21-272 Introduction to PDE: Midterm 2.

- This is a closed book test. No calculators or computational aids are allowed.
- You may bring in a formula sheet that fits on two sides of one US Letter sized piece of paper, provided it is handwritten. No print outs.
- You have 3 hours. The exam has a total of 8 questions and 90 points.
- You may use any result from class or homework PROVIDED it is independent of the problem you want to use the result in. (You must also CLEARLY state the result you are using.)

10 1. Let $f, g:(0, \pi) \rightarrow \mathbb{R}$ be two bounded continuous functions whose Fourier sine series are given by

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \sin (n x) \quad \text { and } \quad g(x)=\sum_{n=1}^{\infty} B_{n} \sin (n x)
$$

respectively. Find

$$
\int_{0}^{\pi} f(x) g(x) d x
$$

in terms of the coefficients A_{n} 's and B_{n} 's. [No proof is required. But even a slightly incorrect formula will early you 0 credit unless you provide some justification.]
2. Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded region, and suppose u_{1} and u_{2} are both solutions of the $\mathrm{PDE}-\Delta u=1$ in Ω with boundary conditions

$$
u+\frac{\partial u}{\partial \hat{n}}=0 \quad \text { on } \partial \Omega
$$

Must $u_{1}=u_{2}$ in Ω ? Prove it, or find a counter example.
3. Let Ω be the semi-circular disk expressed in polar coordinates by

$$
\Omega=\{(r, \theta) \mid 0<r<1 \text { and } 0<\theta<\pi\}
$$

Suppose $\Delta u=0$ in Ω with boundary conditions

$$
u(r, 0)=0, \quad \partial_{\theta} u(r, \pi)=0, \quad \text { and } \quad u(1, \theta)=1
$$

Use separation of variables to express u as an infinite series. (You should explicitly find all coefficients in the series, and not leave them as integrals.) [Recall in polar coordinates we have $\Delta u=\partial_{r}^{2} u+\frac{1}{r} \partial_{r} u+\frac{1}{r^{2}} \partial_{\theta}^{2} u$.]

10 4. Suppose $\partial_{t} u-\frac{1}{2} \partial_{x}^{2} u=0$ for $x \in \mathbb{R}, t>0$, with initial data $u(x, 0)=f(x)$. Suppose $\int_{-\infty}^{\infty}|f|=1$. Does there exist $C \in \mathbb{R}$ and $\alpha>0$ such that

$$
u(x, t) \leqslant \frac{C}{t^{\alpha}}
$$

for all $x \in \mathbb{R}$ and $t>0$? If yes, find α and C and prove it. If no, find a counter example.
5. Find the Greens function for the upper half plane $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$. Use this to find a function u such that $\Delta u=0$ in Ω and $u(x, 0)=\operatorname{sign}(x)$. [This was HW8 Q1]

10 6. Let $R=(0, L) \times(0, T)$ and $\partial_{P} R=\{(x, t) \mid x=0$, or $x=L$, or $t=0\}$. Let $c: R \rightarrow \mathbb{R}$ be a continuous, bounded function. Suppose u satisfies

$$
\partial_{t} u-\partial_{x}^{2} u+c(x) u \geqslant 0
$$

in R with $u \geqslant 0$ on $\partial_{p} R$, must $u \geqslant 0$ on all of R ? Prove it, or find a counter example. [This was an intermediate step required in the proof of HW10 Q1]

10 7. Let u solve $\partial_{t}^{2} u-c^{2} \Delta u=0$ for $x \in \mathbb{R}^{2}$ and $t \geqslant 0$, with initial data $u(x, 0)=\varphi(x)$ and $\partial_{t} u(x, 0)=\psi(x)$. Find a formula for u in terms of φ and ψ. You may use without proof the Kirchoff formula in three dimensions. [This was HW11 Q1.]
8. Let $B=B(0,1) \subseteq \mathbb{R}^{2}$ be the unit disk, $B^{*}=B-\{(0,0)\}$ be the unit disk with the origin removed, and $\bar{B}=B \cup \partial B$.
(a) Suppose $u: B^{*} \rightarrow \mathbb{R}$ is a C^{2} function such that $\Delta u=0$ in B^{*} and $u=0$ on ∂B. Must $u=0$ in B^{*} ? Prove it, or find a counter example. [Even though u is not defined on ∂B, by $u=0$ on ∂B we mean for every $a \in \partial B$, $u(x) \rightarrow 0$ as $x \rightarrow a$.]
(b) Suppose $u: \bar{B} \rightarrow \mathbb{R}$ is continuous on all of \bar{B}, C^{2} on B^{*} and satisfies $\Delta u=0$ in B^{*} with $u=0$ on ∂B. Must $u=0$ in B^{*} ? Prove it, or find a counter example. [Hint: Let $\varepsilon>0$ and $v_{\varepsilon}=u-\varepsilon \ln |x|$.]

