
CHAPTER 2

Differentiation

1. Directional and Partial Derivatives

Definition 1.1. Let U ⊂ Rd be a domain, f : U → R be a function, and
v ∈ Rd − {0} be a vector. We define the directional derivative of f in the direction
v at the point a by

Dvf(a)
def
=

d

dt
f(a+ tv)

∣∣∣
t=0

Example 1.2. If f(x) = |x|2, then Dvf(x) = 2x · v.

Remark 1.3. Be aware that some authors define Dvf by additionally dividing
by the length of v. We will never do that!

Definition 1.4. We define the ith partial derivative of f (denoted by ∂if) to
be the directional derivative of f in direction ei (where ei is the ith elementary basis
vector).

Practically, to compute the ith partial derivative of f differentiate it with re-
spect to xi treating all the other coordinates as constant.

Example 1.5. For x 6= 0 we have ∂i|x| = xi/|x|2.

2. Derivatives

Definition 2.1. Let U ⊆ Rd be a domain, f : Rd → R be a function, and
a ∈ U . We say f is differentiable at a if there exists a linear transformation
T : Rd → R and a function e such that

(1) f(a+ h) = f(a) + Th+ e(h)
(2) and limh→0|e(h)|/|h| = 0.

In this case, the linear transformation T is called the derivative of f at a, and
denoted by Dfa.

Proposition 2.2. If f is differentiable at a, then all the directional derivatives
Dvf(a) exist. Further,

Dfa =
(
∂1f(a) ∂2f(a) · · · ∂df(a)

)
and

Dvf(a) = Dfav =

d∑
i=1

vi∂if(a).

Remark 2.3. This shows that the linear transformation appearing in the def-
inition of f is unique!

The converse of Proposition 2.2 is (surprisingly?) false. All directional deriva-
tives can exist, however, the function need not be differentiable (or even continuous!)

Example 2.4. Let f(x, y) = x2y/(x4 + y2). Then for every v ∈ R2 − {0},
Dvf(0) exists, but f is not differentiable (or even continuous) at 0.

The converse of Proposition 2.2 is true under the additional assumption that
the partial derivatives are continuous.

Theorem 2.5. If all partial derivatives of f exist in a neighbourhood of a, and
are continuous at a, then f is differentiable at a.

Proof. For simplicity we assume d = 2. By the mean value theorem

f(a+ h)− f(a) = f(a1 + h1, a2 + h2)− f(a1 + h1, a2) + f(a1 + h1, a2)− f(a1, a2)

= h2∂2f(a1 + h1, a2 + ξ2) + h1∂1f(a1 + ξ1, a2)

for some ξ1, ξ2 such that ξi lies between 0 and hi. Now let T be the matrix
(∂1f(a) ∂2f(a)) and observe

f(a+ h) = f(a) + Th+ e(h),

where

e(h) = h2(∂2f(a1 + h1, a2 + ξ2)− ∂2f(a)) + h1(∂1f(a1 + ξ1, a2)− ∂1f(a)).

Clearly

|e(h)|
|h|

6 |∂2f(a1 + h1, a2 + ξ2)− ∂2f(a)|+ |∂1f(a1 + ξ1, a2)− ∂1f(a)|,

which converges to 0 as h→ 0. �

Note, however, it is possible for a function to be differentiable, and for the
partial derivatives to exist and be discontinuous (e.g. f(x) = |x|2 sin(1/|x|).

Definition 2.6. Let U ⊂ Rm be a domain, and a ∈ U . We say a function
U → Rn is differentiable if if there exists a linear transformation T : Rm → Rn and
a function e such that

(1) f(a+ h) = f(a) + Th+ e(h)
(2) and limh→0|e(h)|/|h| = 0.

Note this is exactly the same as Definition 2.1. In this case Df is a n × m
matrix given by

Dfa =


∂1f1(a) ∂2f1(a) · · · ∂mf1(a)
∂1f2(a) ∂2f2(a) · · · ∂mf2(a)

...
...

...
∂1fn(a) ∂2fn(a) · · · ∂mfn(a)


and is called the Jacobian Matrix.
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3. Tangent planes and Level Sets

Let f : Rd → R be differentiable.

Definition 3.1. The graph of f is the set Γ ⊂ Rd+1 defined by

Γ = {(x, f(x))
∣∣ x ∈ Rd}.

Given a point (a, f(a)) ∈ Γ we define the tangent plane of f at the point a by the
equation

y = f(a) +Dfa(x− a)

The tangent plane is the best linear approximation to the graph Γ at the point
a. Projecting the tangent plane into 2 dimensions (by freezing other coordinates)
gives you a tangent line.

Definition 3.2. Given c ∈ R we define the level set of f to be the set {x ∈
Rd | f(x) = c}.

If d = 2, then level sets are typically curves. If d = 3, then level sets are
typically surfaces. In higher dimensions (for “nice functions”) level sets of f are
typically d− 1-dimensional hyper-surfaces.

Example 3.3. Let d = 3 and f(x) = |x|2. Then {f(x) = c} is the sphere of
radius

√
c for c > 0, a point for c = 0 and the empty set for c < 0.

Level sets are very useful in plotting, and are often used to produce contour
plots. We will see later that if v is tangent to a level set of f , then Dvf = 0.

4. Chain rule

The one variable calculus rules for differentiation of sums, products and quo-
tients (when they make sense) are still valid in higher dimensions.

Proposition 4.1. Let f, g : Rd → R be two differentiable functions.
• f + g is differentiable and D(f + g) = Df +Dg.
• fg is differentiable and D(fg) = fDg + gDf .
• At points where g 6= 0, f/g is also differentiable and

D
(f
g

)
=
gDf − fDg

g2

These follow in a manner very similar to the one variable analogues, and are
left for you to verify. The one rule that is a little different in this context is the
differentiation of composites.

Theorem 4.2 (Chain Rule). Let U ⊆ Rm, V ⊆ Rn be domains, g : U → V ,
f : V → Rd be two differentiable functions. Then f◦g : U → Rd is also differentiable
and

D(f ◦ g)a = (Dfg(a))(Dga)

Note Dfg and Dg are both matrices, and the product above is the matrix
product of Df and Dg.

Proof. The basic intuition is as follows:

f(g(a+ h)) = f(g(a) +Dgah+ e(h)) ≈ f(g(a) +Dgah)

= f(g(a)) +Dfg(a)(Dgah) + e2(Dgah) ≈ f(g(a)) +Dfg(a)(Dgah),

since the composition of linear transformations is again linear. A more detailed
version was done in class, and the complete ε-δ version is on your homework. �

Note if d = 1, then

∂i(f ◦ g) = (Dfg)(Dg)ei =

n∑
j=1

∂jf
∣∣∣
g
∂igj .

This is extremely useful, so I recommend remembering it (and not just the fancy
matrix product version).

As a consequence, here is a “proof” that directional derivatives in directions
tangent to level sets vanish.

Proposition 4.3. Let Γ = {x | f(x) = c} be a level set of a differentiable
function f . Let γ : [−1, 1] → Γ be a differentiable function, v = Dγ(0), and
a = γ(0). Then Dvf(a) = 0.

Think of γ(t) as the position of a particle at time t. If for all t, γ(t) belongs to
the curve Γ, then the velocity Dγ should be tangent to the curve γ, and thus thus
the vector v above should be tangent to Γ. (When we can define this rigorously,
we will revisit it and prove it.)

Proof. Note f ◦ γ = c (since γ(t) ∈ Γ for all t). By the chain rule D(f ◦ γ) =
DfγDγ. At t = 0 this gives Dfγ(0)v = 0 =⇒ Dvf(γ(0)) = 0 as desired. �

Definition 4.4. If f : Rd → R is differentiable, define the gradient of f
(denoted by ∇f) to be the transpose of the derivative of f .

We’ve seen above that if v is tangent to a level set of f at a, then Dvf(a) = 0.
This is equivalent to saying ∇f(a) ·v = 0, or that the gradient of f is perpendicular
to level sets of f . Intuitively, in directions tangent to level sets, f is changing the
least. In the perpendicular direction (given by ∇f), the function f is changing the
most.

5. Higher order derivatives

Given a function f , treat ∂if as a function. If ∂if is itself a differentiable
function, we can differentiate it again. The second derivative (denoted by ∂j∂if)
is called a second order partial of f . These can further be differentiated to obtain
third order partials.

Theorem 5.1 (Clairaut). If ∂i∂jf and ∂j∂if both exist in a neighbourhood of
a, and are continuous at a then they must be equal.

If the mixed second order partials are not continuous, however, they need not
be equal.
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Example 5.2. Let f(x, y) = x3y/(x2 +y2) for (x, y) 6= 0 and f(0, 0) = 0. Then
∂x∂yf(0, 0) = 1 but ∂y∂xf(0, 0) = 0.

Proof of Clairaut’s theorem. Here’s the idea in 2D (the same works in
higher dimensions). For simplicity assume a = 0.

• Let R be the rectangle with corners (0, 0), (h, 0), (0, k), (h, k).
• Using the mean value theorem, show f(h, k)−f(h, 0)−f(0, k)+f(0, 0) =
hk∂x∂yf(α) for some point α ∈ R.

• Observe f(h, k)− f(h, 0)− f(0, k) + f(0, 0) = f(h, k)− f(0, k)− f(h, 0) +
f(0, 0) and so using the mean value theorem show f(h, k) − f(h, 0) −
f(0, k) + f(0, 0) = hk∂y∂xf(β) for some point β ∈ R.

• Note that as (h, k) → 0, we have α, β → 0. Consequently, if ∂x∂yf and
∂y∂xf are both continuous at 0 we must have

∂x∂yf(0, 0) = lim
(h,k)→0

f(h, k)− f(h, 0)− f(0, k) + f(0, 0)

hk
= ∂y∂xf(0, 0),

proving equality as desired. �

Definition 5.3. A function is said to be of class Ck if all its kth-order partial
derivatives exist and are continuous.

By Clairaut’s theorem, we know that mixed partials are equal for Ck functions.

6. Maxima and Minima

Definition 6.1. A function f has a local maximum at a if ∃ε > 0 such that
whenever |x− a| < ε we have f(x) 6 f(a).

Our aim is now to understand what having a local maximum / minimum trans-
lates to in terms of derivatives of f . For this we do a simple calculation: Observe
that if f has a local maximum at a, then for all v ∈ Rd−{0} the function f(a+ tv)
must have a local maximum at t = 0. Hence we must have ∂tf(a+ tv)|t=0 = 0 and
∂2t f(a+ tv)|t=0 6 0. Using the chain rule, we compute

∂tf(a+ tv) =

d∑
i=1

∂if(a+ tv)vi and ∂2t f(a+ tv) =

d∑
i,j=1

∂i∂jf(a+ tv)vivj

Thus at a local maximum we must have
d∑
i=1

∂if(a)vi = 0 and
d∑

i,j=1

∂i∂jf(a)vivj 6 0

for every v ∈ Rd. This translates to the following proposition.

Proposition 6.2. If f is a C2 function which has a local maximum at a, then
(1) The first derivative Df must vanish at a (i.e. Dfa = 0). Dfa = 0
(2) The Hessian Hf is negative semi-definite at a.
For a local maximum, we replace negative semi-definite above with positive

semi-definite.

Definition 6.3. The Hessian of a C2 function (denoted by Hf) is defined to
be the matrix

Hf =


∂1∂1f ∂2∂1f · · · ∂d∂1f
∂1∂2f ∂2∂2f · · · ∂d∂2f

...
...

...
∂1∂df ∂2∂df · · · ∂d∂df


Note if f ∈ C2, Hf is symmetric.

Definition 6.4. Let A be a d× d symmetric matrix.
• If (Av) · v 6 0 for all v ∈ Rd, then A is called negative semi-definite.
• If (Av) · v < 0 for all v ∈ Rd, then A is called negative definite.
• If (Av) · v > 0 for all v ∈ Rd, then A is called positive semi-definite.
• If (Av) · v > 0 for all v ∈ Rd, then A is called positive definite.

Recall a symmetric matrix is positive semi-definite if all the eigenvalues are
non-negative. In 2D this simplifies to the following:

Proposition 6.5. Let A be the symmetric 2× 2 matrix ( a bb c ).
• A is positive semi-definite if and only if a > 0 and ac− b2 > 0.
• A is negative semi-definite if and only if a 6 0 and ac− b2 > 0.

For positive/negative definite we only need to additionally insist ac− b2 > 0.
Finally, we address the converse: Namely, we look for a condition on the deriva-

tives of f that guarantees that f attains a local maximum or minimum at a.

Theorem 6.6. Let f be a C2 function.
• If Dfa = 0 and further Hfa is positive definite, then f attains a local
minimum at a.

• If Dfa = 0 and further Hfa is negative definite, then f attains a local
minimum at a.

The proof uses Taylor’s theorem, and we will revisit it later.

Definition 6.7. We say a is a saddle point of f if Dfa = 0 and Hfa has at
least one strictly positive eigenvalue, and at least one strictly negative eigenvalue.

This corresponds to points where f has a local maximum in one direction and
a local minimum in the other.

Example 6.8. The function |x|2 has a local minimum at 0. The function −|x|2
has a local maximum at 0 The function x21 − x22 has a saddle at 0.

Example 6.9. Let Γ be the hyper-surface y = f(x), and (z, t) ∈ Rd+1. Let
(a, f(a)) be the point on Γ which is closest to (z, t). Then z − a is parallel to ∇f
and (z − a, t− f(a)) is normal to the tangent plane at (a, f(a)).

Proof. Let d(x) = |x − z|2 + (f(x) − t)2. At a max ∇d = 0, and hence
2(x − z) + 2(f(x) − t)∇f(x) = 0 at x = a. This shows a − z is parallel to ∇f(a)
and (Dfa,−1)T is parallel to (z − a, t− f(a)). �
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7. Taylors theorem

Theorem 7.1. If f ∈ C2, then

(7.1) f(a+ h) = f(a) +Dfah+
1

2
h ·Hfah+R2(h),

where R2(h) is some function such that

lim
h→0

R2(h)

|h|2
→ 0.

In coordinates equation (7.1) is

f(a+ h) = f(a) +
∑
i

∂if(a)hi +
1

2

∑
i,j

∂i∂jf(a)hihj +R2(h).

Proof. Let g(t) = f(a+ th). Using the 1D Taylors theorem we have

g(1) = g(0) + g′(0) +
1

2
g′′(ξ)

for some ξ ∈ (0, 1). Writing this in terms of f finishes the proof. �

The same technique can show the following mean value theorem:

Theorem 7.2 (Mean value theorem). If f is differentiable on the entire line
joining a and b,

f(b) = f(a) + (b− a) · ∇f(ξ)

for some point ξ on the line segment joining a and b.

Taylor’s theorem allows us to prove Theorem 6.6.

Proof of Theorem 6.6. Suppose Dfa = 0 and Hfa is positive definite. Let
λ0 be the smallest eigenvalue of Hfa. Expanding in terms of an orthonormal basis
of eigenfunctions of Hfa we see Hh · h > λ0|h|2.

Now choose δ > 0 so that |R2(h)| < λ0|h|2/2 for h < δ, and note f(a + h) >

f(a) + |h|2
2 > f(a), showing f has a local min at a. �

A higher order version of Taylor’s theorem is also true. It is usually stated
using the multi-index notation, collecting all mixed partials that are equal.

Definition 7.3. Let α = (α1, α2, . . . , αd), with αi ∈ N ∪ {0}. If h ∈ Rd define

hα = hα1
1 hα2

2 · · ·h
αd

d , |α| = α1 + · · ·+ αd, and α! = α1!α2! · · ·αd!.

Given a C |α| function f , define

Dαf = ∂α1
1 ∂α2

2 · · · ∂
αd

d f,

with the convention that ∂0i f = f .

Theorem 7.4. If f is a Cn function on Rd and a ∈ Rd we have

f(a+ h) =
∑
|α|<n

1

α!
Dαf(a) +Rn(h),

for some function Rn such that

lim
h→0

Rn(h)

|h|n
= 0.

The proof follows from the one variable Taylor’s theorem in exactly the same
as our second order version does, and collecting all mixed partials that are equal
puts it in the above form.
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