
Math 272: Homework.

Assignment 1: Assigned Fri 09/04. Due Fri 09/11

1. (a) Show by example that the divergence theorem does not hold if the region
of integration is not bounded.

(b) Suppose now that the vector function f : R3 → R3 satisfies

|f(x)| 6 1

1 + |x|3

for all x ∈ R3. Show that
∫
R3 ∇ · f dV = 0.

2. Let D ⊂ R3 be the region occupied by a fluid body (e.g. a lake), u(x, t) be the
instantaneous velocity of the fluid at point x ∈ D and time t, and ρ(x, t) be
the concentration of some pollutant at time t and position x ∈ R3. Fick’s law
says that the rate of flow of the pollutant is proportional to the concentration
gradient. Use this to derive a PDE for ρ. [This is called the advection diffusion
equation.]

3. Strauss 1.3.2: A flexible chain of length l is hanging from one end x = 0 but
oscillates horizontally. Let the x axis point downward and the u axis point to
the right. Assume that the force of gravity at each point of the chain equals
the weight of the part of the chain below the point and is directed tangentially
along the chain. Assume that the oscillations are small. Find the PDE satisfied
by the chain.

4. For this problem, identify (x, y) ∈ R2 with the complex number x + iy ∈ C. A
function f : C→ C is said to be holomorphic if for every z ∈ C, lim

ζ→0

f(z+ζ)−f(z)
ζ

exists. Note: The limit is taken as ζ ∈ C approaches 0.

If f is holomorphic, let f ′ = lim
ζ→0

f(z+ζ)−f(z)
ζ denote the “complex” derivative of

f . Amazingly, if f is holomorphic, then f ′ is also holomorphic! (In contrast, if
f is only differentiable, f ′ need not even be continuous, let alone differentiable.)
Assuming f and f ′ are holomorphic, show that u def

= Re f is harmonic (i.e. show
∆u = 0). [Hint: First find a relation between ∂xf and ∂yf .]

5. Consider the equation ∂tu − (0.1)∂2
xu = 0 on the interval x ∈ (−1, 1) with

boundary conditions u(−1, t) = 0 = u(1, t) and initial data u(x, 0) = 1− |x|.
(a) Guess what the solution will look like as time evolves.

(b) Numerically solve this equation using MATLAB (or Python), and obtain
solutions plots confirming (or disproving) your guess above. [To do this in
MATLAB, look up the function pdepe; the first example in the online documentation
can quickly be adapted in this setting.]

Assignment 2: Assigned Fri 09/11. Due Fri 09/18

1. Suppose f : R → R is a C2 function so that f(1) = 0, f(x + 4) = f(x) and
f(1− x) = −f(1 + x) for all x ∈ R.
(a) Let u(x, t) = 1

2 (f(x+ct)+f(x−ct)). Show that u satisfies the wave equation
∂2
t u − c2∂2

xu = 0 on the interval [−1, 1], with initial data u(x, 0) = f(x),
∂tu(x, 0) = 0, and with boundary conditions u(−1, t) = u(1, t) = 0 for all
t > 0.

(b) Find a formula for the solution of the wave equation ∂2
t u − c2∂2

xu = 0 on
the interval [−1, 1] with initial data u(x, 0) = 1 − |x|, ∂tu(x, 0) = 0 for
x ∈ [−1, 1], and with boundary conditions u(−1, t) = u(1, t) = 0. Draw
plots, and contrast your answer with the solution to the heat equation from
the previous homework.

Consider an oddly shaped wire loop Γ ⊆ R3. It turns out that amongst all surfaces
in R3 with boundary Γ, the one that minimises the strain is the graph of a harmonic
function! The next problem outlines a proof of this.

2. Given a domain Ω ⊆ R2 and a function f : ∂Ω :→ R, define S = {v : Ω →
R | v = f on ∂Ω}. Define

E(v) =

∫
Ω

|∇u|2 dA.

If there exists a C2 function u ∈ S which minimises E (i.e. E(u) 6 E(v) for all
v ∈ S), then show that ∆u = 0 in Ω and u = f on ∂Ω. [Think of the graph of f as
the above wire loop Γ, and the graph of v to be any surface with boundary Γ, and E(v) as the
“strain” in the surface. HINT: Let w : Ω → R be any function such that w = 0 on ∂Ω. Let
g(ε) = E(u + εw). Show that g′(0) = 0, and use this to show that

∫
Ω w∆u = 0 for all such

functions w.]

3. If we replaced E above with E ′ defined by

E ′(v) =

∫
Ω

(1

2
|∇v|2 − gu

)
dA,

for a given function g, then show that the minimising function u now satisfies
−∆u = g in Ω with u = f on ∂Ω.

Instead of minimising the strain as above, if we minimise the surface area, we get
the equation satisfied by a soap film. This is the next problem.

4. If E in the previous problem is replaced with

A(v) =

∫
Ω

√
1 + |∇u|2 dA,

find a PDE and boundary conditions satisfied by the minimiser u. [We know from
calculus that A(v) is the surface area of the graph of v.]
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Assignment 3: Assigned Fri 09/18. Due Fri 09/25

1. (Strauss 1.4.6) Two homogeneous rods have the same cross section, specific heat
c, and density ρ, but different heat conductivities κ1 and κ2 and lengths L1 and
L2. Let kj = κj/cρ be their diffusion constants. They are welded together so
that the temperature u and the heat flux k∂xu at the weld are continuous. The
left-hand rod has its left end maintained at temperature zero. The right-hand
rod has its right end maintained at temperature T degrees.

(a) Find the equilibrium temperature distribution in the composite rod.

(b) Sketch it as a function of x in case k1 = 2, k2 = 1, L1 = 3, L2 = 2, and
T = 10. (This exercise requires a lot of elementary algebra, but

2. Let D be a region in R3, and c, r > 0 be constants, and a, f be functions
depending only on the spatial variables x1, x2 and x3. Show that solutions to
the PDE

∂2
t u− c2∆u+ a2u+ r∂tu = f

with Dirichlet boundary conditions u = 0 on ∂D, and initial data

u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x)

are unique. That is, if u1 and u2 are two solutions to the above PDE, with
the same boundary conditions and initial data, show that they are equal. [Hint:
Suppose u1 and u2 are two solutions. Set v = u1 − u2. Now try and cook up some ‘energy’
which will help you show v is 0. Note, the energy you cook up (if you do it right) won’t be
conserved! It will however decrease with time.]

3. Solitary waves (or solitons) are waves that travel great distances without chang-
ing shape. Tsunami’s are one example. Scientific study began with Scott Russell
in 1834, who followed such a wave in a channel on horseback, and was fascinated
by it’s rapid pace and unchanging shape. In 1895, Kortweg and De Vries showed
that the evolution of the profile is governed by the equation

∂tu+ 6u∂xu+ ∂3
xu = 0.

For this question, suppose u is a solution to the above equation for x ∈ R, t > 0.
Suppose further that u and all derivatives (including higher order derivatives)
of u decay to 0 as x→ ±∞.

(a) Let p =
∫∞
−∞ u(x, t) dx. Show that p is constant in time. [Physically, p is the

momentum of the wave.]

(b) Let E =
∫∞
−∞ u(x, t)2 dx. Show that E is constant in time. [Physically, E is

the energy of the wave.]

(c) It turns out that the KdV equation has infinitely many conserved quanti-
ties. The energy and momentum above are the only two which have any
physical meaning. Can you find a non-trivial conserved quantity that’s not
a linear combination of p and E?

4. The forward time, centered space difference scheme for the heat equation is:

Um+1
j − Umj

∆t
− κ
(Umj+1 + Umj−1 − 2Umj

(∆x)2

)
= 0, for 1 6 j 6 N − 1 (1)

Um+1
j = Umj = 0 for j ∈ 0, N. (2)

(a) Explicitly find a matrix A so that Um+1 = AUm, and use a computer to
numerically solve this equation.

(b) Let s = κ∆t/(∆x)2. Verify numerically for various initial data that when
s < 1/2 the solution Um decays (exponentially) to 0.

(c) Verify numerically that if s > 1/2 then the numerically computed Um

is “unphysical”: Explicitly, exhibit non-negative initial data for which the
solution becomes negative. Also find initial data for which the solution
grows without bound.

(d) Suppose now A is the “infinite” matrix corresponding to (1) for all j ∈
Z. Show that for all k ∈ N, 1 − 2s(1 − cos(k∆x)) is an eigenvalue of A.
Consequently, if s > 1/2 show that the matrix A has an eigenvalue λ with
|λ| > 1.



Assignment 4: Assigned Fri 10/02. Due Fri 10/09

In low density (or high energy) plasmas energy transport is modelled by the Kom-
paneets equation: ∂tn + ∂xF = 0 where F = F (x, n) = (2x − x2)n − n2 − x2∂xn.
(Note n is a function of x, so ∂xF = ∂1F + ∂2F∂xn.) Here x > 0 is proportional to
the magnitude of the wave vector (and hence the energy) of a photon, and n(x, t)
represents the number density of photons with energy x. Assume for this question
that F → 0 as x→ 0 and x→∞.

1. (a) Let N(t)
def
=
∫∞

0
n(x, t) dx be the total photon number. Show that N is

constant in time.
(b) Let f = n/x2. Show x2∂tf = ∂x[x4(∂xf + f + f2)]. [This is how the equation

is usually stated in Physics.]

(c) Let h(x1, x2) = x2 lnx2−(1+x2) ln(1+x2)+x1x2, and define the quantum
entropy H by H(t) =

∫∞
0
x2h(x, f) dx. Show that

∂tH = −
∫ ∞

0

x4f(1 + f)[∂x∂2h(x, f)]2 dx 6 0.

(d) Show that all nonnegative stationary solutions are of the form fµ(x) =
1/(ex+µ − 1) for µ > 0. [Hint: For stationary solutions ∂x∂2h(x, f) = 0.]

2. (Strauss 4.1.4) Consider waves in a resistant medium that satisfy the problem

∂2
t u = c2∂2

xu+ r∂tu for 0 < x < l,

u = 0 at both ends,
u(x, 0) = φ(x), ∂tu(x, 0) = ψ(x),

where r is a constant, 0 < r < 2πc/l. Write down the series expansion of the
solution.

3. (Strauss 4.2.2) Consider the equation ∂2
t u = c2∂2

xu for 0 < x < L, with the
boundary conditions ux(0, t) = 0, u(L, t) = 0.
(a) Show that the eigenfunctions are cos((n+ 1/2)πx/L).
(b) Write the series expansion for a solution u(x, t).

This problem outlines a short proof of a few basic properties of the Discrete Fourier
Transform.
4. Let N ∈ N and define en ∈ CN to be the vector en =

∑N−1
k=0 exp(2πink/N)êk,

where êk is the kth elementary basis vector.
(a) Show that {en | 0 6 n < N} forms an orthogonal basis of CN .
(b) For x ∈ CN , and define the discrete Fourier transform of x (denoted by X)

to be the element of CN with coordinates Xn =
∑N−1
k=0 xk exp(−2πink/N).

(Note Xn = 〈x, en〉.) Show that xk = 1
N

∑N−1
n=0 Xn exp(+2πink/N).

(c) Find a real symmetric matrix T for which en’s are the eigenvectors. [Hint:
Try the discrete version of the (periodic) second derivative.]

Assignment 5: Assigned Fri 10/09. Due Fri 10/16

1. (a) Determine whether the following Fourier series converge pointwise, L2 or
uniformly. When it converges, determine the limit. [It might help to draw
pictures to confirm your guess. When applicable, use the Fourier series convergence
theorems from class instead of proving everything from scratch.]

i. Fourier sine series of cosx on [0, π].
ii. Fourier cosine series of sinx on [0, π].
iii. Full Fourier series of x on [−π, π].
iv. Fourier cosine series of f(x) = 1 for x < π/2 and f(x) = 0 otherwise

on [0, π].

(b) Compute 1− 1/3 + 1/5− 1/7 · · · . [Hint: Compute the Fourier coefficients of the
last part above.]

2. (a) Show that
∑∞
n=1

1
n2 = π2

6 . [Hint: Find an L2 function for which |f̂(n)|2 = 1
n2 ,

and use Parseval’s identity.]

(b) Compute
∑∞
n=1

1
n4 .

3. Let f be a piecewise differentiable 2L-periodic (complex valued) function with∫ L
−L|f |

2
<∞ and

∫ L
−L|f

′|2 <∞.

(a) Show that |f̂(n)| 6 C/n for some constant C that is independent of n.

(b) (Unrelated) If
∫ L
−L f = 0, show that ‖f‖2 6 π2

L2 ‖f ′‖2.
4. Let f be a continuous function on [0, L], and An be the Fourier Sine coefficients

of f .

(a) Suppose u satisfies the heat equation on [0, L] with Dirichlet boundary
conditions u(0, t) = u(L, t) = 0 and initial data u(x, 0) = f(x). Show that
for any t > 0 the function u is infinitely differentiable as a function of x.

(b) Explain why your proof above won’t work for the wave equation.

5. Suppose u satisfies the heat equation ∂tu − ∂2
xu = 0 for x ∈ (0, L) and t > 0

with Neumann boundary conditions ∂xu(0, t) = ∂xu(L, t) = 0 and initial data
u(x, 0) = f(x). You may assume ‖f‖ <∞.

Consider now the limit of the functions u(·, t) as t→∞. Namely, for any fixed
t > 0, view the slice of u at time t as a function of x. Then consider the limit of
these functions as t→∞. Does this limit exist in the pointwise, uniform or L2

sense? Prove it. Also compute the limit.



Assignment 6: Assigned Fri 10/16. Due Fri 10/23

1. Let D ⊂ R2 be the exterior of the disk of radius a and center 0 (i.e. D =
{(x, y) | x2 + y2 > 1}). Find the solution of the PDE ∆u = 0 in D, with
boundary conditions

u(a, θ) = f(a, θ) & lim
r→∞

u(r, θ) =
1

2π

∫ 2π

0

f(a, φ) dφ.

Express your answer as an integral involving f (without an infinite sum). [Hint:
Option 1: Switch to polar coordinates, and separate variables, and suffer. Option 2: Let
v(r, θ) = u(1/r, θ).]

2. Let Ω = B(0, a), and f : ∂Ω→ R be differentiable, and g(a, θ) = −∂θf(a, θ).

(a) Suppose ∆v = 0 in Ω and ∂rv = g on ∂Ω. Find Q = Qa(r, θ) so that

v(r, θ) =

∫ π

−π
g(φ)Qa(r, θ − φ) dφ.

(b) Express Q, and the above formula in Cartesian coordinates.

(c) Suppose u solves ∆u = 0 in Ω with u = f on ∂Ω. Find a relation between
∇u and ∇v. [Hint: Find a relationship between the Poisson kernel P and Q. The
answer should be something familiar.]

3. (Separation of variables on an annulus) Given a, b ∈ R such that 0 < a < b,
let the annulus A be defined by A = {x ∈ R2 | a < |x| < b}. Given two
periodic functions f , g, find a function u such that ∆u = 0 in A, with boundary
conditions u(a, θ) = f(θ) and u(b, θ) = g(θ). You may leave your answer as an
infinite series involving the appropriate Fourier coefficients of f and g.

4. (a) Let R > 0 and D = {x ∈ R2 | |x− x0| < a}. If ∆u = 0 in D, then show

u(x0) =
1

areaD

∫
D

u.

(b) (Liouville’s theorem) Suppose ∆u = 0 in all of R2, and u is bounded, then
show that u must be constant.

5. (Harnack inequality) Let D = {x ∈ R2 | |x| 6 a} be a disk of radius a. Let u be
a function such that ∆u = 0 on the interior of D, and u(x) > 0 for all x ∈ D. If
|x| 6 r < a, then show that

u(0)
a− r
a+ r

6 u(x) 6 u(0)
a+ r

a− r
.

[This is called the Harnack Inequality, and is a rather striking result. In words it says that
if u is a positive harmonic function on a disk of radius a, then the oscillation on any smaller
disk can be uniformly controlled! The hint is to use the Poisson formula.]

Assignment 7: Assigned Fri 10/23. Due Fri 10/30

1. Show that the Poisson kernel is an approximate identity. Explicitly show:

(a) Pa(r, θ) > 0 and
∫ π
−π Pa(r, θ) dθ = 1.

(b) For any δ > 0, lim
r→a−

[
∫ −δ
−π Pa(r, θ) dθ +

∫ π
ε
Pa(r, θ) dθ] = 0.

2. Suppose Ω ⊆ Rd is bounded, and u ∈ C2(Ω) ∩ C(Ω̄). Let b : Ω → Rd be a
bounded function.

(a) Suppose −∆u+ b · ∇u < 0, show that u can not attain a maximum in the
interior of Ω.

(b) (Weak maximum principle) Suppose −∆u+ b · ∇u 6 0, show that

max
x∈Ω

u(x) 6 max
x∈∂Ω

u(x).

Hint: Find a function ϕ so that −∆ϕ+ b · ∇ϕ < 0, and set u = v + εϕ.

3. Suppose u ∈ C2(Ω) ∩ C(Ω̄) and −∆u 6 0 in Ω.

(a) (Hopf lemma) If u attains it’s maximum at a point a ∈ ∂Ω, show that
∂u
∂n̂ (a) > 0 unless u is constant. [Hint: Use weak maximum principle and either
the Harnack inequality or the separation of variables on the annulus.]

(b) (Strong maximum principle) If u attains an interior maximum show that u
is constant.

4. Let D = [0, L]× [0, L], and b be some (bounded) vector function. Suppose u is
a solution of the PDE −∆u + b · ∇u = b1, with u = 0 on ∂D. (Note: b1 is the
first component of the vector b.) Find a constant c which only depends on L
such that u(x) 6 c for all x ∈ D.



Assignment 8: Assigned Fri 11/06. Due Fri 11/13

1. Find the Greens function for the upper half plane Ω = {(x, y) ∈ R2 | y > 0}.
Use this to find a function u such that ∆u = 0 in Ω and u(x, 0) = sign(x).

2. Find the Greens function for the half sphere Ω = {x ∈ R3 | |x| < a & x3 > 0}.
3. Suppose ∆u = f in Ω and u = g on ∂Ω. Show that

u(x) =

∫
Ω

G(x, y)f(y) dV (y) +

∫
∂Ω

G(x, y)g(y) dS(y),

where G is the Greens function on Ω.

4. The Neumann function N of a domain Ω is a function N : Ω̄ × Ω̄ → R such
that:

(i) N (x, x0) is C2 as a function of x, provided x 6= x0.

(ii) ∆xN (x, x0) = 0 (here ∆x denotes the Laplacian in x, treating x0 as fixed).

(iii) H(x)
def
= N (x, x0)−N(x− x0) extends to a harmonic function on all of Ω

(including x = x0). (Here N is the Newton potential).

(iv) ∂n̂N (x, x0) = 1/ area(∂Ω) for x ∈ ∂Ω.

Suppose ∆u = f in Ω and ∂n̂u = g on ∂Ω for some functions f, g such that∫
∂Ω
g dS = 0. Find a formula expressing u in terms of f , g and N , and prove it.

5. Find the Neumann function for the two dimensional ball of radius a. Use this
to find the analogue of the Poisson formula with Neumann boundary condition.

Assignment 9: Assigned Fri 11/13. Due Fri 11/20

1. Show that G(·, t) is an approximate identity as t→ 0.

2. Let f : Rd → R be a (nice) function, and u solve ∂tu − κ∆u = 0 for x ∈ Rd
and t > 0 with initial data u(x, 0) = f(x). Find a formula expressing u in terms
of f (as some convolution). [Assume d = 2 or d = 3 if you are uncomfortable with
d-dimensional integrals.]

3. (a) Suppose ∂tu− κ∂2
xu = 0 for x > 0, t > 0, with initial data u(x, 0) = f(x)

and boundary conditions u(0, t) = 0 and decay at infinity. Find a formula
expressing u in terms of f (as some convolution). [Hint: Can you extend f to
a function defined on all of R so that the solution to the heat equation (on all of R) and
initial data f will automatically satisfy the required boundary condition at x = 0?]

(b) Do part (a) assuming ∂tu− κ∂2
xu = g instead. Here g : [0,∞)× [0,∞) is a

given function.

(c) Do part (a) with boundary conditions u(0, t) = h(t) instead. [Hint: Find a
function w so that v = u−w satisfies the equation (and boundary conditions) for which
you already have a formula.]

(d) Do part (a) with Neumann boundary conditions ∂xu(0, t) = 0 instead.

4. Let f be a function, and suppose u(x, t) =
∫∞
−∞ f(y)G(x− y, t) dy.

(a) If f is bounded and limx→±∞ f(x) = 0, show that for every t > 0 we also
have limx→±∞ u(x, t) = 0.

(b) If instead
∫∞
−∞|f | <∞, must we still have limx→±∞ u(x, t) = 0? Prove it.

5. Compute G ∗ N , where G : R3 → R is defined by G(x) = 1
(2π)3/2

exp(−|x|2/2)

and N(x) = −1/(4π|x|) is the three dimensional Newton potential. [There is a
clean and easy way to do this.]



Assignment 10: Assigned Fri 11/27. Due Fri 12/04

1. Suppose ∂tu− ∂2
xu = 0 for x ∈ (0, L) and t > 0 with initial data u(x, 0) = 1 and

Dirichlet boundary conditions u(0, t) = u(L, t) = 0 for all t > 0. True or false:
For every x ∈ (0, L) the function t 7→ u(x, t) is a strictly decreasing function of
t. Prove or disprove your answer.

2. The reaction diffusion equation is

∂tu− ∂2
xu = u(1− u). (3)

Physically, this is used to describe evolution of temperature in an exothermic
reaction (e.g. burning fuel), or model the spread of a species.

(a) Let R be the space-time rectangle (0, L) × (0, T ), and ∂PR denote the
parabolic boundary. If u1, u1 are two bounded solutions to (3) such that
u1, u2 ∈ C(R̄), and u1 6 u2 on ∂PR, then show that u1 6 u2 on R.

(b) If u solves (3) in R and 0 6 u 6 1 on ∂PR, prove 0 6 u 6 1 on all of R.

3. Let u be a solution to ∂2
t u − c2∂2

xu = 0 for x ∈ R and t > 0 with initial data
u(x, 0) = ϕ(x) and ∂tu(x, 0) = ψ(x). Find ϕ and ψ so that ∂tu(x, 10) = 0,
u(x, 10) = 1 for x ∈ (0, 1) and u(x, 10) = 0 for x 6∈ (0, 1).

4. (a) Find an explicit formula for the solution of the PDE ∂2
t u− c2∂2

xu = 0, for
x > 0, t > 0, with Dirichlet boundary conditions u(0, t) = 0 and initial data
u(x, 0) = ϕ(x), and ∂tu(x, 0) = ψ(x).

(b) For the previous subpart, sketch the domain of dependence of a point (x, t).
[Do two cases: x < ct and x > ct. Your pictures will be different!]

(c) Find an explicit formula for the solution of the PDE ∂2
t u− c2∂2

xu = g(x, t),
for x > 0, t > 0, with Neumann boundary conditions ∂xu(0, t) = 0 and
initial data u(x, 0) = ϕ(x), and ∂tu(x, 0) = ψ(x). Sketch the domain of
dependence of a point (x, t).

Assignment 11: Assigned Fri 12/04. Due Fri 12/11

1. Let u solve ∂2
t u−c2∆u = 0 for x ∈ R2 and t > 0, with initial data u(x, 0) = ϕ(x)

and ∂tu(x, 0) = ψ(x). Show that

u(x, t) =
1

2πc

∫
B(x,ct)

ψ(y)(
c2t2 − |y − x|2

)1/2 dA(y)

+ ∂t

[ 1

2πc

∫
B(x,ct)

ϕ(y)(
c2t2 − |y − x|2

)1/2 dA(y)
]

[Hint: For x ∈ R2, z ∈ R, treat (x, z) ∈ R3. Let v(x, z, t) = u(x, t), and observe that
v satisfies the three dimensional wave equation, for which you know the Kirchoff formula.
Simplify that to obtain the above.

It’s also important to observe the difference between the solution formulae in 2D and 3D. The
formula in 3D involve integrals over the surface of the ball of radius ct. In 2D, however, the
formula involves integrals over the solid disk of radius ct.]

Suppose a signal is emitted at point x0 ∈ R3 at time 0. In 3D, at time t, the signal
will only be seen (or heard) by an observer that is exactly a distance ct away from
x0. You can easily make this precise by choosing ϕ to be an approximation to the δ
function at the origin and using the 3D Kirchoff formula.

In two dimensions, however, the signal will only be seen (or heard) by an observer
that is at most a distance of ct away from x0. In fact, an observer at y0 will hear
nothing before time |x0 − y0|/c, hear the loudest signal at time exactly |x0 − y0|/c,
and at later times hear a softer whose amplitude eventually decays to 0. This is the
content of the next two problems.

2. Let u solve ∂2
t u−c2∆u = 0 for x ∈ R2 and t > 0, with initial data u(x, 0) = ϕ(x)

and ∂tu(x, 0) = ψ(x). Suppose ϕ and ϕ are bounded functions that vanish
outside B(0, R). Show that for any x ∈ R2 there exists a constant C > 0 such
that u(x, t) 6 C/t. In particular, u(x, t)→ 0 as t→∞.

3. Suppose in the previous question u was a solution of the three dimensional wave
equation instead. Show that u(x, t) = 0 for all sufficiently large t.


