21-268 Multidimensional Calculus: Final.

Dec 20, 2015

- This is a closed book test. No calculators or computational aids are allowed.
- You have 3 hours. The exam has a total of 9 questions and 100 points.
- You may use any result from class or homework **PROVIDED** it is independent of the problem you want to use the result in. (You must also **CLEARLY** state the result you are using.)
- The questions are roughly in order of difficulty. Depending on your intuition, you might find some of the later ones easier than the earlier ones.
- Good luck and happy holidays.
- 5 1. (a) Define what it means for a function $f : \mathbb{R}^3 \to \mathbb{R}^2$ to be differentiable at a point $a \in \mathbb{R}^3$.

5 (b) If
$$f(x, y, z) = \left(\frac{y}{x^2 + y^2}, x \sin(y + z)\right)$$
, then compute the derivative of f at the point $(1, 2, -2)$.

10 2. For the function $f(x, y) = x \sin y + \cos y$, classify the point (0, 0) as a local maximum, minimum, saddle or none of the above.

10 3. Let
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 < 1\}$$
. Compute $\int_U (x^2 + y^2 + z^2) dV$.

10 4. Let $\Gamma \subseteq \mathbb{R}^2$ be a simple closed curve and U be the region enclosed by Γ . If $\varphi : U \to \mathbb{R}$ is a C^1 function, must

$$\oint_{\Gamma} \nabla \varphi \cdot d\ell = 0?$$

Prove it, or find a counter example.

- 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^2 function and define $g : \mathbb{R} \to \mathbb{R}$ by g(t) = f(t, 2t).
- 5 (a) If $\partial_1 f(0,0) = a$ and $\partial_2 f(0,0) = b$, find g'(0) in terms of a and b.
- 5 (b) If $\partial_1^2 f(0,0) = 0$ and $\partial_2^2 f(0,0) = 0$, must g''(0) = 0? Prove it, or find a counter example.
- 10 6. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a C^1 function, and $\Sigma = \{x \in \mathbb{R}^3 \mid f(x) = 0\}$ be a C^1 surface. Let $a \in \mathbb{R}^3$ be some point that is *not* on Σ , and $b \in \Sigma$ be the point on Σ that is closest to a. True or false:

The vector b - a is normal to the surface Σ at the point b.

Prove it, or find a counter example. [You may assume $\nabla f(b) \neq 0$.]

- 7. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = \frac{x^2 y}{x^4 + y^2}$ if $(x, y) \neq (0, 0)$, and f(x, y) = 0 otherwise.
- [7] (a) For any $v \in \mathbb{R}^2$, does the directional derivative $D_v f(0,0)$ exist? If yes compute it.
- (b) Is f differentiable at the point (0,0)? Justify.

7

8

8. Let $U \subseteq \mathbb{R}^2$ be a domain and $f: U \to \mathbb{R}$ be a C^1 function. Let $\Sigma \subseteq \mathbb{R}^3$ be the graph of f defined by

$$\Sigma = \{ (x, y, z) \in \mathbb{R}^3 \mid (x, y) \in U \text{ and } z = f(x, y) \}$$

- (a) Express the surface integral $\int_{\Sigma} 1 \, dS$ as an area integral over U of an expression involving f and or derivatives of f. [No justification is required, however, an incorrect answer without justification will receive no partial credit.]
 - (b) If $f(x,y) = x^2 + y\sqrt{3}$ and U is the triangle with vertices (0,0), (1,0) and (1,1) compute area (Σ) .
- 10 9. (*Trickier!*) Let $v : \mathbb{R}^3 \to \mathbb{R}^3$ be C^1 , let $\Sigma \subseteq \mathbb{R}^3$ be a disk of radius r and center a which is normal to the vector \hat{n} . Let Γ be the boundary of Σ , oriented counter-clockwise with respect to the oriented surface (Σ, \hat{n}) . Compute

$$\lim_{r \to 0} \frac{1}{r^2} \oint_{\Gamma} v \cdot d\ell$$

in terms of \hat{n} , v(a), $\partial_1 v(a)$, $\partial_2 v(a)$ and $\partial_3 v(a)$.