
CHAPTER 3

Inverse and Implicit functions

1. Inverse Functions and Coordinate Changes

Let U ⊆ Rd be a domain.

Theorem 1.1 (Inverse function theorem). If ϕ : U → Rd is differentiable at
a and Dϕa is invertible, then there exists a domains U ′, V ′ such that a ∈ U ′ ⊆ U ,
ϕ(a) ∈ V ′ and ϕ : U ′ → V ′ is bijective. Further, the inverse function ψ : V ′ → U ′

is differentiable.

The proof requires compactness and is beyond the scope of this course.

Remark 1.2. The condition Dϕa is necessary: If ϕ has a differentiable inverse
in a neighbourhood of a, then Dϕa must be invertible. (Proof: Chain rule.)

This is often used to ensure the existence (and differentiability of local coordi-
nates).

Definition 1.3. A function ϕ : U → V is called a (differentiable) coordinate
change if ϕ is differentiable and bijective and Dϕ is invertible at every point.

Practically, let ϕ be a coordinate change function, and set (u, v) = ϕ(x, y). Let
ψ = ϕ−1, and we write (x, y) = ψ(u, v). Given a function f : U → R, we treat it as
a function of x and y. Now using ψ, we treat (x, y) as functions of (u, v).

Thus we can treat f as a function of u and v, and it is often useful to compute
∂uf etc. in terms of ∂xf and ∂yf and the coordinate change functions. By the
chain rule:

∂uf = ∂xf∂ux+ ∂yf∂uy,

and we compute ∂ux, ∂uy etc. either by directly finding the inverse function and
expressing x, y in terms of u, v; or implicitly using the chain rule:

I = DψϕDϕ =

(
∂ux ∂vx
∂uy ∂vy

)(
∂xu ∂yu
∂xv ∂yv

)
=⇒

(
∂ux ∂vx
∂uy ∂vy

)
=

(
∂xu ∂yu
∂xv ∂yv

)−1
.

Example 1.4. Let u(x, y) = x2 − y2 and v(x, y) = 2xy. Let ϕ(x, y) = (u, v).
For any a 6= 0 ∈ R2, there exists a small neighbourhood of a in which ϕ has a
differentiable inverse.

The above tells us that locally x, y can be expressed as functions of u, v. This
might not be true globally. In the above case we can explicitly solve and find x, y:

(1.1) x =
(√u2 + v2 + u

2

)1/2
and y =

(√u2 + v2 − u
2

)1/2

is one solution. (Negating both, gives another solution.)
Regardless, even without using the formulae, we can implicitly differentiate and

find ∂ux. Consequently,(
∂ux ∂vx
∂uy ∂vy

)
=

(
∂xu ∂yu
∂xv ∂yv

)−1
=

(
2x −2y
2y 2x

)−1
=

1

2(x2 + y2)

(
x y
−y x

)
.

It is instructive to differentiate (1.1) directly and double check that the answers
match.

Polar coordinates is another example, and has been done extensively your home-
work.

2. Implicit functions

Let U ⊆ Rd+1 be a domain and f : U → R be a differentiable function. If
x ∈ Rd and y ∈ R, we’ll concatenate the two vectors and write (x, y) ∈ Rd+1.

Theorem 2.1 (Implicit function theorem). Suppose c = f(a, b) and ∂yf(a, b) 6=
0. Then, there exists a domain U ′ 3 a and differentiable function g : U ′ → R such
that g(a) = b and f(x, g(x)) = c for all x ∈ U ′. Further, there exists a domain
V ′ 3 b such that {(x, y) | x ∈ U ′, y ∈ V ′, f(x, y) = c} = {(x, g(x)) | x ∈ U ′}. (In
other words, for all x ∈ U ′ the equation f(x, y) = c has a unique solution in V ′ and
is given by y = g(x).)

Remark 2.2. To see why ∂yf 6= 0 is needed, let f(x, y) = αx+βy and consider
the equation f(x, y) = c. To express y as a function of x we need β 6= 0 which in
this case is equivalent to ∂yf 6= 0.

Remark 2.3. If d = 1, one expects f(x, y) = c to some curve in R2. To write
this curve in the form y = g(x) using a differentiable function g, one needs the
curve to never be vertical. Since ∇f is perpendicular to the curve, this translates
to ∇f never being horizontal, or equivalently ∂yf 6= 0 as assumed in the theorem.

Remark 2.4. For simplicity we chose y to be the last coordinate above. It could
have been any other, just as long as the corresponding partial was non-zero. Namely
if ∂if(a) 6= 0, then one can locally solve the equation f(x) = f(a) (uniquely) for
the variable xi and express it as a differentiable function of the remaining variables.

Example 2.5. f(x, y) = x2 + y2 with c = 1.

Proof of the implicit function theorem. Let ϕ(x, y) = (x, f(x, y)), and
observe Dϕ(a,b) 6= 0. By the inverse function theorem ϕ has a unique local in-
verse ψ. Note ψ must be of the form ψ(x, y) = (x, g(x, y)). Also ϕ ◦ ψ = Id
implies (x, y) = ϕ(x, g(x, y)) = (x, f(x, g(x, y)). Hence y = g(x, c) uniquely solves
f(x, y) = c in a small neighborhood of (a, b). �

Instead of y ∈ R above, we could have been fancier and allowed y ∈ Rn. In this
case f needs to be an Rn valued function, and we need to replace ∂yf 6= 0 with the
assumption that the n×n minor in Df (corresponding to the coordinate positions
of y) is invertible. This is the general version of the implicit function theorem.
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Theorem 2.6 (Implicit function theorem, general case). Let U ⊆ Rd+n be a
domain, f : Rd+n → Rn be a differentiable function, a ∈ U and M be the n × n
matrix obtained by taking the ith1 , ith2 , . . . ithn columns from Dfa. If M is invertible,
then one can locally solve the equation f(x) = f(a) (uniquely) for the variables xi1 ,
. . . , xin and express them as a differentiable function of the remaining d variables.

To avoid too many technicalities, we only state a more precise version of the
above in the special case where the n × n matrix obtained by taking the last n
columns of Df is invertible. Let’s use the notation (x, y) ∈ Rd+n when x ∈ Rd and
y ∈ Rn. Now the precise statement is almost identical to Theorem 2.1:

Theorem 2.7 (Implicit function theorem, precise statement in a special case).
Suppose c = f(a, b) and the n × n matrix obtained by taking the last n columns
of Dfa,b is invertible. Then, there exists a domain U ′ ⊆ Rd containing a and
differentiable function g : U ′ → Rn such that g(a) = b and f(x, g(x)) = c for all
x ∈ U ′. Further, there exists a domain V ′ ⊆ Rn containing b such that {(x, y) | x ∈
U ′, y ∈ V ′, f(x, y) = c} = {(x, g(x)) | x ∈ U ′}. (In other words, for all x ∈ U ′ the
equation f(x, y) = c has a unique solution in V ′ and is given by y = g(x).)

Example 2.8. Consider the equations

(x− 1)2 + y2 + z2 = 5 and (x+ 1)2 + y2 + z2 = 5

for which x = 0, y = 0, z = 2 is one solution. For all other solutions close enough
to this point, determine which of variables x, y, z can be expressed as differentiable
functions of the others.

Solution. Let a = (0, 0, 1) and

F (x, y, z) =

(
(x− 1)2 + y2 + z2

(x+ 1)2 + y2 + z2

)
Observe

DFa =

(
−2 0 4

2 0 4

)
,

and the 2 × 2 minor using the first and last column is invertible. By the implicit
function theorem this means that in a small neighbourhood of a, x and z can be
(uniquely) expressed in terms of y. �

Remark 2.9. In the above example, one can of course solve explicitly and
obtain

x = 0 and z =
√

4− y2,
but in general we won’t get so lucky.

3. Tangent planes and spaces

Let f : R2 → R be differentiable, and consider the implicitly defined curve
Γ = {(x, y) ∈ R2 | f(x, y) = c}. (Note this is some level set of f .) Pick (a, b) ∈ Γ,
and suppose ∂yf(a, b) 6= 0. By the implicit function theorem, we know that the
y-coordinate of this curve can locally be expressed as a differentiable function of x.
In this case the tangent line through (a, b) has slope dy

dx .

Directly differentiating f(x, y) = c with respect to x (and treating y as a
function of x) gives

∂xf + ∂yf
dy

dx
= 0 ⇐⇒ dy

dx
=
−∂xf(a, b)

∂yf(a, b)
.

Further, note that the normal vector at the point (a, b) has direction (− dy
dx , 1).

Substituting for dy
dx using the above shows that the normal vector is parallel to ∇f .

Remark 3.1. Geometrically, this means that ∇f is perpendicular to level sets
of f . This is the direction along which f is changing “the most”. (Consequently,
the directional derivative of f along directions tangent to level sets is 0.)

The same is true in higher dimensions, which we study next. Consider the
surface z = f(x, y), and a point (x0, y0, z0) on this surface. Projecting it to the
x-z plane, this becomes the curve z = f(x, y0) which has slope ∂xf . Projecting it
onto the y-z plane, this becomes the curve with slope ∂yf . The tangent plane at
the point (x0, y0, z0) is defined to be the unique plane passing through (x0, y0, z0)
which projects to a line with slope ∂xf(x0, y0) in the x-z plane and projects to a
line with slope ∂yf(x0, y0) in the y-z plane. Explicitly, the equation for the tangent
plane is

z − z0 = (x− x0)∂xf(x0, y0) + (y − y0)∂yf(x0, y0).

Remark 3.2. Consider a curve Γ in R2 and a ∈ Γ. The usual scenario is that
Γ “touches” the tangent line at a and the continues (briefly) on the same side of the
tangent line. The exception is of course inflection points, where Γ passes through
its tangent line. In a generic curve, inflection points are usually isolated and this
doesn’t happen too often.

In 2D however, the picture is quite different. A surface will “touch” and locally
stay on the same side of the tangent plane if the Hessian is either positive definite or
negative definite. If the Hessian has both a strictly positive and a strictly negative
eigenvalue, then the curve will necessarily “pass through” the tangent plane at the
point of contact. Further, it is possible to construct surfaces where this happens at
every single point. One such example is the surface z = x2 − y2.

Definition 3.3. The tangent space to the surface z = f(x, y) at the point
(x0, y0, z0) is defined to be the subspace

T =
{

(x, y, z) ∈ R3
∣∣ z = x∂xf(x0, y0) + y∂xf(x0, y0) = Df(x0,y0)

(
x
y

)}
Elements of the tangent space are said to be tangent vectors at the point (x0, y0, z0).

Remark 3.4. The tangent space is parallel to the tangent plane, but shifted
so that is passes through the origin (and hence is also a vector subspace).

Remark 3.5. Clearly the vector (∂xf, ∂yf,−1) is normal to the tangent space
of the surface z = f(x, y).

Now let g : R3 → R be differentiable, c ∈ R and consider the implicitly defined
surface Σ = {(x, y, z) | g(x, y, z) = c}. Note again, this is a level set of g. Suppose
(x0, y0, z0) is a point on this surface and ∂zg(x0, y0, z0) 6= 0. Then using the implicit
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function theorem, the z-coordinate of this surface can locally be expressed as a
differentiable function of x and y (say z = f(x, y)). In terms of f we know how
to compute the tangent plane and space of Σ. Our aim is to write this directly in
terms of g.

Proposition 3.6. Let a = (x0, y0, z0) ∈ Σ.
• The tangent space at a (denoted by TΣa) is exactly ker(Dga).
• The tangent plane at a is {x ∈ R3 | Dga(x− a) = 0}.

Recall elements of the tangent space are called tangent vectors. If v ∈ TΣa then
Dga(v) = 0, and hence the directional derivative of g in the direction v must be
0. Note further ∇g is normal to the surface Σ. Both these statements were made
earlier, but not explored in detail as we didn’t have the implicit function theorem
at our disposal.

Proof of Proposition 3.6. Substituting z = f(x, y) in g(x, y, z) = c and
differentiating with respect to x and y gives

∂xg + ∂zg∂xf = 0 and ∂yg + ∂zg∂yf = 0

Thus the tangent plane to the surface g(x, y, z) = c at the point (x0, y0, z0) is given
by

z − z0 = Df(x0,y0)

(
x− x0
y − y0

)
⇐⇒ Dg(x0,y0,z0)

x− x0y − y0
z − z0

 = 0

The tangent space is given by

T =
{xy

z

 ∣∣ xy
z

 · ∇g(x0,y0,z0) = 0
}
. �

These generalizes in higher dimensions. Without being too precise about the
definitions, here is the bottom line:

Proposition 3.7. Let g : Rn+d → Rn be a differentiable function, c ∈ Rn and
let M = {x ∈ Rn+d | g(x) = c}. Suppose the implicit function theorem applies
at all points in M . Then M is a d-dimensional “surface” (called a d-dimensional
manifold). At any point a ∈M , the tangent space is exactly kerDga. Consequently,
Dvg(a) = 0 for all tangent vectors v, and ∇g1, . . .∇gn are n linearly independent
vectors that are orthogonal to the tangent space.

4. Parametric curves.

Definition 4.1. Let Γ ⊆ Rd be a (differentiable) closed curve. We say γ
is a (differentiable) parametrization of Γ if γ : [a, b] → Γ is differentiable, Dγ 6=
0, γ : [a, b) → Γ is bijective, γ(b) = γ(a) and γ′(a) = γ′(b). A curve with a
parametrization is called a parametric curve.

Example 4.2. The curve x2+y2 = 1 can be parametrized by γ(t) = (cos t, sin t)
for t ∈ [0, 2π]

Remark 4.3. A curve can have many parametrizations. For example, δ(t) =
(cos t, sin(−t)) also parametrizes the unit circle, but runs clockwise instead of
counter clockwise. Choosing a parametrization requires choosing the direction of
traversal through the curve.

Remark 4.4. If γ is a curve with endpoints, then we require {γ(a), γ(b)} to be
the endpoints of the curve (instead of γ(b) = γ(a)).

Remark 4.5. If γ is an open curve, then we only require γ to be defined (and
bijective) on (a, b).

Remark 4.6. While curves can not self-intersect, we usually allow parametric
curves to self-intersect. This is done by replacing the requirement that γ is injective
with the requirement that if for x, y ∈ (a, b) we have γ(x) = γ(y) then Dγx and
Dγy are linearly independent. Sometimes, one also allows parametric curves loop
back on themselves (e.g. γ(t) = (cos(t), sin(t)) for t ∈ R.

Definition 4.7. If γ represents a differentiable parametric curve, we define
γ′ = Dγ.

Remark 4.8. For any t, γ′(t) is a vector in Rd. Think of γ(t) representing the
position of a particle, and γ′ to represent the velocity.

Proposition 4.9. Let Γ be a curve and γ be a parametrization, a = γ(t0) ∈ Γ.
Then

TΓa = span{γ′(t0)}.
Consequently, tangent line through a is {γ(t0) + tγ′(t0) | t ∈ R}.

If we think of γ(t) as the position of a particle at time t, then the above says
that the tangent space is spanned by the velocity of the particle. That is, the
velocity of the particle is always tangent to the curve it traces out. However, the
acceleration of the particle (defined to be γ′′) need not be tangent to the curve! In
fact if the magnitude of the velocity |γ′| is constant, then the acceleration will be
perpendicular to the curve!

Proof of Proposition 4.9. We only do the proof in 3D. Write Γ = {f = 0}
where f : R3 → R2 is a differentiable function such that rank(Dfa) = 2. In this
case Γ = S(1)∩S(2) where S(i) is the surface {fi = 0}. Since Γ ⊆ S(i), fi◦γ = 0 and
hence (by the chain rule) γ′(t) ∈ ker(Dfi(a)). By dimension counting this forces

TΓa = TS(1)
a ∩ TS(2)

a = ker(Df1(a)) ∩ ker(Df2(a)) = span{γ′(t)}. �

5. Curves, surfaces, and manifolds

In the previous sections we talked about tangents to curves and surfaces. How-
ever, we haven’t ever precisely defined what a curve or surface is. For the curious,
the definitions are here. The main result (i.e. that ∇g is orthogonal to level sets,
and that ker(Dg) is the tangent space) is still true in arbitrary dimensions.

Definition 5.1. We say Γ ⊆ Rn is a (differentiable) curve if for every a ∈ Γ
there exists domains U ⊆ Rn, V ⊆ R and a differentiable function ϕ : V → U such
that Dϕ 6= 0 in V and U ∩ Γ = ϕ(V ).
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Remark 5.2. Many authors insist V = (0, 1) or V = R. This is equivalent to
what we have.

Example 5.3. If f : R → Rn is a differentiable function, then the graph
Γ ⊆ Rn+1 defined by Γ = {(x, f(x)) | x ∈ R} is a differentiable curve.

Proposition 5.4. Let f : Rn+1 → Rn is differentiable, c ∈ Rn and Γ = {x ∈
Rn+1 | f(x) = c} be the level set of f . If at every point in Γ, the matrix Df has
rank n then Γ is a curve.

Proof. Let a ∈ Γ. Since rank(Dfa) = d, there must be d linearly independent
columns. For simplicity assume these are the first d ones. The implicit function the-
orem applies and guarantees that the equation f(x) = c can be solved for x1, . . . , xn,
and each xi can be expressed as a differentiable function of xn+1 (close to a). That
is, there exist open sets U ′ ⊆ Rn, V ′ ⊆ R and a differentiable function g such that
a ∈ U ′ × V ′ and Γ ∩ (U ′ × V ′) = {(g(xn+1), xn+1) | xn+1 ∈ V ′}. �

Surfaces in higher dimensions are defined similarly.

Definition 5.5. We say Σ ⊆ Rn is a (differentiable) surface if for every a ∈ Σ
there exists domains U ⊆ Rn, V ⊆ R2 and a differentiable function ϕ : V → U such
that rank(Dϕ) = 2 at every point in V and U ∩ Σ = ϕ(V ).

The difference from a curve is that now V ⊆ R2 and not R.

Definition 5.6. We sayM ⊆ Rn is a d-dimensional (differentiable) manifold if
for every a ∈M there exists domains U ⊆ Rn, V ⊆ Rd and a differentiable function
ϕ : V → U such that rank(Dϕ) = d at every point in V and U ∩M = ϕ(V ).

Remark 5.7. For d = 1 this is just a curve, and for d = 2 this is a surface.

Remark 5.8. If d = 1 and Γ is a connected, then there exists an interval U
and an injective differentiable function γ : U → Rn such that Dγ 6= 0 on U and
γ(U) = Γ. If d > 1 this is no longer true: even though near every point the surface
is a differentiable image of a rectangle, the entire surface need not be one.

As before d-dimensional manifolds can be obtained as level sets of functions
f : Rn+d → Rd provided we have rank(Df) = d on the entire level set.

Proposition 5.9. Let f : Rn+d → Rn is differentiable, c ∈ Rn and Γ = {x ∈
Rn+1 | f(x) = c} be the level set of f . If at every point in Γ, the matrix Df has
rank d then Γ is a d-dimensional manifold.

The results from the previous section about tangent spaces of implicitly defined
manifolds generalize naturally in this context.

Definition 5.10. Let U ⊆ Rd, f : U → R be a differentiable function, and
M = {(x, f(x)) ∈ Rd+1 | x ∈ U} be the graph of f . (Note M is a d-dimensional
manifold in Rd+1.) Let (a, f(a)) ∈M .

• The tangent “plane” at the point (a, f(a)) is defined by

{(x, y) ∈ Rd+1
∣∣ y = f(a) +Dfa(x− a)}

• The tangent space at the point (a, f(a)) (denoted by TM(a,f(a))) is the
subspace defined by

TM(a,f(a)) = {(x, y) ∈ Rd+1
∣∣ y = Dfax}.

Remark 5.11. When d = 2 the tangent plane is really a plane. For d = 1 it is
a line (the tangent line), and for other values it is a d-dimensional hyper-plane.

Proposition 5.12. Suppose f : Rn+d → Rn is differentiable, and the level set
Γ = {x | f(x) = c} is a d-dimensional manifold. Suppose further that Dfa has rank
n for all a ∈ Γ. Then the tangent space at a is precisely the kernel of Dfa, and
the vectors ∇f1, . . .∇fn are n linearly independent vectors that are normal to the
tangent space.

6. Constrained optimization.

Consider an implicitly defined surface S = {g = c}, for some g : R3 → R. Our
aim is to maximise or minimise a function f on this surface.

Definition 6.1. We say a function f attains a local maximum at a on the
surface S, if there exists ε > 0 such that |x− a| < ε and x ∈ S imply f(a) > f(x).

Remark 6.2. This is sometimes called constrained local maximum, or local
maximum subject to the constraint g = c.

Proposition 6.3. If f attains a local maximum at a on the surface S, then
∃λ ∈ R such that ∇f(a) = λ∇g(a).

Intuition. If ∇f(a) 6= 0, then S′
def
= {f = f(a)} is a surface. If f attains a

constrained maximum at a then S′ must be tangent to S at the point a. This forces
∇f(a) and ∇g(a) to be parallel. �

Proposition 6.4 (Multiple constraints). Let f, g1, . . . , gn : Rd → R be : Rd →
R be differentiable. If f attains a local maximum at a subject to the constraints
g1 = c1, g2 = c2, . . . gn = cn then ∃λ1, . . . λn ∈ R such that ∇f(a) =

∑n
1 λi∇gi(a).

To explicitly find constrained local maxima in Rd with n constraints we do the
following:

• Simultaneously solve the system of equations

∇f(x) = λ1∇g1(x) + · · ·λn∇gn(x)

g1(x) = c1,

. . .

gn(x) = cn.

• The unknowns are the d-coordinates of x, and the Lagrange multipliers
λ1, . . . , λn. This is n+ d variables.

• The first equation above is a vector equation where both sides have d
coordinates. The remaining are scalar equations. So the above system is
a system of n+ d equations with n+ d variables.

• The typical situation will yield a finite number of solutions.
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• There is a test involving the bordered Hessian for whether these points are
constrained local minima / maxima or neither. These are quite compli-
cated, and are usually more trouble than they are worth, so one usually
uses some ad-hoc method to decide whether the solution you found is a
local maximum or not.

Example 6.5. Find necessary conditions for f(x, y) = y to attain a local
maxima/minima of subject to the constraint y = g(x).

Of course, from one variable calculus, we know that the local maxima / minima
must occur at points where g′ = 0. Let’s revisit it using the constrained optimiza-
tion technique above.

Solution. Note our constraint is of the form y − g(x) = 0. So at a local
maximum we must have(

0
1

)
= ∇f = λ∇(y − g(x)) =

(
−g′(x)

1

)
and y = g(x).

This forces λ = 1 and hence g′(x) = 0, as expected. �

Example 6.6. Maximise xy subject to the constraint x2

a2 + y2

b2 = 1.

Solution. At a local maximum,(
y
x

)
= ∇(xy) = λ∇

(x2
a2

+
y2

b2

)
= λ

(
2x/a2

2y/b2.

)
which forces y2 = x2b2/a2. Substituting this in the constraint gives x = ±a/

√
2

and y = ±b/
√

2. This gives four possibilities for xy to attain a maximum. Directly
checking shows that the points (a/

√
2, b/
√

2) and (−a/
√

2,−b/
√

2) both correspond
to a local maximum, and the maximum value is ab/2. �

Proposition 6.7 (Cauchy-Schwartz). If x, y ∈ Rn then |x · y| 6 |x||y|.

Proof. Maximise x · y subject to the constraint |x| = a and |y| = b. �

Proposition 6.8 (Inequality of the means). If xi > 0, then

1

n

n∑
1

xi >
( n∏

1

xi

)1/n
.

Proposition 6.9 (Young’s inequality). If p, q > 1 and 1/p+ 1/q = 1 then

|xy| 6 |x|
p

p
+
|y|q

q
.
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