21-272 Introduction to PDE: Midterm 1.

Fri 10/02/2015

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 mins. The exam has a total of 4 questions and 40 points.
- You may use any result from class or homework PROVIDED it is independent of the problem you want to use the result in. (You must also CLEARLY state the result you are using.)

1. Let $D \subset \mathbb{R}^{3}$ be the region occupied by a fluid body (e.g. a lake), $u(x, t)$ be the instantaneous velocity of the fluid at point $x \in D$ and time t, and $\rho(x, t)$ be the concentration of some pollutant at time t and position $x \in \mathbb{R}^{3}$. Fick's law says that the rate of flow of the pollutant is proportional to the concentration gradient. Use this to derive a PDE for ρ. [This was on your homework.]
2. (a) Use separation of variables and find the general (series form) solution of the equation $\partial_{t}^{2} u+\partial_{x}^{2} u=0$ for $x \in[0, L], t \geqslant 0$ with boundary conditions $u(0, t)=u(L, t)=0$ for all t.
(b) If we restrict our attention to the rectangle $[0, L] \times[0, T]$, is it possible to additionally impose the boundary conditions $u(x, 0)=f(x)$ and $u(x, T)=g(x)$ for two given functions f and g ? [Assume f and g are differentiable and $f(0)=f(L)=0=g(0)=g(L)$. No justification required for this part. Just guess. A correct answer is worth full credit, a blank answer is worth half credit, and an incorrect answer is worth no credit.]
3. Suppose $\partial_{t} u+6 u \partial_{x} u+\partial_{x}^{3} u=0$ for $x \in \mathbb{R}, t>0$ with initial data $u(x, 0)=f(x)$. Find $\alpha \in \mathbb{R}$ so that the quantity

$$
\int_{-\infty}^{\infty}\left[u(x, t)^{3}+\alpha\left(\partial_{x} u(x, t)\right)^{2}\right] d x
$$

is constant in time. You may assume assume u and all its derivatives vanish rapidly at $x= \pm \infty$. [This is HW3 Q3(c), with an added hint.]
4. Given a domain $\Omega \subseteq \mathbb{R}^{3}$ and a function $f: \partial \Omega: \rightarrow \mathbb{R}$, define $\mathcal{S}=\{v: \Omega \rightarrow R \mid v=0$ on $\partial \Omega\}$. Define

$$
\mathcal{E}(v)=\frac{\int_{\Omega}|\nabla v|^{2} d V}{\int_{\Omega} v^{2} d V}
$$

If there exists a C^{2} function $u \in \mathcal{S}$ which minimises \mathcal{E} (i.e. $\mathcal{E}(u) \leqslant \mathcal{E}(v)$ for all $\left.v \in \mathcal{S}\right)$, then show that $-\Delta u=\lambda u$ where $\lambda=\mathcal{E}(u)$. [Hint: Let $w \in \mathcal{S}$ and let $g(\varepsilon)=\mathcal{E}(u+\varepsilon w)$. Show that $g^{\prime}(0)=0$, and use this to find the PDE for u. Half credit for doing it assuming $\Omega=[0, L] \subseteq \mathbb{R}$.]

