remark 4.3. An extremely useful arises when d = 1 and we need to compute
∂i(f ◦ g). In this case, by the chain rule

∂i(f ◦ g) = (Dfg)(Dg)ei =
n∑
j=1

∂jf
∣∣∣
g
∂igj .

While this can be derived immediately by multiplying the matrices Dfg and Dg, it
arises often enough that it is worth directly remembering.

Another version of the chain rule that often shows up in problems is as follows.
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Proposition 4.4. Suppose z is a function of x and y, and x and y are in turn
functions of s and t. Then

(4.1) ∂sz = ∂xz∂sx+ ∂yz∂sy , and ∂tz = ∂xz∂tx+ ∂yz∂ty .

Proof. Let z = f(x, y), x = g(s, t) and y = h(s, t) for some functions f, g, h.
Define ψ : R2 → R2 by ψ = (g, h). Now equation (4.1) follows immediately by
realizing z = f ◦ ψ and using the chain rule. �

Example 4.5. Compute d
dxx

x and d
dt

∫ t
0 e
−(t−s)2

ds.

Proposition 4.6. Let f, g : Rd → R be differentiable. Then fg : Rd → R is
differentiable and D(fg) = f(Dg) + g(Df).

Proof. Let F (x, y) = xy and G(x) = (f(x), g(x)). Then observe fg = F ◦G,
and the conclusion follows from the chain rule. �

Remark 4.7. A similar trick can be used to prove the quotient rule.

As a consequence, here is a “proof” that directional derivatives in directions
tangent to level sets vanish.

Proposition 4.8. Let Γ = {x | f(x) = c} be a level set of a differentiable
function f . Let γ : [−1, 1] → Γ be a differentiable function, v = Dγ(0), and
a = γ(0). Then Dvf(a) = 0.

Think of γ(t) as the position of a particle at time t. If for all t, γ(t) belongs to
the curve Γ, then the velocity Dγ should be tangent to the curve γ, and thus thus
the vector v above should be tangent to Γ. (When we can define this rigorously, we
will revisit it and prove it.)

Proof. Note f ◦ γ = c (since γ(t) ∈ Γ for all t). By the chain rule D(f ◦ γ) =
DfγDγ. At t = 0 this gives Dfγ(0)v = 0 =⇒ Dvf(γ(0)) = 0 as desired. �

Definition 4.9. If f : Rd → R is differentiable, define the gradient of f
(denoted by ∇f) to be the transpose of the derivative of f .

We’ve seen above that if v is tangent to a level set of f at a, then Dvf(a) = 0.
This is equivalent to saying ∇f(a) · v = 0, or that the gradient of f is perpendicular
to level sets of f . Note, in directions tangent to level sets, f is changing the least.
One would expect that in the perpendicular direction (given by ∇f), the function f
is changing the most. This is shown by the following proposition.

Proposition 4.10. If v ∈ Rd with |v| = 1. Then Dvf(a) is maximised when
v = ∇f(a) and Dvf(a) is minimised when v = −∇f(a).

Remark 4.11. This fact is often used when numerically finding minima of
functions, and is known as the method of gradient descent. Namely, start with a
guess for the minimum x0. Now choose successive approximations to move directly
against ∇f . That is, define

xn+1 = xn + γn∇f(xn) ,

for some small γn. Usually, the standard numerical algorithms suggest using

γn = (xn − xn−1) · (∇f(xn)−∇f(xn−1))
|∇f(xn)−∇f(xn−1)|2 ,

which guarantees converge to a local minimum, under certain assumptions on f .

5. Higher order derivatives

Given a function f , treat ∂if as a function. If ∂if is itself a differentiable
function, we can differentiate it again. The second derivative (denoted by ∂j∂if)
is called a second order partial of f . These can further be differentiated to obtain
third order partials.

Theorem 5.1 (Clairaut). If ∂i∂jf and ∂j∂if both exist in a neighbourhood of
a, and are continuous at a then they must be equal.

If the mixed second order partials are not continuous, however, they need not
be equal.

Example 5.2. Let f(x, y) = x3y/(x2 + y2) for (x, y) 6= 0 and f(0, 0) = 0. Then
∂x∂yf(0, 0) = 1 but ∂y∂xf(0, 0) = 0.

Proof of Clairaut’s theorem. Here’s the idea in 2D (the same works in
higher dimensions). For simplicity assume a = 0.

• Let R be the rectangle with corners (0, 0), (h, 0), (0, k), (h, k).
• Using the mean value theorem, show f(h, k)− f(h, 0)− f(0, k) + f(0, 0) =
hk∂x∂yf(α) for some point α ∈ R.

• Observe f(h, k)− f(h, 0)− f(0, k) + f(0, 0) = f(h, k)− f(0, k)− f(h, 0) +
f(0, 0) and so using the mean value theorem show f(h, k) − f(h, 0) −
f(0, k) + f(0, 0) = hk∂y∂xf(β) for some point β ∈ R.

• Note that as (h, k) → 0, we have α, β → 0. Consequently, if ∂x∂yf and
∂y∂xf are both continuous at 0 we must have

∂x∂yf(0, 0) = lim
(h,k)→0

f(h, k)− f(h, 0)− f(0, k) + f(0, 0)
hk

= ∂y∂xf(0, 0),

proving equality as desired. �

Definition 5.3. A function is said to be of class Ck if all its kth-order partial
derivatives exist and are continuous.

By Clairaut’s theorem, we know that mixed partials are equal for Ck functions.

6. Maxima and Minima

Definition 6.1. A function f has a local maximum at a if ∃ε > 0 such that
whenever |x− a| < ε we have f(x) 6 f(a).

Our aim is now to understand what having a local maximum / minimum
translates to in terms of derivatives of f . For this we do a simple calculation: Observe
that if f has a local maximum at a, then for all v ∈ Rd − {0} the function f(a+ tv)
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must have a local maximum at t = 0. Hence we must have ∂tf(a+ tv)|t=0 = 0 and
∂2
t f(a+ tv)|t=0 6 0. Using the chain rule, we compute

∂tf(a+ tv) =
d∑
i=1

∂if(a+ tv)vi and ∂2
t f(a+ tv) =

d∑
i,j=1

∂i∂jf(a+ tv)vivj

Thus at a local maximum we must have
d∑
i=1

∂if(a)vi = 0 and
d∑

i,j=1
∂i∂jf(a)vivj 6 0

for every v ∈ Rd. This translates to the following proposition.

Proposition 6.2. If f is a C2 function which has a local maximum at a, then
(1) The first derivative Df must vanish at a (i.e. Dfa = 0). Dfa = 0
(2) The Hessian Hf is negative semi-definite at a.
For a local minimum, we replace negative semi-definite above with positive

semi-definite.

Definition 6.3. The Hessian of a C2 function (denoted by Hf) is defined to
be the matrix

Hf =


∂1∂1f ∂2∂1f · · · ∂d∂1f
∂1∂2f ∂2∂2f · · · ∂d∂2f

...
...

...
∂1∂df ∂2∂df · · · ∂d∂df


Note if f ∈ C2, Hf is symmetric.

Definition 6.4. Let A be a d× d symmetric matrix.
• If (Av) · v 6 0 for all v ∈ Rd, then A is called negative semi-definite.
• If (Av) · v < 0 for all v ∈ Rd, then A is called negative definite.
• If (Av) · v > 0 for all v ∈ Rd, then A is called positive semi-definite.
• If (Av) · v > 0 for all v ∈ Rd, then A is called positive definite.

Recall a symmetric matrix is positive semi-definite if all the eigenvalues are
non-negative. In 2D this simplifies to the following:

Proposition 6.5. Let A be the symmetric 2× 2 matrix ( a bb c ).
(1) A is positive definite if and only if a > 0 and ac− b2 > 0.
(2) A is negative definite if and only if a < 0 and ac− b2 > 0.
(3) A is positive semi-definite if and only if a, c > 0 and ac− b2 > 0.
(4) A is negative semi-definite if and only if a, c 6 0 and ac− b2 > 0.

Finally, we address the converse: Namely, we look for a condition on the
derivatives of f that guarantees that f attains a local maximum or minimum at a.

Theorem 6.6. Let f be a C2 function.
(1) If Dfa = 0 and further Hfa is positive definite, then f attains a local

minimum at a.

(2) If Dfa = 0 and further Hfa is negative definite, then f attains a local
maximum at a.

The proof uses Taylor’s theorem, and we will prove it in Section 7, below

Definition 6.7. We say a is a local saddle of f if there exist two linearly
independent vectors v1 and v2 such that f has a strict local minimum in direction
v1 and a strict local maximum in direction v2.

Proposition 6.8. If f is C2, Dfa = 0 and Hfa has at least one strictly positive
and one strictly negative eigenvalue, then a is a local saddle of f .

This corresponds to points where f has a local maximum in one direction and
a local minimum in the other.

Example 6.9. The function |x|2 has a local minimum at 0. The function −|x|2
has a local maximum at 0. The function x2

1 − x2
2 has a saddle at 0.

Example 6.10. Let f : Rd → R, and let Γ ⊆ Rd+1 be the graph of f (i.e.
Γ = {(x, y) | x ∈ Rd, y = f(x)}). Fix (x′, y′) ∈ Rd+1, and let (a, f(a)) be the point
on Γ which is closest to (x′, y′). Then x′−a is parallel to ∇f(a) and (x′−a, y′−f(a))
is normal to the tangent plane at (a, f(a)).

Proof. Let d(x) = |x− x′|2 + (f(x)− y′)2. At a max ∇d = 0, and hence

(6.1) 2(a− x′) + 2(f(a)− y′)∇f(a) = 0 .

This shows x′ − a is parallel to ∇f(a).
For the second assertion recall that the tangent plane is defined by

y = f(a) +∇f(a) · (x− a) .

This is equivalent to saying (∇f(a),−1) ·(x−a, y−f(a)) = 0, and hence (∇f(a),−1)
is normal to the tangent plane. But from (6.1) we immediately see(

x′ − a
y′ − f(a)

)
= −(y′ − f(a))

(
∇f(a)
−1

)
,

and hence (x′ − a, y′ − f(a)) is also normal to the tangent plane at a. �

7. Taylors theorem

Theorem 7.1. If f ∈ C2, then

(7.1) f(a+ h) = f(a) +Dfah+ 1
2h ·Hfah+R2(h),

where R2(h) is some function such that

lim
h→0

R2(h)
|h|2

→ 0.

In coordinates equation (7.1) is

f(a+ h) = f(a) +
∑
i

∂if(a)hi + 1
2
∑
i,j

∂i∂jf(a)hihj +R2(h).
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Proof. Let g(t) = f(a+ th). Using the 1D Taylors theorem we have

g(1) = g(0) + g′(0) + 1
2g
′′(ξ)

for some ξ ∈ (0, 1). Writing this in terms of f finishes the proof. �

The same technique can show the following mean value theorem:

Theorem 7.2 (Mean value theorem). If f is differentiable on the entire line
joining a and b,

f(b) = f(a) + (b− a) · ∇f(ξ)
for some point ξ on the line segment joining a and b.

Taylor’s theorem allows us to prove Theorem 6.6.

Proof of Theorem 6.6. Suppose Dfa = 0 and Hfa is positive definite. Let
λ0 be the smallest eigenvalue of Hfa. Expanding in terms of an orthonormal basis
of eigenfunctions of Hfa we see Hh · h > λ0|h|2.

Now choose δ > 0 so that |R2(h)| < λ0|h|2/2 for h < δ, and note f(a + h) >
f(a) + |h|2

2 > f(a), showing f has a local min at a. �

A higher order version of Taylor’s theorem is also true. It is usually stated using
the multi-index notation, collecting all mixed partials that are equal.

Definition 7.3. Let α = (α1, α2, . . . , αd), with αi ∈ N ∪ {0}. If h ∈ Rd define
hα = hα1

1 hα2
2 · · ·h

αd

d , |α| = α1 + · · ·+ αd, and α! = α1!α2! · · ·αd!.
Given a C |α| function f , define

Dαf = ∂α1
1 ∂α2

2 · · · ∂
αd

d f,

with the convention that ∂0
i f = f .

Theorem 7.4. If f is a Cn function on Rd and a ∈ Rd we have

f(a+ h) =
∑
|α|<n

1
α!D

αf(a) +Rn(h),

for some function Rn such that

lim
h→0

Rn(h)
|h|n

= 0.

The proof follows from the one variable Taylor’s theorem in exactly the same
as our second order version does, and collecting all mixed partials that are equal
puts it in the above form.
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