Assignment 15 (assigned 2017-05-03, due Never).

- 1. Let $u, v : \mathbb{R}^3 \to \mathbb{R}^3$ be C^1 vector functions, $f, g : \mathbb{R}^3 \to \mathbb{R}$ be C^1 scalar functions. Prove the following identities.
 - (a) $\nabla(fq) = f\nabla q + q\nabla f$.
 - (b) $\nabla \cdot (fu) = (\nabla f) \cdot u + f \nabla \cdot u$.
 - (c) $\nabla \times (fu) = f\nabla \times u + (\nabla f) \times u$
 - (d) $\nabla \times (u \times v) = u(\nabla \cdot v) v(\nabla \cdot u) + (v \cdot \nabla)u (u \cdot \nabla)v$
- 2. Let $F = (2x, y^2, z^2)$.
 - (a) Compute $\int_{\Sigma} F \cdot \hat{n} dS$, where $\Sigma \subseteq \mathbb{R}^3$ is the sphere of radius 1.
 - (b) Compute $\oint_{\Gamma} F \cdot d\ell$, where Γ is the intersection of Σ above and the plane x + 2y + 3z = 0.
- 3. In each of the following cases show that

$$\int_{U} (\nabla \cdot v) \, dV \neq \int_{\partial U} v \cdot \hat{n} \, dS$$

Also explain why this does not contradict the divergence theorem.

(a) $U = B(0, 1) \subset \mathbb{R}^3$, and $v = x/|x|^4$. (b) $U = \{x \in \mathbb{R}^3 \mid z > x^2 + y^2\}$, and $v(x, y, z) = (0, 0, e^{-z})$.

The remaining problems are questions of difficulty comparable to that of the 'longish' questions that will be on your exam. It is **not** a comprehensive review. Your actual exam may (or may not 0) contain a few easier questions, a few questions you've already seen in class / homework, and or a few computational questions.

4. Let (a_n) be a Cauchy sequence. Show that $\limsup a_n = \liminf a_n$, and use this to conclude (a_n) is convergent.

NOTE: This gives an alternate proof of convergence of Cauchy sequences. You should do this problem without using the fact that Cauchy sequences are convergent.

- 5. Let $f: [0,1] \to \mathbb{R}$ be a function, and define $G \subseteq \mathbb{R}^2 = \{(x, f(x) \mid x \in [0,1]\}.$
 - (a) If f is continuous, must G be closed? Prove it, or find a counter example.
 - (b) If G is closed, must f be continuous? Prove it, or find a counter example.
 - (c) If G is closed, and f is bounded, must f be continuous? Prove it, or find a counter example.

[On an actual exam, I would usually only put one of the above parts in the interest of time.]

- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function.
 - (a) If $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right)$ and $\lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$ both exist, must they be equal? If yes, prove it. If no find a counter example.
 - (b) If $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right)$, $\lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$ and $\lim_{(x,y)\to 0} f(x,y)$ all exist, must they 15. Does there exist a C^1 function $F: \mathbb{R}^3 \to \mathbb{R}^3$ such that $x \cdot \nabla \times F(x) > 0$ for all be equal? If yes, prove it. If no find a counter example.

- 7. Let $f(x) = \exp(-1/x^2)$ for x > 0 and f(x) = 0 for $x \leq 0$. True or false: for every $n \in \mathbb{N}, f$ is C^n . Prove your answer.
- 8. Let $f: \mathbb{R}^d \to \mathbb{R}$ be $C^2, a \in \mathbb{R}^d$ be a critical point of f and assume $\det(Hf_a) \neq 0$. True or false: There exists $\varepsilon > 0$ such that f has exactly one critical point in $B(a,\varepsilon)$. Prove it, or find a counter example.
- 9. Let $V = \{(r, \theta) \mid r > 0, \theta \in (-\pi, \pi)\}$, and set $x = r \cos \theta$, $y = r \sin \theta$. Given a C^2 function f of x and y, express Δf in terms of r, θ and derivatives of f with respect to r and θ . Recall $\Delta f = \partial_r^2 f + \partial_u^2 f$. [Answer: $\Delta f = \partial_r^2 f + \partial_r f/r + \partial_\theta^2 f/r^2$.]
- 10. Let $M \subseteq \mathbb{R}^d$ be a *m*-dimensional manifold, and $a \in \mathbb{R}^d M$. Assume further M is a closed (but not necessarily bounded) subset of \mathbb{R}^d .
 - (a) True or false: there exists $a_0 \in M$ such that $|a a_0| = \inf\{|a x| \mid x \in M\}$. Prove it, or find a counter example.
 - (b) Suppose $a_0 \in M$ as in the previous part exists. True or false: for all $v \in TM_{a_0}$ we have $v \cdot (a - a_0) = 0$. Prove it, or find a counter example.
- 11. Let $B = B(0,R) \subseteq \mathbb{R}^3$. Evaluate the surface integral $\int_{\partial B} 1 \, dS$, and derive a formula for the surface area of a sphere.
- 12. (3D Co-area formula) Let $U \subseteq \mathbb{R}^3$ be a bounded region, and $h: U \to [0,1]$ be C^1 . For $t \in [0, 1]$, let $\Sigma_t = \{h = t\}$. Assume that for all t > 0, Σ_t is a C^1 surface, and $\Sigma_1 = \partial U$. If $f: U \to \mathbb{R}$ is continuous, show that

$$\int_U f \, dV = \int_{t=0}^1 \int_{\Sigma_t} f \, \frac{dS}{|\nabla h|} \, dt \, .$$

[For this problem assume that there exists a C^1 surface $\Sigma' \subseteq U$, and a function $\theta \colon U - \Sigma' \to (0, 1)^2$ such that $D\theta \nabla h = 0$, and $\varphi = (h, \theta) \colon U - \Sigma' \to (0, 1)^3$ is a C^1 diffeomorphism.]

13. (Greens identity) Let $U \subseteq \mathbb{R}^3$ be a bounded domain whose boundary is a C^1 surface. If $f, q: U \to \mathbb{R}$ be C^2 , show

$$\int_{U} (f\Delta g) \, dV = \int_{\partial U} f\nabla g \cdot \hat{n} \, dS - \int_{U} (\nabla f \cdot \nabla g) \, dV.$$

Recall $\Delta q = \sum_i \partial_i^2 q = \nabla \cdot (\nabla q).$

14. Define the Newton potential $N: \mathbb{R}^3 - 0 \to \mathbb{R}$ by $N(x) = -1/(4\pi |x|)$.

- (a) Let Σ be a closed surface, \hat{n} be the outward pointing unit normal, and U be the region enclosed by U. Show that $\int_{\Sigma} \nabla N \cdot \hat{n} \, dS = 1$ if $0 \in U$ and 0 otherwise. [HINT: Compute ΔN .]
- (b) (Gauss's law) Let $\rho \colon \mathbb{R}^3 \to \mathbb{R}$ be C^1 , and define

$$F(x) = \int_{y \in \mathbb{R}^3} \rho(x - y) \nabla N(y) \, dy \, .$$

(This is a volume integral. I wrote dy instead of dV for clarity, since y is the integration variable and x is fixed.) Show that $\int_{\Sigma} F \cdot \hat{n} \, dS = \int_{U} \rho \, dV$. NOTE: The first part is fair game as an exam question, but this part is probably a bit harder than what I would put on an exam if you haven't seen it before.

 $x \neq 0$? If yes, find one such function. If no, prove it doesn't exist.