21-272 Introduction to PDE: Midterm 2.

Mon 12/14

- This is a closed book test. No calculators or computational aids are allowed.
- You may bring in a formula sheet that fits on two sides of one US Letter sized piece of paper, provided it is handwritten. No print outs.
- You have 3 hours. The exam has a total of 8 questions and 90 points.
- You may use any result from class or homework **PROVIDED** it is independent of the problem you want to use the result in. (You must also **CLEARLY** state the result you are using.)

10 1. Let $f, g: (0, \pi) \to \mathbb{R}$ be two bounded continuous functions whose Fourier sine series are given by

$$f(x) = \sum_{n=1}^{\infty} A_n \sin(nx)$$
 and $g(x) = \sum_{n=1}^{\infty} B_n \sin(nx)$

respectively. Find

$$\int_0^\pi f(x)\,g(x)\,dx$$

in terms of the coefficients A_n 's and B_n 's. [No proof is required. But even a slightly incorrect formula will early you 0 credit unless you provide some justification.]

10 2. Let $\Omega \subseteq \mathbb{R}^2$ be a bounded region, and suppose u_1 and u_2 are both solutions of the PDE $-\Delta u = 1$ in Ω with boundary conditions

$$u + \frac{\partial u}{\partial \hat{n}} = 0 \quad \text{on } \partial \Omega$$

Must $u_1 = u_2$ in Ω ? Prove it, or find a counter example.

15 3. Let Ω be the semi-circular disk expressed in polar coordinates by

 $\Omega = \{ (r, \theta) \mid 0 < r < 1 \text{ and } 0 < \theta < \pi \}.$

Suppose $\Delta u = 0$ in Ω with boundary conditions

$$u(r,0) = 0$$
, $\partial_{\theta}u(r,\pi) = 0$, and $u(1,\theta) = 1$

Use separation of variables to express u as an infinite series. (You should explicitly find all coefficients in the series, and not leave them as integrals.) [Recall in polar coordinates we have $\Delta u = \partial_r^2 u + \frac{1}{r} \partial_r u + \frac{1}{r^2} \partial_{\theta}^2 u$.]

10 4. Suppose $\partial_t u - \frac{1}{2} \partial_x^2 u = 0$ for $x \in \mathbb{R}$, t > 0, with initial data u(x, 0) = f(x). Suppose $\int_{-\infty}^{\infty} |f| = 1$. Does there exist $C \in \mathbb{R}$ and $\alpha > 0$ such that

$$u(x,t) \leqslant \frac{C}{t^{\alpha}},$$

for all $x \in \mathbb{R}$ and t > 0? If yes, find α and C and prove it. If no, find a counter example.

- 10 5. Find the Greens function for the upper half plane $\Omega = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$. Use this to find a function u such that $\Delta u = 0$ in Ω and u(x, 0) = sign(x). [This was HW8 Q1]
- 10 6. Let $R = (0, L) \times (0, T)$ and $\partial_P R = \{(x, t) \mid x = 0, \text{ or } x = L, \text{ or } t = 0\}$. Let $c : R \to \mathbb{R}$ be a continuous, bounded function. Suppose u satisfies

$$\partial_t u - \partial_x^2 u + c(x)u \ge 0$$

in R with $u \ge 0$ on $\partial_p R$, must $u \ge 0$ on all of R? Prove it, or find a counter example. [This was an intermediate step required in the proof of HW10 Q1]

10 7. Let u solve $\partial_t^2 u - c^2 \Delta u = 0$ for $x \in \mathbb{R}^2$ and $t \ge 0$, with initial data $u(x,0) = \varphi(x)$ and $\partial_t u(x,0) = \psi(x)$. Find a formula for u in terms of φ and ψ . You may use without proof the Kirchoff formula in three dimensions. [This was HW11 Q1.]

- 8. Let $B = B(0,1) \subseteq \mathbb{R}^2$ be the unit disk, $B^* = B \{(0,0)\}$ be the unit disk with the origin removed, and $\overline{B} = B \cup \partial B$.
- 3 (a) Suppose $u : B^* \to \mathbb{R}$ is a C^2 function such that $\Delta u = 0$ in B^* and u = 0 on ∂B . Must u = 0 in B^* ? Prove it, or find a counter example. [Even though u is not defined on ∂B , by u = 0 on ∂B we mean for every $a \in \partial B$, $u(x) \to 0$ as $x \to a$.]
- 12 (b) Suppose $u : \overline{B} \to \mathbb{R}$ is continuous on all of \overline{B} , C^2 on B^* and satisfies $\Delta u = 0$ in B^* with u = 0 on ∂B . Must u = 0 in B^* ? Prove it, or find a counter example. [HINT: Let $\varepsilon > 0$ and $v_{\varepsilon} = u - \varepsilon \ln |x|$.]