
CHAPTER 1

Limits and Continuity

1. Open sets in Rd.

• We assume throughout the convention that a vector x ∈ Rd has coordi-
nates (x1, x2, . . . , xd).

• Let |x| =
√∑

x2i be the length of the vector x.
• Let B(a, r) = {x ∈ Rd | |x− a| < r} be the open ball of radius r.

Definition 1.1. A set U ⊂ Rd is open if for every a ∈ U there exists r > 0
such that B(a, r) ⊂ U .

Definition 1.2. An open set U ⊂ Rd is connected if it can not be expressed
as the union of two non-empty, disjoint open sets.

While this definition is the “official” one, it is a little harder to grasp (e.g. try
proving Rd is connected)! Instead we will use the circular, but intuitive definition
to work with instead.

Definition 1.3. A set U ⊂ Rd is connected if for any x and y in U , there
exists a continuous path that connects x and y that stays entirely within the set
U .

This definition is circular as we have not yet defined a continuous path.

Definition 1.4. A domain (sometimes called an open domain) is an open
connected set.

Most functions we study will have an open connected set as their domain of
definition.

2. Limits

Definition 2.1. We say limx→a f(x) = l if for every ε > 0, there exists δ > 0
such that 0 < |x− a| < δ implies |f(x)− l| < ε.

In English, this roughly translates to the statement “By making x close enough
to a, we can make f(x) arbitrarily close to l”

Remark 2.2. If f is only defined on an open set U , then we also insist x, a ∈ U
above.

The standard theorems about limits (sums, products, quotients) from one vari-
able calculus still hold in this context. You should make a list and practice a few
ε-δ proofs.

Proposition 2.3. If limx→a f(x) = l then for every v ∈ Rd with v 6= 0, we
must have limt→0 f(a+ tv) = l.

Proof. Pick ε > 0. We know ∃δ > 0 such that 0 < |x − a| < δ =⇒
|f(x) − l| < ε. Choose δ1 = δ/|v|. Now it immediately follows that 0 < t < δ
implies |f(a+ tv)− l| < ε. �

The converse (surprisingly) is false!

Example 2.4. Let f(x) = 1 if 0 < x2 < x21 and f(x) = 0 otherwise. Then
limx→0 f(x) does not exist, but limt→0 f(tv) = 0 for all v ∈ R2 − {0}.

Example 2.5. Let f(x) = x21x2/(x
4
1 + x22), and f(0) = 0. Then limx→0 f(x)

does not exist, but limt→0 f(tv) = 0 for all v ∈ R2 − {0}.

Proposition 2.3 can be used to show that various limits don’t exist.

Example 2.6. Show that lim
x→0

x1x2

|x|2
does not exist.

Proof. Choosing v1 = (1, 1) and v2 = (1, 0) we see

lim
t→0

f(tv1) =
1

2
and lim

t→0
f(tv2) = 0 6= 1

2
.

So by Proposition 2.3, limx→0 x1x2/|x|2 can not exist. �

3. Continuity

Definition 3.1. Let U ⊂ Rm be a domain, and f : U → Rd be a function. We
say f is continuous at a if limx→a f(x) = f(a).

Definition 3.2. If f is continuous at every point a ∈ U , then we say f is
continuous on U (or sometimes simply f is continuous).

Again the standard results on continuity from one variable calculus hold. Sums,
products, quotients (with a non-zero denominator) and composites of continuous
functions will all yield continuous functions.

The notion of continuity gives us a generalization of Proposition 2.3 that is
useful is computing the limits along arbitrary curves instead.

Proposition 3.3. Let f : Rd → R be a function, and a ∈ Rd. Let γ : [0, 1]→
Rd be a any continuous function with γ(0) = a, and γ(t) 6= a for all t > 0. If
limx→a f(x) = l, then we must have limt→0 f(γ(t)) = l.

Corollary 3.4. If there exists two continuous functions γ1, γ2 : [0, 1] →
Rd such that for i ∈ 1, 2 we have γi(0) = a and γi(t) 6= a for all t > 0. If
limt→0 f(γ1(t)) 6= limt→0 f(γ2(t)) then limx→a f(x) can not exist.
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