
CHAPTER 4

Multiple Integrals

1. Double Integrals

Let R = [a, b] × [c, d] ⊆ R2 be a rectangle, and f : R → R be continuous.
Let P = {x0, . . . , xM , y0, . . . , yM} where a = x0 < x1 < · · · < xM = b and
c = y0 < y1 < · · · < yM = d. The set P determines a partition of R into a grid
of (non-overlapping) rectangles Ri,j = [xi, xi+1] × [yj , yj+1] for 0 6 i < M and
0 6 j < N . Given P , choose a collection of points Ξ = {ξi,j} so that ξi,j ∈ Ri,j for
all i, j.

Definition 1.1. The Riemann sum of f with respect to the partition P and
points Ξ is defined by

R(f, P,Ξ)
def
=

M−1∑
i=0

N−1∑
j=0

f(ξi,j) area(Ri,j) =

M−1∑
i=0

N−1∑
j=0

f(ξi,j)(xi+1 − xi)(yj+1 − yj)

Definition 1.2. The mesh size of a partition P is defined by

‖P‖ = max{xi+1 − xi
∣∣ 0 6 i < M} ∪ {yj+1 − yj

∣∣ 0 6 j 6 N}.
Definition 1.3. The Riemann integral of f over the rectangle R is defined by∫

R

f(x, y) dx dy
def
= lim
‖P‖→0

R(f, P,Ξ),

provided the limit exists and is independent of the choice of the points Ξ. A function
is said to be Riemann integrable over R if the Riemann integral exists and is finite.

Remark 1.4. A few other popular notation conventions used to denote the
integral are ∫∫

R

f dA,

∫∫
R

f dx dy,

∫∫
R

f dx1 dx2, and
∫∫

R

f.

Remark 1.5. The double integral represents the volume of the region under
the graph of f . Alternately, if f(x, y) is the density of a planar body at point (x, y),
the double integral is the total mass.

Theorem 1.6. Any bounded continuous function is Riemann integrable on a
bounded rectangle.

Remark 1.7. Most bounded functions we will encounter will be Riemann in-
tegrable. Bounded functions with reasonable discontinuities (e.g. finitely many
jumps) are usually Riemann integrable on bounded rectangle. An example of
a “badly discontinuous” function that is not Riemann integrable is the function
f(x, y) = 1 if x, y ∈ Q and 0 otherwise.

Now suppose U ⊆ R2 is an nice bounded1 domain, and f : U → R is a function.
Find a bounded rectangle R ⊇ U , and as before let P be a partition of R into a grid
of rectangles. Now we define the Riemann sum by only summing over all rectangles
Ri,j that are completely contained inside U . Explicitly, let

χ
i,j

=

{
1 Ri,j ⊆ U
0 otherwise.

and define

R(f, P,Ξ, U)
def
=

M−1∑
i=0

N−1∑
j=0

χ
i,j
f(ξi,j)(xi+1 − xi)(yj+1 − yj).

Definition 1.8. The Riemann integral of f over the domain U is defined by∫
U

f(x, y) dx dy
def
= lim
‖P‖→0

R(f, P,Ξ, U),

provided the limit exists and is independent of the choice of the points Ξ. A function
is said to be Riemann integrable over R if the Riemann integral exists and is finite.

Theorem 1.9. Any bounded continuous function is Riemann integrable on a
bounded region.

Remark 1.10. As before, most reasonable bounded functions we will encounter
will be Riemann integrable.

To deal with unbounded functions over unbounded domains, we use a limiting
process.

Definition 1.11. Let U ⊆ R2 be a domain (which is not necessarily bounded)
and f : U → R be a (not necessarily bounded) function. We say f is integrable if

lim
R→∞

∫
U∩B(0,R)

χ
R
|f | dA

exists and is finite. Here χ
R

(x) = 1 if |f(x)| < R and 0 otherwise.

Proposition 1.12. If f is integrable on the domain U , then

lim
R→∞

∫
U∩B(0,R)

χ
R
f dA

exists and is finite.

Remark 1.13. If f is integrable, then the above limit is independent of how
you expand your domain. Namely, you can take the limit of the integral over
U ∩ [−R,R]2 instead, and you will still get the same answer.

Definition 1.14. If f is integrable we define∫
U

f dx dy = lim
R→∞

∫
U∩B(0,R)

χ
R
f dA

1We will subsequently always assume U is “nice”. Namely, U is open, connected and the
boundary of U is a piecewise differentiable curve. More precisely, we need to assume that the
“area” occupied by the boundary of U is 0. While you might suspect this should be true for all
open sets, it isn’t! There exist open sets of finite area whose boundary occupies an infinite area!

1



3. TRIPLE INTEGRALS 2

2. Iterated integrals and Fubini’s theorem

Let U ⊆ R2 be a domain.

Definition 2.1. For x ∈ R, define
SxU = {y

∣∣ (x, y) ∈ U} and TyU = {x
∣∣ (x, y) ∈ U}

Example 2.2. If U = [a, b]× [c, d] then

SxU =

{
[c, d] x ∈ [a, b]

∅ x 6∈ [a, b]
and TyU =

{
[a, b] y ∈ [c, d]

∅ y 6∈ [c, d].

For domains we will consider, SxU and TyU will typically be an interval (or a
finite union of intervals).

Definition 2.3. Given a function f : U → R, we define the two iterated
integrals by∫

x∈R

(∫
y∈SxU

f(x, y) dy
)
dx and

∫
y∈R

(∫
x∈TyU

f(x, y) dx
)
dy,

with the convention that an integral over the empty set is 0. (We included the
parenthesis above for clarity; and will drop them as we become more familiar with
iterated integrals.)

Suppose f(x, y) represents the density of a planar body at point (x, y). For any
x ∈ R, ∫

y∈SxU
f(x, y) dy

represents the mass of the body contained in the vertical line through the point
(x, 0). It’s only natural to expect that if we integrate this with respect to y, we
will get the total mass, which is the double integral. By the same argument, we
should get the same answer if we had sliced it horizontally first and then vertically.
Consequently, we expect both iterated integrals to be equal to the double integral.
This is true, under a finiteness assumption.

Theorem 2.4 (Fubini’s theorem). Suppose f : U → R is a function such that
either
(2.1)∫

x∈R

(∫
y∈SxU

|f(x, y)| dy
)
dx <∞ or

∫
y∈R

(∫
x∈TyU

|f(x, y)| dx
)
dy <∞,

then f is integrable over U and∫
U

f dA =

∫
x∈R

(∫
y∈SxU

f(x, y) dy
)
dx =

∫
y∈R

(∫
x∈TyU

f(x, y) dx
)
dy.

Without the assumption (2.1) the iterated integrals need not be equal, even
though both may exist and be finite.

Example 2.5. Define

f(x, y) = −∂x∂y tan−1
(y
x

)
=

x2 − y2

(x2 + y2)2
.

Then ∫ 1

x=0

∫ 1

y=0

f(x, y) dy dx =
π

4
and

∫ 1

y=0

∫ 1

x=0

f(x, y) dx dy = −π
4

Example 2.6. Let f(x, y) = (x− y)/(x+ y)3 if x, y > 0 and 0 otherwise, and
U = (0, 1)2. The iterated integrals of f over U both exist, but are not equal.

Example 2.7. Define

f(x, y) =


1 y ∈ (x, x+ 1) and x > 0

−1 y ∈ (x− 1, x) and x > 0

0 otherwise.

Then the iterated integrals of f both exist and are not equal.

Example 2.8. Compute the area of a parallelogram.

Example 2.9. Let U be the triangle with vertices (0, 0), (1, 1), and (0, 1) and
f(x, y) = e−y

2

. Compute
∫
U
f dA.

3. Triple integrals

Triple integrals are just like double integrals, except we integrate over regions in
R3 instead of R2. Let C be the cuboid C = [a1, b1]× [a2, b2]× [a3, b3] and f : C → R
be a function. As before, define the Riemann sum

R(f, P,Ξ) =

N1∑
i=0

N2∑
j=0

N3∑
k=0

f(ξi,j,k)(xi+1 − xi)(yi+1 − yi)(zi+1 − zi)

define the Riemann integral of f by taking the limit of Riemann sums:∫
U

f dV = lim
‖P‖→0

R(f, P,Ξ).

Here we use dV (or sometimes dx dy dz to denote that the integral is a volume (or
triple) integral.

When dealing with unbounded functions over unbounded domains,2 we use the
same limiting procedure. If

lim
R→∞

∫
U∩B(0,R)

χ
R
|f | dV

exists and is finite then we define∫
U

f dV = lim
R→∞

∫
U∩B(0,R)

χ
R
f dV

We can break a volume integral into three iterated integrals, and Fubini’s the-
orem is still true. Rather than restate everything, we do a few examples.

Example 3.1. Let U = B(0, R) ⊆ R3. Compute
∫
U

1 dV and derive a formula
for the volume.

2As before, we make the “niceness” assumption that the boundary of U is a differentiable
surface.
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Solution. Note∫
U

1 dV =

∫ R

x=−R

∫ √R2−x2

y=−
√
R2−x2

∫ √R2−x2−y2

z=−
√
R2−x2−y2

1 dz dy dx

= 2

∫ R

x=−R

∫ √R2−x2

y=−
√
R2−x2

√
R2 − x2 − y2dy dx

= 2

∫ R

x=−R

∫ π
2

θ=−π2
(R2 − x2) cos2 θ dθ dx = π

[
R2x− x3

3

]R
−R

=
4

3
πR3 �

Example 3.2. Compute the volume of a cylinder.

Example 3.3. Compute the volume of the pyramid bounded by the intersection
of the planes x+ y + z = 1 and the three coordinate planes.

4. Coordinate transformations

Let f be a function of (x, y) defined on the domain U . Let(
x
y

)
= ϕ(u, v)

for some coordinate change function ϕ : U → V . We claim

(4.1)
∫
U

f(x, y) dx dy =

∫
V

f ◦ ϕ(u, v) |detDϕ| du dv.

Namely, the integral remains unchanged if we replace U with V , make the substi-
tution (x, y) = ϕ(u, v), and replace dx dy with |detDϕ| du dv. This is the change
of variables theorem.

Theorem 4.1 (Change of Variables). Let U, V ⊆ R2 be two domains, ϕ : V →
U be a coordinate change map. If f : U → R is integrable, then∫

U

f dA =

∫
V

f ◦ ϕ |detDϕ| dA.

Remark 4.2. Recall, a coordinate change transformation is a function ϕ which
is bijective and differentiable for which Dϕ is invertible at all points in the domain.

Remark 4.3. Theorem 4.1 is still true under the following relaxed assumptions
on ϕ: Let U ′ ⊆ U and V ′ ⊆ V be obtained by removing finitely many differentiable
curves or points from U and V respectively. If ϕ : V ′ → U ′ is differentiable, bijective
and Dϕ is invertible on all of V ′, then Theorem 4.1 still holds. In typical situations
Dϕ will be invertible except for a few isolated points, so checking this won’t be the
bottle neck. Bijectivity, however, can fail in subtle ways and needs to be explicitly
checked.

Remark 4.4. The same result is true for triple integrals. Further, for the
relaxed assumptions on ϕ, U ′ and V ′ can be obtained by additionally removing
finitely many differentiable surfaces from U and V respectively.

The intuition behind Theorem 4.1 is as follows: First if R is any rectangle, and
T : R2 → R2 is a linear transformation, then we know that

area(R) = |detT |

Now, divide V into many small non-overlapping regions Ri,j and set R′i,j = ϕ(Ri,j).
Since ϕ is bijective, the regions R′i,j must also be non-overlapping and cover all of
U . If Ri,j are small enough, ϕ can be approximated by an affine function (using
Dϕ) and hence we expect

area(R′i,j) ≈ area(Ri,j)|detDϕξi,j |

where ξi,j ∈ Ri,j . Multiplying by f , summing and taking limits suggests the for-
mula (4.1) as claimed.

Example 4.5 (Polar Coordinates). Let (x, y) = ϕ(r, θ) = (r cos θ, r sin θ).
Then |detDϕ| = r and hence when transforming area integrals to polar coordi-
nates, we replace dx dy with r dr dθ.

Example 4.6. Compute the area of a circle of radius r.

Example 4.7. Show
∫
x2+y2>1

1
(x2+y2)p/2

dA <∞ if and only if p > 2.

Example 4.8. Show
∫∞
−∞ e−x

2

dx =
√
π.

Example 4.9 (Spherical coordinates). Let

(x, y, z) = ϕ(r, θ, φ) = (r sinφ cos θ, r sinφ sin θ, r cosφ).

From homework we know |detDϕ| = r2 sinφ, and hence when transforming volume
integrals into spherical coordinates we replace dV with r2 sinφdr dφ dθ.

Example 4.10. Compute the volume of a solid sphere.

Example 4.11. Show
∫
x2+y2+z2>1

1
(x2+y2+z2)p/2

dV <∞ if and only if p > 3.

Example 4.12. Compute the volume of a cylinder.

Example 4.13. Compute the volume of a cone with an oddly shaped base.

Remark 4.14 (Failure of bijectivity). Here is an example where the failure of
bijectivity gives a “weird” result. Consider the coordinate change(

x
y

)
= ϕ(u, v) =

(
u2 − v2

2uv

)
,

for which |detϕ| = 4(u2 + v2) = 4(x2 + y2)1/2. By making x, y arbitrarily large (or
small) we can do the same for u and v. So one might hastily write∫

R2

f(x, y) dx dy = 4

∫
R2

f ◦ ϕ(u, v) (u2 + v2) du dv.

This doesn’t yield the right answer though! Indeed, choosing

f(x, y) =
exp(−

√
x2 + y2)√

x2 + y2
=

exp(−(u2 + v2))

u2 + v2
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yields ∫
R2

f(x, y) dx dy = 2π and 4

∫
R2

f ◦ ϕ(u, v) (u2 + v2) du dv = 4π.

What failed here is exactly bijectivity. You can explicitly solve and check
that for every (x, y) 6= (0, 0) there exist exactly two values of (u, v) for which
ϕ(u, v) = (x, y). Indeed, choosing

H = {(u, v)
∣∣ u > 0} andV = {(x, y)

∣∣ y 6= 0 or x > 0},
we see now that ϕ : H → V is a coordinate transformation. Of course V is simply
R2 with a half line removed, but H is “half” of R2. With these domains, we of
course have the identity∫

R2

f(x, y) dx dy = 4

∫
H

f ◦ ϕ(u, v) (u2 + v2) du dv,

and you can explicitly verify this for the specific choice of f above.
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