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Preface
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3. You may edit these notes, and redistribute your modifications, provided you
do so under the same licence.

4. If however, you would like to use material in these notes for a commercial
book, you must obtain written prior approval.

To view the full terms of this license, visit http://creativecommons.org/
licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

The LATEX source for these notes is currently publicly hosted at GitLab: https:
//gitlab.com/gi1242/cmu-math-268. If you are interested in modifying
these notes, please contact the current maintainer to discuss the best method.

These notes are provided as is, without any warranty and Carnegie Mellon
University, the Department of Mathematical-Sciences, nor any of the authors are
liable for any errors.
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0 Linear algebra review

1. (a) Recall that λ and v are respectively an eigenvalue and associated eigen-
vector of the linear map T if. . . If v 6= 0 and T v = λv.

(b) Implicitly, assumptions were made in (a) about the domain and range
of T . What were they? They must be the same vector space.

2. Find the eigenvalues of A =
�

−2 5
0 4

�

. They are −2 and 4 because A is upper
triangular and those are the diagonal elements.

3. Let p ∈ Rn be a fixed, non-zero, vector.
(a) What space should v be in for p · v to make sense? The dual space of
Rn, which is canonically isomorphic to Rn.

(b) What is the solution space of all v with p · v = 0? Is it a vector space?
Why? What is the dimension, and why? It is the hyperplane of all vectors
perpendicular to p, a vector space of dimension n− 1.

4. (a) To which diagonal matrix, say B, is A in question 2 similar (conjugate)?
It is similar to B =

�

−2 0
0 4

�

because its eigenvalues are distinct and hence
A is diagonalizable.

(b) What does it mean for two matrices to be similar (conjugate)? A is
similar to B if there is an invertible matrix M (a change of basis) such
that A= M−1BM.

5. Suppose D is similar (conjugate) to

C =





−1 0 0
0 2 0
0 0 1



 .

Evaluate det(D) and tr(D). They are −2 and 2, respectively, because those are
the answers for C, and both det and tr are invariant for conjugation.

6. Does it make sense to talk about eigenvectors of

E =





2 1 0 1
0 1 0 0
1 −1 0 1



 .

Why or why not? No, because the domain of E is R4 but its range is R3, which
are not the same space.

1 Functions of several real variables

1.1 Examples of multi-dimensional functions

We know how to do calculus for functions f : R→ R or f : [a, b]→ R of a single
real variable. Here are some examples of functions with more inputs and outputs
than just one.
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1.1.1 Examples.
1. Temperature in a physical space (e.g. this room). The input is the Cartesian

coordinate of the point in the room, x = (x1, x2, x3), and the output is T (x),
the temperature. Here T : R3→ R or T : Ω ⊆ R3→ R.

2. Topographical height on a map or on the Earth’s surface. The input is the
coordinates x = (x1, x2), or longitude and latitude, and the output is the
height, h(x). Here h : R2→ R or h : S2→ R, where S2 is the 2-dimensional
sphere.

3. Electrostatic potential Φ and electric field E. The input is the coordinates,
x , of a point in a physical space and the outputs are Φ : R3 → R, the scalar
electric potential (voltage) at x , and E : R3→ R3, the vector indicating force
on a particle due to electric field. We will see that, typically, E = DΦ, the
gradient of Φ, a topic of this course.

4. From economics, the utility function U . The inputs are the amounts of each
good you could consume (e.g. hours at a pinball machine, number of ap-
ples, number of oranges, amount of fizzy beverage, etc.) The ouput is the
scalar quantity that is the amount of “satisfaction” derived from that particu-
lar choice of consumption bundle. Here U : Rn

+→ R, where n is the number
of goods under consideration. R+ = [0,∞) is the collection of non-negative
real numbers.

1.2 Notation and basic definitions

We need to define some notation that makes analogy with the idea of a function of
a single variable f : [a, b]→ R in 1-dimensional calculus. The underlying space for
this course is Rn, n-tuples of real numbers, with canonical basis {e1, . . . , en}, where
ei is the n-vector with a 1 in the ith position and zeros everywhere else.

The inner product on Rn is defined by

〈x , y〉 := x · y = x1 y1 + · · ·+ xn yn.

This defines a distance on Rn defined by d(x , y)2 := 〈x − y, x − y〉, the squared
length of x − y . We will also write |x − y| := d(x , y) (absolute value bars). So the
norm on Rn is defined by |x |2 = 〈x , x〉. Yet otherwise said,

|x − y|= d(x , y) =

√

√

√

n
∑

i=1

(x i − yi)2.

An ε-neighbourhood of x ∈ Rn is Bε(x) := {y ∈ Rn : d(x , y) < ε}, the ball centred
at x with radius ε, not including the boundary (i.e. the open ball).

A subset Ω ⊆ Rn is an open set if for all x ∈ Ω, there is some neighbourhood of
x also contained in Ω (i.e. there is ε > 0 such that Bε(x) ⊆ Ω). This generalizes the
idea that if x ∈ (a, b) then there is always “room” between a and x and between
x and b. A subset Ω ⊆ Rn is closed set if its complement Ωc := Rn \Ω is an open
set. In symbols, for all y /∈ Ω there is some ε > 0 such that Bε(y)∩Ω=∅.
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1.2.1 Example. Ω := {x ∈ R2 : |x1| ≤ 1 and |x2| ≤ 1} is closed. It is the closed
box/square [−1,1]×[−1, 1]. For any y outside of Ω (so |y1|> 1 or |y2|> 1) there
is ε > 0 such that Bε(y) does not intersect the square.

A subset Ω ⊆ Rn is bounded if there is some R > 0 such that Ω ⊆ BR(0). (Note
that you should be able to tell that R is a scalar from the context: the only collection
in this course for which we will define a total ordering “<” is R.)

1.2.2 Examples.
1. Ω := {x ∈ Rn : |x i | ≤ 1 for all i = 1, . . . , n} is bounded. Taking R :=

p
8

shows this.
2. Ω := {x ∈ R2 : x1 x2 < 1} is the region “between” two hyperbolas in R2. Ω

is not bounded. Indeed, it contains the line x2 = −x1.
3. Vector subspaces of Rn are not bounded sets. In general they are not open

sets either.

A subset Ω ⊆ Rn is connected (actually path-connected) if, for all x , y ∈ Ω, there
is a path γ from x to y . (A path γ is a continuous function γ : [a, b] → Rn, and
γ is said to go from x to y if γ(a) = x and γ(b) = y .) For open sets, it suffices
to replace “path γ” in the definition of connected with “an ordered collection of
unbroken straight line segments starting at x and ending with y .”

We will say that Ω is a domain if it is open and (path-)connected. Domains are
the sets over which we will do multi-variable calculus.

1.2.3 Example. Consider the following function f : R2 \ {0} → R defined by

f (x1, x2) :=
x2

1 − x2
2

x2
1 + x2

2

.

What does the graph of f look like? Is f “well-behaved” near x = 0?
We have several tools at our disposal. The level curves of f are the sets {x ∈

R2 \ {0} : f (x) = c} for various choices of c. The level set for c = 0 is the pair of
lines x1 = x2 and x1 = −x2 (not including zero). The level sets for c = 1 and −1
are the lines x2 = 0 and x1 = 0, respectively. In polar coordinates,

f (r,θ ) =
(r cosθ )2 − (r sinθ )2

r2
= cos(2θ ).

Interestingly, this formula does not depend on the radius.

1.3 Limits and continuity

This section follows K§2.4. We saw that the function from Example 1.2.3 was
not so well-behaved for its argument near zero, in the sense that the values the
function takes on a circle centred at the origin are cos(2θ ), irrespective of the
radius. Continuity is the property of a function, say f , that the values f (x) can be
made as close to f (x0) as we like by taking x close to x0. The precise definition is
as follows. Let f : Ω ⊆ Rn→ Rm be a function.
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1.3.1 Definition. We say that limx→x0
f (x) = c, that f has a limit of c at x0 ∈ Ω

or x0 on the boundary of Ω, if for all ε > 0 there is δ > 0 such that | f (x)− c| < ε
for every x ∈ Ω such that 0 < |x − x0| < δ. Note that we do not require that this
hold at x = x0. This is the δ-ε definition of limit. We say that f is continuous at
x0 ∈ Ω if limx→x0

f (x) = f (x0).

If the domain of f is R then there are only two directions from which to ap-
proach a point x0 – from the left or from the right. In Rn there are many ways to
approach a point, and more than just the 2n ways along the coordinate directions.

1.3.2 Example. Let f be as in Example 1.2.3 and define

g(x) =

¨

f (x), x 6= 0

0, x = 0.

Let’s try x → x0 for a few different 1-dimensional approaches. Let

γ(s) = (x1(s), x2(s))

for the following choices of γ.
1. If γ(s) = (s, 0) then

lim
s→0

g(γ(s)) = lim
s→0

s2

s2
= 1.

2. If γ(s) = (0, s) then

lim
s→0

g(γ(s)) = lim
s→0

−s2

s2
= −1.

3. If γ(s) = (s, s) then

lim
s→0

g(γ(s)) = lim
s→0

0
2s2
= 0.

4. If γ(s) = (s cos s, s sin s) then lims→0 g(γ(s)) = lims→0 cos(2s) = 1.
5. Think of a function γ for which lims→0 g(γ(s)) does not exist.

1.3.3 Exercises.
1. Let γ(s) = (s cos( 1

s ), s sin( 1
s )) and s(0) = 0. Describe the path γ. Is is contin-

uous at s = 0? Yes, it is continuous at s = 0 because

lim
s→0
|γ(s)|= lim

s→0

Ç

s2 cos2( 1
s ), s2 sin2( 1

s ) = lim
s→0

s = 0= γ(0).

The path γ spirals around (0, 0), making infinitely many complete turns around
it before reaching zero.

2. What happens with f (x) = (x2
1 − x2

2)/(x
2
1 + x2

2) under s 7→ f (γ(s))? Does
lims→0 f (γ(s)) exist? The limit does not exist because f (γ(s)) = cos( 2

s ), which
is very badly behaved near s = 0.
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The key point is that 1-dimensional limits existing for various ways of taking x
to x0 (e.g. γ(s)→ x0 as s→ 0) do not imply that the limit exists according to the
Rn definition. Recall that if f : Ω1 → Ω2 and g : Ω2 → Rm then g ◦ f : Ω1 → Rm :
x 7→ g( f (x)) is the composition.

1.3.4 Theorem. If f is continuous at x0 and g is continuous at y0 = f (x0) then
g ◦ f is continuous at x0.

A similar statement, appropriately modified, holds for limits.

If lim
x→x0

f (x) = c and lim
y→c

g(y) = ` then lim
x→x0

g ◦ f (x) = `.

1.3.5 Corollary. If limx→x0
f (x) = c and γ : [0,ε]→ Ω is any path with values in

Ω such that lims→0 γ(s) = x0 then lims→0 f (γ(s)) exists and is equal to c.

Going back to Example 1.3.2, g is not continuous at x0 = 0 because the limit
limx→0 g(x) does not even exist by the corollary (because there are multiple dif-
ferent limits of g(γ(s)) for different choices of γ) and therefore there is no hope of
limx→0 g(x) = 0= g(0).

2 Differentiation of multi-dimensional functions

2.1 Best affine approximation and partial derivatives

Recall that, when f : R→ R is differentiable,

f ′(x0) = lim
x→x0

f (x)− f (x0)
x − x0

.

This implies that c = f ′(x0) is the unique number such that

lim
x→x0

�

�

�

�

f (x)− f (x0)− c(x − x0)
x − x0

�

�

�

�

= 0

That is, the best affine approximation of f at x0 is `x0
(x) := f (x0) + c(x − x0).

What should we do for f : Ω ⊆ Rn→ R? Could we use an affine approximation
to f ? This is related to the material in K§2.6 and K§2.7. Recall that a linear map
Rn → R is characterized by p ∈ Rn, namely x 7→ p · x is linear, and this gives all
linear maps. The “best” linear approximation for f at x0 had better at least match
at x0, i.e. we should take `x0

(x0) = f (x0). It follows that

`x0
(x) := f (x0) + p · (x − x0)

for some p ∈ Rn. But which one? The best approximation will correspond to the
p such that f (x)− `x0

(x) goes to zero “faster than” (x − x0) as x → x0. Our goal
is hence the unique p such that

lim
x→x0

| f (x)− ( f (x0) + p · (x − x0))|
|x − x0|

= 0. (1)



2.1. Best affine approximation and partial derivatives 6

But how do we do this? Note that x 7→ p · x is a linear map Rn→ R. To know
p, we need to know pi for i = 1, . . . , n. But p · ei = pi , so we need only look in the
directions of the canonical basis. Whence, for small h ∈ R,

`x0
(x0 + hei) = f (x0) + p · (x0 + hei − x0) = f (x0) + hpi ,

From the definition of the derivative, with x = x0 + hei ,

0= lim
x→x0

| f (x)− ( f (x0) + p · (x − x0))|
|x − x0|

= lim
h→0

| f (x0 + hei)− ( f (x0) + hp · ei)|
h

= lim
h→0

�

�

�

�

f (x0 + hei)− f (x0)
h

− pi

�

�

�

�

It follows that

pi = lim
h→0

f (x0 + hei)− f (x0)
h

This is the 1-dimensional derivative of the function g(h) := f (x0 + hei). Think of
g as the restriction of f to the 1-dimensional space x0 + span({ei}).

2.1.1 Theorem. If f has `x0
as its best linear approximation at x0 in the sense of

(1) then pi = limh→0
1
h ( f (x0 + hei)− f (x0)).

2.1.2 Definition. The partial derivative of f : Ω ⊆ Rn→ R at x0 in the x i compo-
nent is g ′(0), where g(h) := f (x0 + hei). It is denoted

∂ f
∂ x i
(x0) = lim

h→0

f (x0 + hei)− f (x0)
h

.

How to compute the partial derivative? The function g only records changes in
f the direction of ei , so from the point of view of g the x j for j 6= i are constants.
Apply the 1-dimensional rules assuming that x j for j 6= i are constant. All this
material “matches” the material in K§2.5, K§2.6, and K§2.7.

2.1.3 Example. If f (x) := x2
1 sin(x2)+ x1 x2+ x2

2 then ∂ f
∂ x1
= 2x1 sin(x2)+ x2 and

∂ f
∂ x2
= x2

1 cos(x2) + x1 + 2x2.

The best affine approximation to f : Ω ⊆ Rn → Rm can be represented by
an m × n matrix with respect to the canonical bases as follows. Note that f (x)
is a vector in Rm, so think of f = ( f1, . . . , fm)T , where fi : Ω → R. We require
`x0
(x) := f (x0) + A(x − x0), where

lim
x→x0

| f (x)− ( f (x0) + A(x − x0))|
|x − x0|

= 0. (2)
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If this holds then A is unique and A= (ai j)i=1,...,m, j=1,...,n, where ai j = [Aei] j is the
ith component of the vector Ae j ∈ Rm. To isolate ai j we perform the same basic
procedure as in the Rn→ R case, but applied to the ith entries of `x0

and f .

[ f (x0 + he j)− f (x0)− A(x0 + he j − x0)]i = [ f (x0 + he j)− f (x0)− hAe j]i
= fi(x0 + he j)− fi(x0)− [hAe j]i

But this gives exactly the partial derivative of fi in the x j direction, i.e.

ai j =
∂ fi

∂ x j
= lim

h→0

fi(x0 + he j)− fi(x0)

h

for i = 1, . . . , m and j = 1, . . . , n.

2.2 Linearization and the Jacobian matrix

We say that f : Ω ⊆ Rn → Rm is total differentiable or full differentiable at x0 if
there is an m× n matrix A such that (2) holds. We write D f (x0) = A. This matrix
is also known as the Jacobian of f at x0.

2.2.1 Theorem. If f is full differentiable at x0 then ∂ fi
∂ x j
(x0) exists and is equal to

[D f (x0)]i j , the (i j)th entry of A.

But when is A given by the partials?

2.2.2 Theorem. Let f : Ω ⊆ Rn→ Rm, x0 ∈ Ω, and ε > 0 be such that Bε(x0) ⊆ Ω.
If ∂ fi
∂ x j

all exist and are continuous on Bε(x0) then f is full differentiable at x0 and

[D f (x0)]i j =
∂ fi
∂ x j
(x0).

Note that | · |Rm controls the norms | · |R of each of the components of f ∈ Rm

and also of x ∈ Rn. So (2) is very strong. The information about fi(x0 + he j) as
functions R→ R is not enough to get the full derivative. But the extra requirement
that ∂ fi

∂ x j
exist and are continuous on a whole neighbourhood is enough.

2.2.3 Example. limx→0 cos( 1
x ) does not exist. If the limit did exists, say was c,

then c ∈ [−1,1] because that is the range of the function cosine. Suppose that
c 6= 1. Let ε := 1

2 |1− c| > 0. Then ε > 0 and we will show that there is no δ > 0
such that | cos( 1

x )− c| < ε for all |x | < δ. Let xn := 1
2πn . Then xn → 0 as n→∞

and

| cos( 1
xn
)− c|= | cos(2πn)− c|= |1− c|>

1
2
|1− c|= ε.

Therefore, no matter which δ > 0 we try, there is n large enough that |xn| < δ,
and | cos( 1

xn
) − c| > ε. Therefore c is not the limit, so either 1 is the limit or the

limit does not exist. But repeating the same argument with the assumption that
c 6= −1 and xn := 1

π(2n+1) shows that the limit cannot be 1, so the limit does not
exist.
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We have seen that the existence of a “best affine approximation” implies that
the partial derivatives exist. That is to say, given f : Ω ⊆ Rn → R and x0 ∈ Ω, if
there is a unique p ∈ Rn such that

lim
x→x0

| f (x)− f (x0)− p · (x − x0)|
|x − x0|

= 0.

(this is (1) again), then f has partial derivatives in all directions at x0. We have
seen that `x0

(x) := f (x0)+ p · (x − x0) is the best affine approximation to f at x0.
Functions f for which a best affine approximation exist are said to be differentiable.
Not all functions are differentiable.

Taking x = x0 + he j and plugging it into (1),

0= lim
x→x0

| f (x)− `x0
(x)|

|x − x0|

= lim
h→0

| f (x0 + he j)− f (x0)− p · (he j)|
|he j |

x − x0 = he j

= lim
h→0

| f (x0 + he j)− f (x0)− hp · e j |
|h|

|e j |= 1

= lim
h→0

�

�

�

�

f (x0 + he j)− f (x0)− hp · e j

h

�

�

�

�

ratio of real numbers

0= lim
h→0

f (x0 + he j)− f (x0)

h
− p · e j

p · e j = lim
h→0

f (x0 + he j)− f (x0)

h

This tells us both that the limit on the right exists and that it is equal to p · e j = p j .

We write D f (x0) = p and ∂ f
∂ x j
(x0) = p j . We call D f the gradient of f at x0 (but only

when f maps toR, in which case D f is an n-vector). The best affine approximation
to f at x0 can hence be rewritten as

`x0
(x) = f (x0) + D f (x0) · (x − x0)

= f (x0) +
∂ f
∂ x1
(x0)(x1 − x01) + · · ·+

∂ f
∂ xn
(x0)(xn − x0n).

2.2.4 Example. Is f (x) := |x |=
q

x2
1 + · · ·+ x2

n differentiable at x = 0? It is not,

because if it were then ∂ f
∂ x1
(0) would exist, but

�

�

�

�

f (0+ he1)− f (0)
h

�

�

�

�

=
p

h2

h
= ±1

where the ± depends on the sign of h. Therefore the limit as h→ 0 does not exist,
so the limit defining ∂ f

∂ x1
(0) does not exist. This implies that f is not differentiable.

Similarly, g(x) = x2
1 + |x2| is not differentiable at x = 0 because ∂ f

∂ x2
(0) does not

exist (though in this case ∂ f
∂ x1
(0) does exist).
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In which direction does f increase the fastest from f (x0)? Hint: first think
of which direction `x0

increases the fastest. Since f and `x0
are “very close” in a

neighbourhood of x0, the answers should be the same.
The tangent plane to the graph of f : Rn → R at x0 is the graph of the best

affine approximation `x0
. It is the unique hyperplane that touches the graph of f

at x0 and which satisfies error(x − x0)/|x − x0| → 0 as x → x0.

2.3 Rules of Differentiation

As with 1-dimensional derivatives, there are a few rules that the derivative satisfies.
1. If f : Ω ⊆ Rn→ Rm and c ∈ R then

D(c f )(x0) = cD f (x0).

2. If f , g : Ω→ R then

D(g f )(x0) = g(x0)D f (x0) + f (x0)Dg(x0).

3. If f , g : Ω→ Rm then

D( f + g)(x0) = D f (x0) + Dg(x0).

4. If g : Ω1 ⊆ R`→ Ω2 ⊆ Rm and f : Ω2→ Rn then

D( f ◦ g)(x0) = D f (g(x0))Dg(x0).

The last rule is the chain rule. It is one of the best reasons for using the “best affine
approximation” definition of the derivative.

g(x) = g(x0) + Dg(x0)(x − x0) + errg(x − x0)

f (g(x)) = f (g(x0)) + D f (g(x0))(g(x)− g(x0)) + err f (g(x)− g(x0))

= f (g(x0)) + D f (g(x0))[Dg(x0)(x − x0)
+ errg(x − x0)] + err f (g(x)− g(x0))

= f (g(x0)) + D f (g(x0))Dg(x0)(x − x0)
+ [D f (g(x0))errg(x − x0) + err f (g(x)− g(x0))]

Furthermore, because the errors in the best affine approximation go to zero faster
than |x − x0| as x → x0,

lim
x→x0

|D f (g(x0))errg(x − x0) + err f (g(x)− g(x0))|
|x − x0|

= lim
x→x0

|D f (g(x0))|
errg(x − x0)

|x − x0|
+ lim

x→x0

err f (g(x)− g(x0))

|g(x)− g(x0)|
|g(x)− g(x0)|
|x − x0|

= 0

Make the previous computation precise as an exercise. Note that we have used
the fact that g is continuous at x0 (to know that g(x)→ g(x0)) and also that g is
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differentiable at x0 (to know that the ratio |g(x)−g(x0)|/|x−x0| is bounded). This
shows that D f (g(x0))Dg(x0) is the correct matrix for the best affine approximation
of f ◦ g at x0. Check that the shapes are in fact correct for multiplying these
matrices together.

2.3.1 Exercise. Suppose f : Rn → R : x 7→ x + q · x . What is D f (x0) for any x0?
It is always q because f is affine, so it is its own best affine approximation. Think of
f (x) = (c + q · x0) + q · (x − x0).

3 Geometric applications

Given a direction v (so |v| = 1), how does f change at x0 in the straight line
through x0 in the direction v, i.e. in the affine space x0 + span({v})? This is a 1-
dimensional problem. Let g(s) = x0+sv and use the chain rule on the composition
f (g(s)). Since Dg(0) = v and f (g(0)) = f (x0), the derivative is D f (x0) · v. This
is the directional derivative of f at x0 in the direction v.

3.1 Curves and paths

Notation. C1(Ω) is the collection of functions f : Ω→ Rm such that D f (x) exists
and is continuous for all x ∈ Ω. Typically Ω is an open connected set, i.e. a domain.
Such functions are said to be continuously differentiable.

A path is a map γ : [a, b] → Rn. The terminology of continuity and differen-
tiability carry over from what we have been discussing for the past few weeks. We
will write γ′ := γ̇ := Dγ for paths, when appropriate, and we refer to this n-vector
as the velocity vector. curve is the image left behind after tracing a path. More
precisely, it is the image of a path, Γ = γ([a, b]) = {γ(t) : t ∈ [a, b]}. Note the
difference between γ and Γ .

We say that Γ is differentiable at x0 ∈ Γ if there exists a continuously differen-
tiable path γ : [a, b]→ Γ and t0 ∈ [a, b] such that both γ(t0) = x0 and γ′(t0) 6= 0.
The tangent line is the unique line with direction γ′(t0) and which touches (i.e. is
tangent to) Γ at x0.

3.1.1 Examples.
1. Let γ : [0,4π]→ R2 : t 7→ (t cos t, t sin t). The partial derivatives are

γ′1(t) = cos t − t sin t and γ′2(t) = sin t + t cos t,

which are both differentiable and never both zero. Indeed, the sum of their
squares is 1+ t2. Hence the image of this path is a differentiable curve.
[Insert sketch of the spiral.]

2. Consider now the path [−1,1]→ R2 : t 7→ (t4, t2). It is differentiable at all
t ∈ (−1,1), but the image curve Γ is not differentiable at zero. It has a cusp
at the origin.
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[Insert image. Note that γ2 =
p

|γ1|.]
To prove that the curve Γ is not differentiable at (0, 0), we must show

that any possible candidate γ : [a, b]→ Γ that is continuously differentiable
fails the requirement that γ′(t0) 6= 0. By “shifting”, we may always assume
without loss of generality that t0 = 0. Observe that all points x ∈ Γ satisfy
x2 =

p

|x1|. Therefore γ(t) = (c(t),
p

|c(t)|) for some c : [a, b] → R. We
are requiring that γ is continuously differentiable, so there is a best affine
approximation at zero, call it v = γ′(0), such that

0= lim
t→0

|γ(t)− γ(0)− v(t − 0)|
|t|

= lim
t→0

q

(c(t)− t v1)2 + (
p

|c(t)| − t v2)2

|t|

≥ lim
t→0

q

(
p

|c(t)| − t v2)2

|t|

= lim
t→0

|t|
�

�

�

p
|c(t)|
t − v2

�

�

�

|t|

= lim
t→0

�

�

�

�

p

|c(t)|
t

− v2

�

�

�

�

Therefore we may conclude

v2 = lim
t→0

p

|c(t)|
t

v2
2 = lim

t→0

|c(t)|
t2

x 7→ x2 is continuous

lim
t→0

t v2
2 = lim

t→0

|c(t)|
t

0= lim
t→0

|c(t)|
t

0= lim
t→0

|c(t)− 0|
t

Since γ is continuously differentiable, c′(0) exists, and by the limit above, it
must be zero. Can it be the case that c′(0) = 0 but (

p

|c(t)|)′(0) 6= 0? Again,
since γ is continuously differentiable,

p

|c(t)| is differentiable at t = 0. The
rest of the proof is an exercise.

3.2 Paths on surfaces

What is a surface? Intuitively, a surface is a 2-dimensional object inside of a 3-
dimensional space, e.g. a piece of paper in this room, the surface of a ball (a
sphere), etc. More precisely, S ⊆ Rn+1 is a level surface if it can be written as
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S = {x ∈ Rn+1 : F(x) = c}, where F : Rn+1 → R is continuously differentiable
and c is a fixed constant, and DF(x) 6= 0 for all x near S. In this case we say the
dimension of S is n. Note that F : Rn+1→ R actually describing an n-dimensional
surface is special. We must be careful with F , because not every such function
gives rise to an n-dimensional surface.

3.2.1 Examples.
1. Justification for DF 6= 0. Let

F(x) =

¨

0, |x | ≤ 1

(|x | − 1)2, |x |> 1.

Then F is continuously differentiable. (Check this carefully for |x |= 1.)
[Insert diagram of the 3-d picture of F .]
Note {x : F(x) = 0} = {x : |x | ≤ 1} is not “1-dimensional” in the usual

sense of the term. DF(x) = 0 for all x in this level set, which is why we
exclude this case.

2. Now let F(x) = |x |. Then DF(x) = x/|x | for all n 6= 0 and F is not differ-
entiable at zero. For c > 0, the level surface associated with F and c is the
circle of radius c when n= 2 and the sphere of radius c when n= 3.

3. If f : R2 → R then the graph of f is {x ∈ R3 : x3 = f (x1, x2)}. It can
be realized as a 2-dimensional surface by taking F : R3 → R with F(x) =
f (x1, x2)− x3 and c = 0. Note that DF = ( ∂ f

∂ x1
, ∂ f
∂ x2

,−1) is never zero. For
example, if f (x) = x2

1 − x2
2 then F(x) = x2

1 − x2
2 − x3.

4. Another way to find curves in R2 other than images of paths is level surfaces
of F : R2 → R, i.e. a 1-dimensional level surface is basically a curve. For
example, if F(x) = x2

1−s2
2 then the level surfaces are a tool for understanding

the graph of F . At c = 0 we have x2
1 − x2

2 = 0, so x1 = ±x2. For c = 1 we
get x2

1 − x2
2 = 1, a hyperbola, and for c = −1, we get x2

1 − x2
2 = −1, another

hyperbola.
[Insert diagram of level sets and of the 3-d picture.]

3.2.2 Example. Let γ : [0,1] → R3 : t 7→ (t cos(4πt), t sin(4πt),
p

1− t2), and
note that |γ(t)| = 1 for all t. This means that γ happens to always take values
on the sphere S = {x ∈ R3 : |x | = 1}. The path of γ starts at the north pole at
t = 0 and spirals down in an anti-clockwise direction until it reaches the equator
at t = 1 after making two full revolutions.

In general, if γ is a path on a level surface S = {x : F(x) = c} then, necessarily,
F(γ(t)) = c for every t in the domain of γ. A special case is a path on a graph
of a function f : Rn → R. Recall that the graph of f is an n-dimensional surface
in Rn+1. If γ : [a, b] → Rn+1 is on the graph of f then it must be the case that
γ(t) = (γ1(t), . . . ,γn(t), f (γ(t))), i.e. the (n+1)st component of γ is related to the
first n components by f .

What is the analog of the best affine approximation for surfaces? If the level
surface is the graph of a function f , then we have seen that the tangent plane at a



Higher derivatives and Taylor’s theorem 13

point x0 is exactly the graph of the best affine approximation of f at x0. Basically
all directional derivatives are encoded in the “slope” of the tangent plane.

We determined the partial derivatives by reducing to the 1-dimensional case.
For each direction ei , we consider the function gi(h) = f (x0 + hei), so that the
partial derivatives are given by ∂ f

∂ x i
(x0) = g ′(0). Note that gi is a path on the

graph of f that passes through x0! Furthermore, g ′(0) = D f (x0) · ei . This is good
material with which to formulate a definition. We say that the tangent plane to the
graph of f is the unique plane which touches the graph at (x0, f (x0)) and contains
the velocity vectors, γ̇i(0), of each of the paths γi(s) := (x0 + sei , f (x0 + sei)).

Now let S = {x ∈ Rn+1 : F(x) = c} be a level surface. We say that the tangent
plane (or tangent hyperplane) to S at x0 ∈ S is the unique n-dimensional plane that
contains x0 and x0+ γ̇(0) for every continuously differentiable path γ contained in
S with γ(0) = x0. Recall that γ is a path in S if γ : [a, b]→ Rn+1 and γ(t) ∈ S for all
t ∈ [a, b]. Equivalently, if F(γ(t)) = c for all t ∈ [a, b]. From this latter equation
(and the chain rule) we will be able to calculate the equation of the tangent plane.
Differentiating at t = 0,

0= DF(γ(0)) · γ̇(0) = DF(x0) · γ̇(0)

But how many choices are there for γ̇(0) as γ ranges over the collection of appro-
priate paths? The tangent plane should contain all the directions solving DF(x0) ·
p = 0, or equivalently and more precisely, the tangent plane is the affine space
x0 + (span({DF(x0)}))⊥. Yet otherwise said, x is in the tangent plane to S at
x0 ∈ S if and only if DF(x0) · (x − x0) = 0.

3.2.3 Example. Let S be the unit sphere inR3, S = {x ∈ R3 : |x |= 1}. The tangent
plane at (1,0, 0) is computed as follows. In this case F(x) = |x |, so (compute as
an exercise) DF(x) = x/|x |, and since x0 = (1,0, 0), DF(x0) = (1,0, 0).
[Insert diagram?]
The tangent plane is the unique plane perpendicular to (1, 0,0) containing

(1,0, 0). (It is a coincidence of the sphere that x0 = DF(x0).) More explicitly,
the tangent plane is {(1, s, t) : s, t ∈ R}.

4 Higher derivatives and Taylor’s theorem

4.1 Higher derivatives

In the 1-dimensional case, if f : R → R is smooth enough then f ′ : R → R and
the derivative operation can be repeated over and over. When f : Ω ⊆ Rn → R,
we compute D f via partial derivatives, which are each 1-dimensional derivatives.
If f is smooth enough, then ∂ f

∂ x i
is differentiable, so we can take further partial

derivatives. Unlike the 1-dimensional case, there is not a unique “second deriva-
tive”; there are n2 combinations of second partial derivatives of f . We write ∂ 2 f

∂ x j∂ x i

for the second partial derivative of f with respect to x i first and then with respect
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to x j . This notation can be extended in the obvious way to k partial derivatives
with respect to a list of k indices i1, . . . , ik (in that specific order):

∂ k f
∂ x ik · · ·∂ x i1

.

An obvious question is, “Does the order really matter?”

4.1.1 Example (Important warning). Let

f (x) =

(

x1 x2

�

x2
1−x2

2

x2
1+x2

2

�

, x 6= 0

0, x = 0.

Away from x = 0, f is nice and we can figure out the derivatives using the usual
rules.

∂ f
∂ x1

= · · · etc.

We will see when we fill in this example that, at some x0,

∂ 2 f
∂ x1∂ x2

6=
∂ 2 f

∂ x2∂ x1
.

“Mind blown.” —Avia

4.1.2 Theorem. If f : Ω ⊆ Rn→ R and both ∂ f
∂ x i

and ∂ f
∂ x j

are differentiable and if
∂ 2 f
∂ x i∂ x j

and ∂ 2 f
∂ x j∂ x i

both exist and are continuous then they are equal.

PROOF: The case Ω ⊆ R2 is the only important one for the main idea. Let x ∈ Ω
be fixed. We will show that ∂ 2 f

∂ x1∂ x2
(x) and ∂ 2 f

∂ x2∂ x1
(x) are equal to the limit of the

same quantity limy→0
S(y)
y1 y2

.
Assume that y is small enough that x + y ∈ Ω. Let

S(y) := f (x + y)− f (x1 + y1, x2)− f (x1, x2 + y2) + f (x).

We want to isolate two separate 1-dimensional function and apply the mean value
theorem for derivatives. Towards this goal, let

g(s) := f (s, x2 + y2)− f (s, x2) and h(s) := f (x1 + y1, s)− f (x1, s).

Then
g(x1 + y1)− g(x1) = S(y) = h(x2 + y2)− h(x2).

The mean value theorem applies, so there is x̄1 between x1 and x1 + y1 such that

S(y) = g(x1 + y1)− g(x1) = g ′( x̄1)y1 = y1

�

∂ f
∂ x1
( x̄1, x2 + y2)−

∂ f
∂ x1
( x̄1, x2)

�

.
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Apply it again, this time to the function s 7→ ∂ f
∂ x1
( x̄1, s), to obtain x̄2 between x2

and x2 + y2 such that

∂ f
∂ x1
( x̄1, x2 + y2)−

∂ f
∂ x1
( x̄1, x2) = y2

∂ 2 f
∂ x2∂ x1

( x̄1, x̄2).

Unravelling this, S(y) = y1 y2
∂ 2 f

∂ x2∂ x1
( x̄1, x̄2). Applying the same reasoning to h, it

can be shown that S(y) = y1 y2
∂ 2 f

∂ x1∂ x2
( x̂1, x̂2) for some x̂ i between x i and x i + yi

for i = 1,2. Now we appeal to the continuity of the second partial derivatives to
conclude

∂ 2 f
∂ x2∂ x1

(x1, x2) = lim
y→0

S(y)
y1 y2

=
∂ 2 f

∂ x1∂ x2
(x1, x2).

Note of course that x̄ i → x i and x̂ i → x i as yi → 0 for i = 1, 2. �

Notation. C k(Ω) := { f : Ω → R |all partials of f of order up to and including
k exist and are continuous}. Such functions are said to be k-times continuously
differentiable.

Recall from 1-dimensional calculus that if f is better than C1 then we can make
better than affine approximations to f . This holds for arbitrarily high orders if f
has that many derivatives. In particular, if f ∈ C k then there is a function Rk(x)
such that Rk(x)→ 0 as x → x0 and

f (x) = f (x0) + f ′(x0)(x − x0) +
1
2

f ′′(x0)(x − x0)
2 + . . .

+
1
k!

f (k)(x0)(x − x0)
k + Rk(x)(x − x0)

k.

How can we do this for f : Ω ⊆ Rn → R? For simplicity, let’s consider n = 2.
We should try to apply what we already know to the single variable functions
g1(s) := f (x0 + se1) and g2(s) := f (x0 + se2). Naively, we take the partials of gi
and add them up. Is is true that

f (x)≈ f (x0) +
∂ f
∂ x1
(x0)(x1 − x01) +

1
2
∂ 2 f
∂ x2

1

(x0)(x1 − x01)
2

+
∂ f
∂ x2
(x0)(x2 − x02) +

1
2
∂ 2 f
∂ x2

2

(x0)(x2 − x02)
2?

We are missing the cross terms! Obviously terms of the form x1 x2 will feature in
this approximation, in general. The proof of Theorem 4.1.2 tells us which extra
terms to include, namely ∂ 2 f

∂ x1∂ x2
(x0)x1 x2. We assume that f is nice enough that

the mixed partials are equal.
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In fact, for f ∈ C2, the second order approximation is

f (x)≈ f (x0) + D f (x0) · (x − x0) +
1
2
(x − x0)

T D2 f (x0) · (x − x0)

where D2 f (x0) =





∂ 2 f
∂ x2

1
(x0)

∂ 2 f
∂ x2∂ x1

(x0)
∂ 2 f

∂ x1∂ x2
(x0)

∂ 2 f
∂ x2

2
(x0)





Note that D2 f (x0) is a symmetric matrix.

4.1.3 Theorem (Taylor’s theorem for order 3). Let f ∈ C3(Ω) and x0 ∈ Ω be
given. There are functions Ri, j,k : Ω→ R, i, j, k = 1, . . . , n, such that Ri, j,k(x)→ 0
as x → x0 and

f (x) = f (x0) + D f (x0) · (x − x0) +
1
2
(x − x0) · D2 f (x0)(x − x0)

+
1
6

n
∑

i, j,k=1

∂ 3 f
∂ x i∂ x j∂ xk

(x0)(x i − x0i)(x j − x0 j)(xk − x0k)

+
1
6

n
∑

i, j,k=1

Ri, j,k(x)(x i − x0i)(x j − x0 j)(xk − x0k)

Aside on tangent spaces and tangent planes:
There is a key distinction between tangent spaces and tangent planes. Let

S = {x ∈ Rn+1 : F(x) = 0} be an n-dimensional surface in Rn+1. Recall that the
tangent space at x0 is T = ker(DF(x0)) = {p ∈ Rn+1 : DF(x0) · p = 0}. It is a linear
subspace of Rn+1 of codimension 1. By definition, DF(x0)/|DF(x0)| is a vector
of length 1 that is perpendicular to T . Note that T contains the velocity vectors
γ̇(0) for all paths γ with γ(0) = x0. But T most likely does not touch T at x0! The
tangent plane is the translation of the tangent space, x0+T = {v = x0+p : p ∈ T}.
[Insert diagram of generic S in R3 with the various planes.]
Why is DF(x0) perpendicular to the surface at x0? If γ is a path on S then

F(γ(s)) = 0 for all s (by definition), so D(F(γ(s))) = 0, and the chain rule implies
that, at s = 0, DF(γ(0)) · γ̇(0) = 0. Hence DF(x0) · γ̇(0) = 0, so every vector in the
tangent plane is perpendicular to DF(x0).

Consider the difference between the graph of f : Rn+1 → R and the level
surface associated with F . The tangent plane to the graph of f at x0 ∈ Rn is the
graph of x 7→ f (x0) + D f (x0) · (x − x0). The function that defines a level surface
that is the same as the graph of f is F(x) = f (x1, . . . , xn)− xn+1. For x0 ∈ Rn, the
corresponding point on S = {x ∈ Rn+1 : F(x) = 0} is (x0, f (x0)) ∈ Rn+1. Then
DF(x0, f (x0)) = (D f (x0),−1), so the equation defining the tangent plane T is

∂ f
∂ x1
(x0)p1 + · · ·+

∂ f
∂ xn
(x0)pn − pn+1 = 0.

This gives the same tangent plane.
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4.1.4 Examples.
1. Give a second order polynomial approximation to f (x) = sin(x1 x2) at x0 =
(1,π/2). Note that f is nice as it is the composition of smooth functions, so
we must calculate D f and D2 f .

D f (x) = (x2 cos(x1 x2), x1 cos(x1 x2))

D2 f (x) =
�

−x2
2 sin(x1 x2) cos(x1 x2)− x1 x2 sin(x1 x2)

cos(x1 x2)− x1 x2 sin(x1 x2) −x2
1 sin(x1 x2)

�

so D f (x0) = (0, 0) and

D2 f (x0) =
�

−π2/4 −π/2
−π/2 −1

�

.

Therefore

sin(x1 x2)≈ 1+
1
2

�

x1 − 1
x2 −π/2

�T �−π2/4 −π/2
−π/2 −1

��

x1 − 1
x2 −π/2

�

= 1−
π2

8
(x1 − 1)2 −

π

2
(x1 − 1)(x2 −π/2)−

1
2
(x2 −π/2)2

As long as we are will to admit a local error of order |x − x0|2 (small), f is
approximately equal to this quadratic in the neighbourhood of (1,π/2).

4.1.5 Example (Comments on Homework 3, Question 0.7).
Given f (x) = x ·Ax , find a path γ : [−1, 1]→ R3 such that g = f ◦γ attains a local
minimum at t0 = 1/2. To do this, compute the eigenvalues and eigenvectors of
A. As A is symmetric, there is a basis of R3 consisting of eigenvectors, {v1, v2, v3}.
Without loss of generality, assume that λ1 > 0. The easiest path will be γ(t) =
(t − t0)v1. In this case,

f (γ(t)) = (t − t0)v1 · A((t − t0)v1) = (t − t0)
2λ1|v1|2 > 0

for all t 6= t0, and it is zero at t = t0.

4.1.6 Example. Use the second order Taylor expansion to approximate

(3.98− 1)2

(5.97− 3)2
.
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To do this, we use f (x) = (x1 − 1)2/(x2 − 3)2, x0 = (4, 6), and x = (3.98, 5.97).
For the second order expansion, we need all partials up to second order.

∂ f
∂ x1

= 2(x1 − 1)(x2 − 3)−2

∂ f
∂ x2

= −2(x1 − 1)2(x2 − 3)−3

∂ 2 f
∂ x1∂ x2

=
∂ 2 f

∂ x2∂ x1
= −4(x1 − 1)(x2 − 3)−3

∂ 2 f
∂ x2

1

= 6(x1 − 1)(x2 − 3)−4

∂ 2 f
∂ x2

2

= 2(x2 − 3)−2

From these and the Taylor expansion,

f (x)≈ f (x0) + D f (x0) · (x − x0) +
1
2
(x − x0) · D2 f (x0)(x − x0)

= 1+
2
3
(−0.02)−

2
3
(−0.03) +

1
2

2
9
(−0.02)2 +

1
2

2
3
(−0.03)2

−
4
9
(−0.02)(−0.03)

= 1.00674

The exact value is 1.00675. Note that f (x) = polynomial+R(x), by Taylor’s theo-
rem, where R(x)/|x − x0|2→ 0 as x → x0. Therefore, for this example, we expect
the difference between f (x) and the approximation to be within C · 10−4.

4.1.7 Examples.
1. Evaluate limx→0

�

(1 + x1)x2 − 1
�

/
q

x2
1 + x2

2 . Plugging in gives the indeter-
minate form 0/0, so we must be more clever. Let f (x) = (1 + x1)x2 =
exp(x2 log(1+ x1)) and apply Taylor’s theorem at x0 = 0.

∂ f
∂ x1

=
x2

1+ x1
f (x)

∂ f
∂ x2

= log(1+ x1) f (x)

∂ 2 f
∂ x1∂ x2

=
∂ 2 f

∂ x2∂ x1
=

1
1+ x1

f (x) +
x2 log(1+ x1)

1+ x1
f (x)

∂ 2 f
∂ x2

1

=
−x2

(1+ x1)2
f (x) +

x2
2

1+ x1
f (x)

∂ 2 f
∂ x2

2

=
�

log(1+ x1)
�2

f (x)
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We obtain f (x) ≈ 1 + 0 + 1
2 x
�

0 1
1 0

�

x + R(x) = 1 + 1
2 x1 x2 + R(x), where

R(x)/|x |2→ 0 as x → 0. This implies that the limit is zero.
2. Evaluate limx→0

�

(1+ x1)x2 − (1+ x1 x2)
�

/(x2
1 + x2

2). For this example, the
denominator is |x |2, so the limit is still zero.

4.2 Extrema and the second derivative test

We say that f : Ω ⊆ Rn → R has a local minimum at x0 if f (x) ≥ x0 for all
x ∈ Bε(x0)∩Ω for some ε > 0. If f (x)> x0 (strict inequality) for x 6= x0 then we
say f has a strict local minimum at x0. We say that f has a (strict) local maximum
if − f has a (strict) local minimum. Let’s figure out what local minima of f say
about D f and D2 f . Note that we may always focus on minima without loss of
generality because differentiation is linear.

Assume first that f ∈ C1(Ω) and x0 ∈ Ω (so that it is an interior point).
Along the directions of the canonical basis, the 1-dimensional functions gi(s) :=
f (x0 + sei) all attain local minima at s = 0. This observation allows us to prove
the following theorem.

4.2.1 Theorem. If f ∈ C1(Ω) and x0 ∈ Ω is a local minimum of f then D f (x0) =
0.

PROOF: ∂ f
∂ x i
(x0) =

d
ds g(s)|s=0 = g ′i(0) = 0 for i = 1, . . . , n. �

If f ∈ C2 then the previous theorem applies, of course, and if f (x0) = 0 then
Taylor’s theorem tells us that

f (x) = f (x0) + D f (x0) +
1
2
(x − x0) · D2 f (x0)(x − x0) + R(x)

=
1
2
(x − x0) · D2 f (x0)(x − x0) + R(x)

The pure quadratic (x − x0) · D2 f (x0)(x − x0) has a local minimum at x0 if and
only if all of the eigenvalues of D2 f (x0) are all non-negative.

4.2.2 Theorem. If f ∈ C2(Ω) and x0 ∈ Ω is a local minimum of f then for all
w ∈ Rn, w · D2 f (x0)w ≥ 0. Yet otherwise said, D2 f (x0) is a non-negative definite
matrix.

We note that the condition, w · D2 f (x0)w ≥ 0 for all w ∈ Rn, is equivalent to
all of the eigenvalues of D2 f (x0) being non-negative.

PROOF: We wish to show the inequality w · D2 f (x0)w≥ 0 for each w. To this end,
let w ∈ Rn be a generic fixed element with w 6= 0. Because x0 was assumed to
be interior to Ω, there is some ε > 0 such that Bε(x0) ⊂ Ω. Thus for t ∈ R small



4.2. Extrema and the second derivative test 20

enough (smaller than ε/|w|), x0 + tw ∈ Ω and we can use Taylor’s Theorem with
x = x0 + tw

f (x0 + tw) = f (x0) + D f (x0) +
1
2
(tw) · D2 f (x0)(tw) + R(x0 + tw),

and recall the very useful fact that R(x0 + tw)/|tw|2→ 0 as |tw| → 0.
The inequality is nearly staring us in the face once we rearrange terms and use

the local minimum property. Indeed, for t small enough we have

0≤ f (x0 + tw)− f (x0)

and hence (recall D f (x0) = 0)

0≤ f (x0 + tw)− f (x0) =
1
2

t2w · D2 f (x0)w+ R(x0 + tw).

Again rearranging, we see that we have obtained the inequality we want but with
the remainder as a error:

−R(x0 + tw)/t2 ≤ w · D2 f (x0)w.

Taking the limit as t → 0 and using the property of the remainder function, we
conclude

0≤ w · D2 f (x0)w.

Since w was generic we conclude the theorem. �

Now we ask a slightly different question. We know that a local minimum forces
a sign on the matrix D2 f . However, can we use information about D2 f to deter-
mine if a given point is a local minimum? The answer is yes.

4.2.3 Theorem. If x0 ∈ Ω (i.e. x0 is an interior point of Ω), D f (x0) = 0, and for
all w ∈ Rn, w · D2 f (x0)w> 0, then f has a strict local minimum at x0.

4.2.4 Definition. We say that f ∈ C2(Ω) has a saddle point at x0 ∈ Ω if D f (x0) = 0
and D2 f (x0) has at least one positive and one negative eigenvalue.

Saddle points are named for the simplest saddle point, the one at the origin of
the graph of f (x) = x2

1 − x2
2 , which looks like a saddle.

4.2.5 Theorem. If x0 ∈ Ω (i.e. x0 is an interior point of Ω), D f (x0) = 0, and
D2 f (x0) has at least one positive and one negative eigenvalue, then f has neither
a local minimum nor a local maximum at x0.

PROOF (SKETCH): Let v− and v+ be eigenvectors associated with eigenvalues λ− <
0 and λ+ > 0, respectively. Use Taylor’s theorem to investigate f (x0 + t v−) and
f (x0+ t v+). The argument from last time gives a strict local minimum/maximum
for these two functions, implying that f has neither a minimum nor a maximum
at x0. �
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Remark.
1. If f has a local minimum at x0 then D f (x0) = 0 and D2 f (x0)≥ 0.
2. If D f (x0) = 0 and D2 f (x0)> 0 then x0 is a strict local minimum.
3. If f has a strict local minimum at x0 then it is not necessarily the case that

D f 2(x0)> 0, i.e. there may be w 6= 0 such that w · D2 f (x0)w= 0.
4. If D2 f (x0) has eigenvalues of differing signs then x0 is neither a local mini-

mum nor a local maximum.

4.2.6 Examples.
1. Let f (x) = ex2

1 e−x2
2 . Where can f has a local minimum? Can f ever have a

strict local minimum? Does f have a global minimum?
We calculate D f (x) = (2x1,−2x2) f (x) and

D2 f (x) =
�

2+ 4x2
1 −4x1 x2

−4x1 x2 −2+ 4x2
2

�

f (x).

D f (x) = 0 if and only if x = 0, so the only possible point at which there
can be a minimum is x = 0. At this point, D f 2(0) =

�

2 0
0 −2

�

, which has
eigenvalues ±2. Therefore f does not have a local minimum (or maximum)
at x = 0. It is not hard to see that f does not attain a global minimum.

2. Let f (x) = ex2
1 (1 − e−x2

2 ). Where can f has a local minimum? Can f ever
have a strict local minimum? Does f have a global minimum?

Again, D f (x) = (2x1ex2
1 (1− e−x2

2 ),−2x2ex2
1 e−x2

2 ) and

D2 f (x) =

�

(2+ 4x2
1)e

x2
1 (1− e−x2

2 ) 4x1 x2ex2
1 e−x2

2

4x1 x2ex2
1 e−x2

2 (2− 4x2
2)e

x2
1 e−x2

2

�

.

Now D f (x) = 0 implies x2 = 0, but x1 can be anything.

D2 f (x1, 0) =

�

0 0
0 2ex2

1

�

≥ 0

for any x1, so all points on the line x2 = 0 are local minima. None of these
local minima are strict. Finally, f has a global minimum value of 0, which is
attained at all points on the line x2 = 0.

3. For f (x) = x4
1 + x4

2 , D2 f (0) = 0, but f has a strict local minimum at x = 0.

4.3 Constrained extrema and Lagrange multipliers

Going back to 1-dimensional calculus, to solve the problem of finding the mini-
mizer x ∈ [a, b] of f : [a, b]→ R, we usually go through the following process:

1. Find all solutions to f ′(x) = 0 in (a, b) (the critical points).
2. Check which solutions of f ′(x) = 0 have f ′′(x)≥ 0. (This step is optional.)
3. Compare the values of f (x) for all x obtained and also x = a, b. The smallest

gives the minimizer.
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The points a and b are the boundary points of the set [a, b]. In higher dimensions
the boundaries are much more interesting and delicate. For Ω ⊆ Rn, the boundary
is ∂Ω := {x ∈ Rn : for all ε > 0, Bε(x)∩Ω 6=∅ and 6= Bε(x)}.

In the multi-dimensional settings, given a domain Ω and f : Ω → R, we
are concerned with finding the minimizer for the problem minx∈Ω f (x). If Ω is
bounded then Ω is compact, so the minimum value is achieved for some x0 ∈ Ω,
i.e. f (x0) = minx∈Ω f (x). As before, we must check critical points and boundary
points. Unlike in the 1-dimensional setting, the boundary is not simply two points;
it is a whole curve!

For many (actually all) of our examples, Ω = {x ∈ Rn : F(x) ≤ 0} for some
function F : Rn → R. In fact, taking F(x) to be the (signed) distance from x to
the boundary ∂Ω will do. Such Fs are not unique. Finding the minimum over the
boundary is now reduced to finding the minimum of f on the set ∂Ω = {x ∈ Rn :
F(x) = 0}, which leads to constrained optimization.

Suppose that the minimum value of f over Ω occurs at x0 ∈ ∂Ω. If γ : [a, b]→
∂Ω is a path in the boundary with γ(0) = x0, then t 7→ f (γ(t)) has a minimum
value of f (x0) at t = 0. Therefore it’s derivative with respect to t at t = 0 is
zero. Hence by the chain rule, 0= D f (x0) · γ̇(0), and this works for any path. We
already know that γ̇(0) is perpendicular to DF(x0) for every path in ∂Ω. If the
tangent space has codimension one (i.e. if Ω ⊆ Rn has “full dimension”) then it
must be the case that D f (x0) and DF(x0) are parallel! Therefore there is λ ∈ R
such that D f (x0) = λDF(x0). Rephrasing, if x0 is a minimizer of f on ∂Ω then
there must exist some λ ∈ R such that D f (x0) = λDF(x0). After introducing
the new variable λ, there are n + 1 unknowns, and the equality of vectors is n
equations. But F(x0) = 0 (the fact that x0 ∈ ∂Ω) gives another equation. Thus
there is a hope of finding solutions! This is the method of the Lagrange multiplier.

1. Find all solutions to D f (x0) = 0 for x0 ∈ Ω (the critical points).
2. Check which solutions of D f (x0) = 0 have D2 f (x0) ≥ 0. (This step is op-

tional.)
3. Solve for x0 and λ with D f (x0) = λDF(x0) and F(x0) = 0.
4. Compare the values of f (x0) for all x0 obtained. The smallest gives the

minimizer.

4.3.1 Examples.
1. Let f (x) = x2

1 − x2
2 and Ω = B1(0). Then Ω = {x : |x |2 − 1 ≤ 0} and

D f (x) = (2x1,−2x2).
[Insert image.]
D f (x) = 0 implies that x = 0 ∈ Ω, and this is the only critical point. The

system of equations obtained by introducing the Lagrange multiplier is

2x1 = λ2x1

−2x2 = λ2x2

0= x2
1 + x2

2 − 1

If x1 6= 0 then λ = 1 and hence x2 = 0 and x1 = ±1. Similarly, if x2 6= 0
then λ = −1 and hence x1 = 0 and x2 = ±1. There are hence five points
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to compare, (0,0), (±1,0), and (0,±1). The minimum of −1 occurs at both
(0,±1).

2. Let f (x) = x1 x2 and Ω= B1(0). Then D f (x) = (x2, x1), so x = 0 is the only
critical point in Ω. The equations resulting from introducing the Lagrange
multiplier are

x2 = λ2x1

x1 = λ2x2

0= x2
1 + x2

2 − 1.

It follows that λ2 = 1
4 since x1 and x2 cannot both be zero. Therefore λ =

± 1
2 , so x1 = ±x2, and hence (± 1p

2
,± 1p

2
) are the four solutions. Of the five

possibilities (one critical point and four points on the boundary of Ω), the
minimum value is − 1

2 , which occurs at ( 1p
2
,− 1p

2
) and (− 1p

2
, 1p

2
).

3. Let Γ = {(t, t+1) : t ∈ R}, a line in R2, and let f (x) = x2
1 + x2

2 . Show that f
does not attain a maximum value on Γ and compute the minimum value of f
on Γ . Recognize that Γ is the boundary of the region {x ∈ R2 : x1+1− x2 ≤
0}. To find the max/min of f on Γ we use a Lagrange multiplier.

2x1 = λ(1)
2x2 = λ(−1)

0= x1 + 1− x2

Therefore λ = −1, x1 = 1/2, and x2 = −1/2. So (1/2,−1/2) is the only
possible critical point of f on Γ . The value of f at this point is 1/2, and it is
clear that f can take larger values than this on Γ (e.g. f (0,1) = 1 > 1/2).
Therefore this point is the minimum, and there is no maximum.

5 Multi-dimensional integrals

Continuing our quest to extend all of the ideas from 1-dimensional calculus to

multi-dimensional calculus, we turn to integrals. The integral,
∫ b

a f (x) d x , of a
continuous function f : [a, b]→ R can be defined to be the (signed) area between
graph of f , {(x , y) : y = f (x)} and the x-axis.

The obvious analog for f : Ω ⊆ Rn → R is the “volume” of the region lying
between the hyperplane Rn, embedded in Rn+1 as {xn+1 = 0}, and the graph of f ,
{x ∈ Rn+1 : xn+1 = f (x1, . . . , xn)}. When n = 2 this can be visualized and corre-
sponds to the usual idea of (signed) volume. For n> 2 this generalizes volume.

5.1 Double integrals

5.1.1 Example. The simplest case has Ω= [a, b]× [c, d], a rectangle, and f (x) =
α, a constant. The region between the x1-x2 plane and the graph of f is the
rectangular prism with volume α(b− a)(d − c).
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5.1.2 Example. Let Ω= [0,1]× [−1,1] and f (x) = x2
1 + x2

2 .
[Insert diagram.]
Consider “slices” of the volume obtained by holding x1 constant. When x1 =

s ∈ [0,1] is held fixed, the height of the curve on the corresponding slice is given
by the function g(x2) = s2 + x2

2 . The area of this slice is hence

∫ 1

−1

g(x2) d x2 =

∫ 1

−1

(s2 + x2
2) d x2 = 2s2 +

2
3

.

If we then “add up” (i.e. integrate) over all slices, we can calculate the total volume
to be

∫ 1

0

�

2x2
1 +

2
3

�

d x1 =
2
3
+

2
3
=

4
3

.

We can write this method succinctly as

∫ 1

0

∫ 1

−1

x2
1 + x2

2 d x2d x1 =
4
3

,

where we integrate first with respect to x2 and then with respect to x1. Would we
have obtained the same answer if we integrated with respect to x1 first?

For a general volume in R3, Cavalieri’s principle of volume says that volume
is equal to the integral of cross-sectional area, i.e. vol =

∫

area(s) ds, where s
parameterizes the cross-sectional area. This principle works, of course, for signed
area as well.

When Ω = [a, b] × [c, d] is a rectangle, the integral of a function f : Ω → R
may be computed as

∫ b

a

∫ d

c

f (x1, x2) d x2d x1,

since, as a function of x1, the cross-sectional area is given by
∫ d

c f (x1, x2) d x2. We
will write

∫∫

Ω
f (x) dA for this double integral of a continuous function f : Ω→ R.

When written with explicit bounds, it is referred to as an iterated integral.

5.1.3 Theorem. If Ω = [a, b] × [c, d] and f : Ω → R is continuous then both
∫ b

a

�∫ d

c f (x1, x2) d x2

�

d x1 and
∫ d

c

�∫ b

a f (x1, x2) d x1

�

d x2 exist and they are equal
to each other. In this case we say that the double integral,

∫∫

Ω
f (x) dA, exists and

is equal to the common value of the iterated integrals.

5.1.4 Example. Let Ω= [0,π/2]2 and f (x) = cos(x1) sin(x2).
[Insert image.]



5.1. Double integrals 25

Using the theorem, since f is a continuous function,

∫∫

Ω

f dA=

∫
π
2

0

∫
π
2

0

cos(x1) sin(x2) d x2d x1

=

∫
π
2

0

sin(x2) d x2

∫
π
2

0

cos(x1) d x1

= 1 · 1= 1

5.1.5 Example. Let Ω be a metal plate sitting in the x-y plane as [0, 2]× [0,1].
If Ω has a non-constant density of mass modelled by ρ(x , y) = yex y g/cm2, then
what is the total mass of Ω? The usual rule of “mass= density×area” only applies
when the density is constant. Note that ρ is continuous, so for very small sub-
rectangles it is approximately constant. Mass is additive, so we may compute the
Riemann sums and take the limit to obtain that the mass is the integral of density.

mass=

∫∫

Ω

ρ(x , y) d xd y

=

∫ 1

0

∫ 2

0

yex y d xd y

=

∫ 1

0

(e2y − 1) d y

=
1
2

e2 −
3
2

To compute the integral over regions that are not necessarily rectangular, we
appeal to Cavalieri’s principle. Suppose Ω = {(x , y) ∈ R2 : ϕ1(x) ≤ y ≤ ϕ2(x)} is
the region between two graphs (we say that Ω is a region of type I). Then

∫∫

Ω

f (x , y) dA=

∫ b

a

∫ ϕ2(x)

ϕ1(x)
f (x , y) d yd x .

There should be nothing special about this particular orientation. If we can write
Ω= {(x , y) ∈ R2 :ψ1(y)≤ x ≤ψ2(y)} then Ω is a region of type II and

∫∫

Ω

f (x , y) dA=

∫ b

a

∫ ψ2(y)

ψ1(y)
f (x , y) d xd y.

There are regions that are neither type I nor type II, and it is a bit of an art to
decompose them into pieces over which the integral can be computed.

5.1.6 Examples.
1. Let f (x , y) = x + y and Ω= {(x , y) : 0≤ x ≤ 1/2,0≤ y ≤ x2}.

[Insert diagram, including coloured lines in both directions.]



5.2. Triple integrals 26

This region is of both type I (as given) and type II, which can be seen by
noting Ω= {(x , y) : 0≤ y ≤ 1/4,

p
y ≤ x ≤ 1/2}. Hence

∫∫

Ω

f dA=

∫
1
2

0

∫ x2

0

x + y d yd x =

∫
1
2

0

x3 +
1
2

x4 d x

=
3

160
=

∫
1
4

0

∫
1
2

p
y

x + y d xd y

2. Evaluate
∫ 1

0

∫ x2

x3 x y d yd x .
[Insert diagram of Ω.]

∫ 1

0

∫ x2

x3

x y d yd x =

∫ 1

0

1
2

x5 −
1
2

x7 d x =
1

48

3. As a type II integral, the above integral may be written
∫ 1

0

∫ 3py
p

y x y d xd y .

5.2 Triple integrals

Consider two point objects Pi in R3 with masses mi and locations (x i , yi , zi), for
i = 1,2. Then the center of mass of the two points is the weighted average of the
positions,

(x , y , z) =
1

m1 +m2
(m1 x1 +m2 x2, m1 y1 +m2 y2, m1z1 +m2z2).

With n points the formulae are analogous, e.g.

x =
m1 x1 + · · ·+mn xn

m1 + · · ·+mn
.

If you had a rectangular prism Ω= [a, b]× [c, d]× [e, f ] in R3 with non-constant
mass density ρ : Ω → R then where is its centre of mass? If ρ is “nice enough”
(e.g. continuous) then we can decompose each interval into N small pieces, hence
decomposingΩ into N3 small cubes, over which ρ is approximately constant. Over
each small rectangle the mass is approximately the volume times the (nearly) con-
stant density. The centre of mass of Ω is then the weighted sum of the N3 small
rectangles. In symbols,

x ≈
1

total mass

N
∑

i, j,k=1

x iρ(x i , y j , zk)∆x i∆y j∆zk

≈

∑N
i, j,k=1 x iρ(x i , y j , zk)∆x i∆y j∆zk
∑N

i, j,k=1ρ(x i , y j , zk)∆x i∆y j∆zk

→

∫∫∫

Ω
xρ(x , y, z)dV
∫∫∫

Ω
ρdV

as N →∞.
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5.2.1 Definition. Let Ω = [a, b] × [c, d] × [e, f ] and ρ : Ω → R be given. Fix
x1, . . . , xN , y1, . . . , yN , z1, . . . , zN be given and

SN :=
N
∑

i, j,k=1

ρ(x∗i , y∗j , z∗k)∆x i∆y j∆zk

where x∗i ∈ [x i−1, x i], y∗j ∈ [y j−1, y j], and z∗k ∈ [zk−1, zk]. If SN has the same limit
as N →∞ and ∆x i ,∆y j ,∆zk → 0 which is independent of the choice of x∗i , y∗j ,
and z∗k then we say that ρ is Riemann integrable. In this case the limit is denoted
∫∫∫

Ω
ρ dV =

∫∫∫

Ω
ρ d xd ydz, or with any other permutation of the variables.

The integral can be computed as any of the six ways of permuting the interated
integrals, e.g.

∫∫∫

Ω

ρ dV =

∫ b

a

∫ d

c

∫ f

e

ρ(x , y, z) dzd yd x

When ρ is Riemann integral all choices of permutation give the same result.
Moving to more general domains, we say that Ω is elementary region if one

variable is between two functions of the other two, one of the remaining variables is
between two functions of the other, and the last is between constants. For example,

Ω= {(x , y, z) :ψ1(x , y)≤ z ≤ψ2(x , y),ϕ1(x)≤ y ≤ ϕ2(x), a ≤ x ≤ b}

[Insert diagrams of two and three dimensional cases.]
For that Ω, for example, we would then be able to compute

∫∫∫

Ω

ρ dV =

∫ b

a

∫ ϕ2(x)

ϕ1(x)

∫ ψ2(x ,y)

ψ1(x ,y)
ρ(x , y, z) dzd yd x .

5.2.2 Examples.
1. Let B = {x ∈ R3 : |x | ≤ 1} be the ball in R3. It is an elementary region

because it can be written “inside out” as

−
Æ

1− x2 − y2 ≤ z ≤
Æ

1− x2 − y2,

−
p

1− x2 ≤ y ≤
p

1− x2,

−1≤ x ≤ 1.

2. Compute the volume of the ball using a triple integral. If we use a constant
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mass-density of 1 then the volume equals the mass. Hence

volume=

∫∫∫

B

1 dV

=

∫ 1

−1

∫

p
1−x2

−
p

1−x2

∫

p
1−x2−y2

−
p

1−x2−y2

1 dzd yd x

=

∫ 1

−1

∫

p
1−x2

−
p

1−x2

2
Æ

1− x2 − y2 d yd x

=

∫ 1

−1

∫

p
1−x2

−
p

1−x2

2

r

p

1− x2
2
− y2 d yd x

=

∫ 1

−1

2
1
2
π(1− x2) d x area of half-circle

=
4π
3

3. Let Ω be the region bounded by x = 0, y = 0, z = 2, and z = x2 + y2 in the
first octant. Evaluate

∫∫∫

Ω
x dV .

[Insert diagram of Ω.]
Clearly Ω= {x ≥ 0, y ≥ 0, x2 + y2 ≤ z ≤ 2}. Hence

∫∫∫

Ω

xdV =

∫

p
2

0

∫

p
2−x2

0

∫ 2

x2+y2

x dzd yd x

=

∫

p
2

0

x

∫

p
2−x2

0

2− x2 − y2 d yd x

=

∫

p
2

0

x
�

(2− x2)
p

2− x2 −
1
3

p

2− x2
3
�

d x

=

∫

p
2

0

4
3

x(2− x2)3/2 d x =
8
p

2
15

4. Evaluate the same integral with d x first. Rewrite Ω “inside out” as {0≤ z ≤
2,0≤ y ≤

p
z, 0≤ x ≤

p

z − y2}.
∫∫∫

Ω

xdV =

∫ 2

0

∫

p
z

0

∫

p
z−y2

0

x d xd ydz

=

∫ 2

0

∫

p
z

0

1
2
(z − y2) d ydz

=

∫ 2

0

1
3

z3/2 dz =
8
p

2
15
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5.3 Riemann sums

As in the 1-dimensional setting, we will follow the course pioneered by Riemann
and divide the domain, Ω, into many little rectangles and construct the integral as
a limit of “Riemann sums.” For now we will restrict ourselves to rectangles.

More formally, we can define the multiple integral as a limit of “Riemann sums”
of the following form. Suppose Ω is a rectangle [a1, b1]× · · · × [an, bn]. Partition
each interval [ai , bi] into N small sub-intervals of length (bi − ai)/N with points

x k
i := a1 +

k(bi − ai)
N

for k = 0, . . . , N .
[Insert image, same one as in the previous example, with sub-rectangles.]
Suppose f : Ω → R is continuous. For any 0 ≤ k1, . . . , kn ≤ N , volume lying

over the small sub-rectangle

[x k1
1 , x k1+1

1 ]× · · · × [x kn
n , x kn+1

n ]

is approximated well by

f (ck1,...,kn)∆x k1
1 · · ·∆x kn

n = f (ck1,...,kn)
b1 − a1

N
· · ·

bn − an

N
,

where ck1,...,kn is any point inside that rectangle. The Riemann sum is then

S(N) =
N−1
∑

k1,...,kn=0

f (ck1,...,kn)
(b1 − a1) · · · (bn − an)

N n
.

If it converges then we define
∫

Ω
f (x) d x to be equal to the limit.

Note that the same reasoning can be applied (with care) to functions f that
are defined piece-wise to be continuous on a finite number of sub-regions. The
integral is the sum of the integrals over the individual pieces.

The following three questions need to be addressed.
1. Over which Ω can we integrate “integrable” functions f ?
2. Which f are Riemann integrable and which are not?
3. What are the properties of

∫

Ω
f dA?

So far we know that it is possible to integrate continuous functions over finite
unions of sets of type I and type II (and in particular, rectangles).

5.3.1 Properties of the multiple integral.
1. If f is continuous then

∫

Ω
f dA exists.

2. If Ω= Ω1 ∪Ω2 and Ω1 and Ω2 intersect only in their boundaries then
∫

Ω

f dA=

∫

Ω1

f dA+

∫

Ω2

f dA.

3. If f1 ≤ f2 on Ω then
∫

Ω
f1 dA≤

∫

Ω
f2 dA.
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4. If f ≡ α is constant then
∫

Ω
f dA= αarea(Ω).

5. The map f 7→
∫

Ω
f dA is a linear map on the space of integrable functions.

6.
�

�

∫

Ω
f dA

�

�≤
∫

Ω
| f | dA.

Recall that for most of this class we have been concerned with domains, which
are open, connected sets. We now restrict ourselves further to those domains
whose boundaries can be realized as a finite union of smooth level surfaces. Using
the same construction as in the rectangle case, it can be shown that if f is dis-
continuous only on a finite union of smooth level surfaces, then the integral of f
can be shown to exist. What we will do, given f : Ω→ R, where Ω is nice in the
above sense, is extend f to f̄ on a rectangle containing Ω and use the previous
construction. We should clearly take f̄ ≡ 0 outside of Ω, and f̄ = f inside Ω. Note
that f̄ is generally discontinuous even if f is continuous on Ω. We hence define f
to be Riemann integrable if

∫

R f̄ dA exists for all rectangles R ⊇ Ω and f̄ extending
f to R in the way described. All this said, we will typically work with regions that
can be recognized as or decomposed as a finite union of regions of type I or type
II.

5.4 Changes of coordinates

Evaluate
∫∫

Ω
log(x2 + y2) dA where Ω is the region in the first quadrant bounded

between the circles of radius 1 and 2. Clearly polar coordinates are the way to go.
Let x = r cosθ and y = r sinθ , and we will be able to write

∫∫

Ω

log(x2 + y2)dA=

∫∫

Ω̃

log(r2)dA.

It is clear that Ω̃= [1, 2]× [0,π/2], but the question is, how does dA change?
A change of coordinates is a smooth, invertible function F : Rk → Rk with

smooth inverse. Suppose F : Ω̃→ Ω, where Ω̃ is to be thought of as the domain of
the “u-coordinates” and Ω is the domain of the “x-coordinates.”
[Insert diagram.]

∫

Ω

f (x)d x =

∫

Ω̃

f (F(u))(???)du

When F is linear and Ω̃ is a rectangle, Ω = F(Ω̃) is a parallelepiped. If F(u) = Au
for some invertible matrix A then the volume of Ω is det(A) times the volume of Ω̃.

5.5 Polar coordinates

Lecture Friday was missed by Chris because Russell didn’t tell him it was on.
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5.6 Spherical Coordinates

F(ρ,θ ,ϕ) = (ρ sinθ cosϕ,ρ sinϕ sinθ ,ρ cosϕ)
∫∫∫

Ω

f (x , y, z)d xd ydz =

∫∫∫

Ω̃

f (F(ρ,θ ,ϕ))|det(DF)|dρdϕdθ

det(DF) = ρ2 sinϕ

5.6.1 Examples.
1. Compute the volume of the ball of radius R in R2 via spherical coordinates.

Note that we have done this in Cartesian coordinates already.
∫∫∫

BR(0)

dV =

∫ 2π

0

∫ π

0

∫ R

0

ρ2 sinϕ dρdϕdθ

=

∫ 2π

0

∫ π

0

sinϕ
1
3

R3 dϕdθ

=

∫ 2π

0

2
3

R3 dθ =
4π
3

R3

2. Compute.
∫∫∫

B1(0)

e(x
2+y2+z2)3/2 dV =

∫ 2π

0

∫ π

0

∫ 1

0

eρ
3
ρ2 sinϕ dρdϕdθ

=

∫ 2π

0

∫ π

0

e− 1
3

sinϕ dϕdθ

=
4π
3
(e− 1)

3. Compute the moment of inertia about the z-axis of the region Ω bounded by
z = x2 + y2 and x2 + y2 = b2 and z ≥ 0 with constant density ρ.

Iz =

∫∫∫

Ω

(density)(distance to z-axis) dV

=

∫∫∫

Ω

ρ(x2 + y2) d xd ydz

= ρ

∫ 2π

0

∫ b

0

∫ r2

0

r2r dzdrdθ

= ρ

∫ 2π

0

∫ b

0

r5 drdθ

= ρ

∫ 2π

0

1
6

r6 dθ =
πρb6

3
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Multiple integrals are contained in Kaplan, chapter 4. Chapter 5 of Kaplan
contains all of the vector calculus that we will cover in this course, including line,
path, and surface integrals.

6 Integrals over paths and surfaces

6.1 Line and path integrals

To motivate integrals along paths, consider how we would calculate the total mass
of a long thin wire with non-constant density, or the total work done by a force
along a trajectory. In both cases we want to integrate along a path γ : [a, b]→ R3.
Let Γγ denote the corresponding curve in R3. For the mass calculation, Γγ is the
wire, with some density function ρ : R3 → R, and for the work calculation, γ is
the path of the object being acted upon by a force F : R3→ R3.

In both cases, Γγ may be very complicated. We can approximate it with Γ̃N , an
N -segment piecewise affine approximation to Γγ by connecting, via straight line
segments, a sequence of points x i ∈ Γγ. Say x i = γ(t i) for time points a = t0 <
t1 < · · · < tN = b. If γ and ρ are nice enough and ∆t i is small enough, we can
write the mass of the ith segment as

mi ≈ ρ(γ(t∗i ))|γ(t i)− γ(t i−1)|.

Therefore

mass≈
N
∑

i=1

ρ(γ(t∗i ))|γ(t i)− γ(t i−1)|.

In the case of work, by summing the work done over each small straight line seg-
ment,

work≈
N
∑

i=1

F(γ(t∗i )) · (γ(t i)− γ(t i−1)).

When Γγ is C1, so γ ∈ C1([a, b];R), we can approximate via Taylor’s theorem

γ(t i) = γ(t i−1) + γ̇(t i)(t i − t i−1) + err(t i − t i−1)

where err(t i − t i−1)/|t i − t i−1| → 0 as |t i − t i−1| → 0. Therefore

mass≈
N
∑

i=1

ρ(γ(t∗i ))|γ̇(t i)|∆t i +ρ(γ(t
∗
i ))

err(∆t i)
∆t i

∆t i

→
∫ b

a

ρ(γ(t))|γ̇(t)|d t as ∆t → 0.

since the part involving the error converges to zero. Similarly, the work can be
shown to be

work=

∫ b

a

F(γ(t)) · γ̇(t) d t
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6.1.1 Definition. The path integral of ρ along Γγ is

∫

Γγ

ρ ds :=

∫ b

a

ρ(γ(t))|γ̇(t)| d t.

The line integral of F along Γγ is

∫

Γγ

F · ds :=

∫ b

a

F(γ(t)) · γ̇(t) d t.

Remark. In R3 we can think of γ(t) = (x(t), y(t), z(t)). The “differential” of γ is
given by ẋ = d x

d t , ẏ = d y
d t , and ż = dz

d t . Thus “γ̇(t) d t = d x + d y + dz” where the
latter needs to be interpreted as a vector quantity. In particular, d x , d y , and dz
should be thought of as the standard basis in the vector space of differential forms.
We will hence sometimes write F · ds= F1d x + F2d y + F3dz.

6.1.2 Examples.
1. Compute

∫

Γγ
cos(z)d x + ex d y + e y dz where γ(t) = (1, t, et) for t ∈ [0, 2π].

Here F(u) = (cos(u3), eu1 , eu2) and γ̇(t) = (0,1, et), so

∫

Γγ

F · ds=

∫ 2π

0

0+ e1 + e2t d t = 2πe+
1
2
(e4π − 1)

2. Let γ be any nice C1 path (i.e. with |γ̇| 6= 0) and let f ∈ C1. Write
∫

Γγ
∇ f ·ds

in terms of f and γ alone.

∫

Γγ

∇ f · ds=

∫ b

a

∇ f (γ(t)) · γ̇(t) d t

=

∫ b

a

d
d t

f (γ(t)) d t

= f (γ(b))− f (γ(a))

It follows that the integral of ∇ f depends only on the values of f at the
endpoints of γ. We say that ∇ f is a conservative vector field.

3. Compute
∫

Γγ
yd x+ xd y where γ(t) = (t9, sin9(πt/2)) for t ∈ [0, 1]. Clearly

F(x , y) =∇(x y), so the result is 19 sin9(π/2)− 0= 1.
4. Let γ1(t) = (cos t, sin t, t/(2π)), γ2(t) = (cos t,− sin t, t/(2π)) and F(u) =
(u2,−u1, 1). Evaluate

∫

Γγi
F · ds for i = 1,2 and t ∈ [0,2π].

F(γ1(t)) · γ̇1(t) = − sin2 t − cos2 t +
1

2π
= −1+

1
2π

F(γ2(t)) · γ̇2(t) = sin2 t + cos2 t +
1

2π
= 1+

1
2π
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so the integrals are, respectively, 1− 2π and 1+ 2π. It follows in particular
that there is no function f such that F=∇ f , because if there were then the
integrals should have been equal by Example 2.

5. Let Γ be a C1 curve realized by a C1 path γ. What is the length of the curve
Γ? If we imagine that Γ is a thin wire of unit density then its length is equal

to its mass, so the length is
∫

Γγ
1 ds =

∫ b

a |γ̇(t)| d t. Does this agree with the

formula from 1-dimensional calculus? (Hint: It does.)

How does
∫

Γγ
F ·ds depend on γ? If Γ is a fixed curve, we say that γi : [ai , bi]→

Γ , i = 1, 2 are parameterizations of Γ if they are both C1 paths with non-zero
velocity and their image is Γ . We say that γ2 is a reparameterization of γ1 if there
is h : [a2, b2]→ [a1, b1], increasing and bijective, such that γ2 = γ1 ◦ h.

6.1.3 Theorem. If γ2 is a reparameterization of γ1 then
∫

Γγ1
F · ds=

∫

Γγ2
F · ds.

PROOF: Suppose γ2 = γ1 ◦ h. Then γ̇2 = (γ̇1 ◦ h)ḣ, so

∫

Γγ2

F · ds=

∫ b2

a2

F(γ2(t))γ̇2(t)d t

=

∫ b2

a2

F(γ1(h(t)))γ̇1(h(t))ḣ(t)d t

=

∫ b1

a1

F(γ1(t))γ̇1(t)d t =

∫

Γγ1

F · ds. �

We are no longer tied down to a specific parameterization of Γ . If we don’t
like the original then we can choose a more convenient reparameterization. This
gives rise to the question of what it means for two paths to be equivalent. In
the homework we will find out that it is always possible (because |γ̇(t)| 6= 0) to
choose a special parameterization γu : [0, length(Γ )] → Γ , called the unit-length
parameterization, with |γu(t)| = 1 for all t ∈ [0, length(Γ )]. The fact that

∫

Γ
F · ds

is independent of the parameterization of Γ is an important philosophical point.
Colloquially, the length of a racetrack doesn’t depend on the speed at which you
choose to drive it.

6.2 Parameterized surfaces

This section is a light introduction to differential geometry.

6.2.1 Examples.
1. Let Φ : D ⊆ R2→ R3 be defined by

Φ(θ ,ϕ) := (sinϕ cosθ , sinϕ sinθ , cosϕ).
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These are spherical coordinates with ρ = 1. For the correct choice of D we
will obtain the unit sphere as the image of Φ. Taking D = [0, 2π] × [0,π]
works, with the line {ϕ = 0} mapped to the north pole, {ϕ = π/2} to the
equator, and {ϕ = π} to the south pole. D is a nice 2-dimensional surface and
the image of D under Φ is the unit sphere, another 2-dimensional surface.

2. Let r < R be given and define Φ : D ⊆ R2→ R3 by

Φ(u, v) := ((R+ r cos v) cos u, (R+ r cos v) sin u, r sin v).

With D = [0,2π]× [0,π] as above, the image of Φ is the torus (donut) with
radius R and tube radius r.
[Insert image.]

For a general Φ : D ⊆ R2 → R3 to define a surface, it must at least be the
case that Φ ∈ C1 and DΦ has full rank. Then S := Φ(D) will define a nice 2-
dimensional surface in R3. Contrast this with level surfaces. What is the tangent
plane/space at x0 ∈ S? It is an affine space in R3. From the definition of tangent
space, T (x0) is the unique linear space such that all possible C1 paths γ on S
which pass through x0, say γ(0) = x0, satisfy γ̇(0) ∈ T (x0). Suspend disbelief for
a moment and suppose that Φ is invertible in a neighbourhood of x0. Let γ be a
C1 path in S with γ(0) = x0. Make a new path α(t) = Φ−1(γ(t)), and suppose
α(0) = y0. Assuming that D is a domain in R2, we know that α̇(0) is a linear
combination of e1, e2 ∈ R2. In fact, e1 =

d
ds (y0 + se1)|s=0 and e2 =

d
ds (y0 + se2)|s=0

are two standard paths passing through y0 at s = 0 in D. The images of these
paths in Φ should hence span T (x0) on S. Explicitly, T (x0) should be the spanned
by d

dsΦ(y0 + sei)|s=0 = DΦ(y0)ei , i.e. by the columns of DΦ(y0). Let Φu denote the
first column and Φv denote the second column, so T (x0) = span{Φu(y0),Φv(y0)},
where Φ(y0) = x0. This illustrates why it is important that DΦ have full rank.
T (x0) is a 2-dimensional affine space in R3, so it should be possible to describe
it using the normal vector. If n(x0) is the normal vector to T (x0) in R3 then the
canonical choice is Φu × Φv , the cross product. The tangent plane to S at x0 is
x0 + span{Φu,Φv}, also written as n(x0) · (x − x0) = 0.

The definition above is perfectly correct for our uses, but the intuition can be
horribly wrong. We assumed that Φ is locally invertible in a nice way.

6.2.2 Examples.
1. Let γ : [a, b]→ S be a path on the unit sphere mapping to the equator with
γ(0) = (1,0, 0), and let Φ(u, v) := (sin v cos u, sin v sin u, cos v), which maps
[0,2π)× [0,π) onto S.
[Insert image.]
Does Φ−1 ◦ γ really give a C1 path in D that can be used to compute

a velocity vector, α̇, in the tangent space of R2 at y0 = (0,π/2)? In this
case, no, because y0 is on the boundary of D. Instead we would want to
use another map Φ̃ : D̃→ S such that the ỹ0 corresponding to (1, 0,0) is an
interior point of D̃.
[Insert image.]
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2. Let S be the graph of f : D ⊆ R2 → R living in R3; S = {(u, v, f (u, v))}.
Let Φ(u, v) = (u, v, f (u, v)) and compute T (x0) = T (u0, v0, f (u0, v0)) using
this parameterization. Check that it gives the same tangent plane as we
computed before.

Φu(u0, v0) =





1
0

∂ f
∂ u (u0, v0)



 Φv(u0, v0) =





0
1

∂ f
∂ v (u0, v0)





so n(x0) = Φu×Φv = (−
∂ f
∂ u ,− ∂ f

∂ v , 1)T . Therefore the tangent plane is the set
of solutions to n(x0) · (x − x0) = 0, i.e.

x3 = f (u0, v0) +
∂ f
∂ u
(x2 − u0) +

∂ f
∂ v
(x2 − v0)

= f (u0, v0) +∇ f (u0, v0) · (x1 − u0, x2 − v0)

which is exactly the graph of the best affine approximation.

6.3 Surface integral

What about integrals and/or areas? As before, we can break the domain D into
manageable pieces (rectangles), Ri j , and hence cover S with the “deformed” rect-
angles Φ(Ri j). We will need to multiply by an appropriate scale factor to account
for the deformation, and then proceed as usual. For area, we have area(S) ≈
∑

i, j area(Φ(Ri j)). If Φ is linear then, since the Ri j are rectangles, this latter area
is very easy to compute. Say Φ(x) = Ax , where A is a 3 × 2 matrix. Then, from
linear algebra, area(Φ(Ri j)) is |A1 × A2| times the area of Ri j . Taking the limit as
the number of rectangles goes to infinity, area(S) =

∫∫

D |Φu×Φv | dA. This formula
implicitly assumes that |Φu ×Φv | is continuous (so that we may take the Riemann
integral), which will be the case when Φ is C1.

Similarly, this works to integrate a function ρ : S→ R or F : S→ R3, obtaining
∫∫

S

ρ dS :=

∫∫

D

(ρ ◦Φ)|Φu ×Φv | dA

and
∫∫

S

F · dS :=

∫∫

D

(F ◦Φ) · (Φu ×Φv) dA.

7 Vector Calculus

There are some important relationships between area, volume, line, and surface
integrals that bear the names of such eminent mathematicians as Green, Gauss,
and Stokes.
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7.1 Divergence and curl

A function F : R3→ R3 may be thought of as a velocity field, where the velocity of
a particle at position x is given by F(x).

7.1.1 Definition. The divergence of F is defined to be the local, normalized, mea-
surement of the tendency per unit time for the flow governed by F to expand a
region of particles.

While intuitive, this definition gives no hint in how to compute it. By local we
mean, for x0 ∈ R3, we care only about the behavior close to x0, i.e. in Br(x0) for
very small r. By normalized we mean that the expansion should be weighted by
dividing by the test volume, ∆V/V .
[Insert image of Br(x0) with a small rectangle highlighted.]
Divide the surface of Br(x0) into small “rectangles” Ri j .
[Insert image of the small rectangle with the normal vector highlighted.]
[Insert image of the deformed rectangular prism.]
∆x = F · n∆t, so ∆Vi j = F · narea(Ri j). The change in volume per unit time

(i.e. after dividing by ∆t) is hence
∫∫

∂ Br (x0)
F · n dS. If F is C1 and r is very small

then by Taylor’s theorem,

F(y) = F(x0) + DF(x0)(y − x0) + err(|y − x0|)

for y ∈ ∂ Br(x0). To normalize we divide by |Br(x0)| and obtain

divergence=
1

|Br(x0)|

�

∫∫

∂ Dr (x0)

�

(DF(x0)(y − x0)
�

· n(y) dS(y)

+

∫∫

∂ Dr (x0)
F(x0) · n(y) dS(y)

︸ ︷︷ ︸

=0

+err(r)

∫∫

∂ Dr (x0)
n(y) dS(y)

�

︸ ︷︷ ︸

=O(1/r)

= by homework, last two terms die.

We can simplify further by noting that n(y) = (y − x0)/r for y ∈ ∂ Br(x0). We
know y T Ay =

∑

i, j yi y jAi j , so

�

DF(x0)(y − x0)
�

· n(y) =
1
r

∑

i, j

(y − x0)i(y − x0) j[DF(x0)]i j .

Furthermore,

∫∫

∂ Br (x0)
(y − x0)i(y − x0) j dS(y) =

¨

1
3 r3 area(∂ Br(x0)) i = j
0 i 6= j.
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Thus

divergence=
1

|Br(x0)|

∫∫

∂ Dr (x0)

�

(DF(x0)(y − x0)
�

· n(y) dS(y)

=
3

4πr3

1
r

3
∑

i=1

[DF(x0)]ii
1
3

r2(4πr2)

=
∂ F1

∂ x1
(x0) +

∂ F2

∂ x2
(x0) +

∂ F3

∂ x3
(x0)

We will denote the divergence of F by div(F) =∇ · F= tr(DF).

7.1.2 Definition. The curl of F is a local measurement of the tendency of F to
cause a particle to undergo rotational motion.

Heuristically, in R2, rotation happens when movement to the right implies
movement up, i.e. ∂ F2

∂ x1
is positive, and movement up implies movement left, i.e.

∂ F1
∂ x2

is negative. Whence a local measure of rotation in R2 is

∂ F2

∂ x1
−
∂ F1

∂ x2
=: curlR2(F)(x0).

In R3, angular tendency is best recorded as a vector quantity, i.e. as angular mo-
mentum. According to the right-hand rule, the rotation in the x1-x2, x2-x3, and
x2-x3 planes should be recorded as

�

∂ F3

∂ x2
−
∂ F2

∂ x3

�

e1 −
�

∂ F3

∂ x1
−
∂ F1

∂ x3

�

e2 +
�

∂ F2

∂ x1
−
∂ F1

∂ x2

�

e3

= det





e1 e2 e3
∂
∂ x1

∂
∂ x2

∂
∂ x3

F1 F2 F3



=: curl(F)

Last time we introduced operations on C1 vector fields F : D ⊆ R3→ R3. They
were

div(F)(x0) = tr(DF(x0)) = (∇ · F)(x0),

a scalar field, and
curl(F)(x0) = (∇× F)(x0),

a vector field, where ∇= ( ∂∂ x , ∂∂ y , ∂∂ z ) is the “grad” operator.

7.2 Orientation of boundaries

Let D be a domain in R2 and suppose its boundary is a C1 curve Γ = ∂ D, param-
eterized by a C1 path σ : [0, L]→ Γ with unit velocity (see homework). Up to a
plus or minus, this standardizes the tangent spaces along Γ , T (x0) = span{σ̇(t0)}
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when σ(t0) = x0, in the sense that σ̇ is a unit length basis vector. The only choice
is which direction to walk around Γ . We will say that σ gives ∂ D a positive orienta-
tion if an ant walking around ∂ D according to σ always has the interior of D to its
left hand side. Another way to describe positive orientation is to require, at each
point x0 ∈ ∂ D, that the infinitesimal motion is in the direction of e3×n(x0). Here
we embed D in R3 via the identification of R2 in R3 as {x3 = 0} and n is the unit
outward pointing normal of ∂ D in this plane. It is perpendicular to the velocity
vector of any path that parameterizes ∂ D (a useful fact for computing it). We say
that D is a nice domain or Jordan domain in R2 if it is bounded, (path-)connected,
and it is the region contained between a finite number of simple, closed, piecewise
C1 curves Γ1, . . . , Γk. (A closed curve Γ is simple and closed if it is parameterized
by some γ : [a, b] → Γ for which γ(s) = γ(t) if and only if {s, t} = {a, b}. Yet
otherwise said, Γ is a closed curve with no self-intersections.)

7.2.1 Examples.
1. Image of a circular-ish blob. Yes.
2. Image of a beer bottle opener. Yes.
3. Image of a smiley face. Yes, ∂ D has five curves making it up and some curves

have multiple C1 pieces.
4. Image of a plane minus a triangle. No, because it is not bounded.

Remark.
1. We will always assume that ∂ D implies a positive orientation. −∂ D means

the negative orientation (not the usual meaning of minus of a set).
2. −∂ D is parameterized by σ̂(t) := σ(L− t). We will use the hat notation for

paths to mean the path traversed in the reverse direction, so that Γγ̂ = −Γγ.
3.
∫

−Γ F · ds = −
∫

Γ
F · ds.

7.2.2 Theorem (Green’s theorem).
Let F be a C1 vector field defined on a bounded domain D̃ containing a nice domain
D, with D ⊂ D̃ (so D is compactly contained within D̃). Then

∫

∂ D

F · ds=

∫∫

D

�

∂ F2

∂ x
−
∂ F1

∂ y

�

dA.

Or, as it is typically seen, with F = (P,Q),
∫

∂ D

P d x +Q d y =

∫∫

D

�

∂Q
∂ x
−
∂ P
∂ y

�

dA.

PROOF (SKETCH): We need to show that a certain line integral is equal to a certain
double integral. We first argue that it suffices to do the calculation when D is a
triangle with one side parallel to the x-axis and one side parallel to the y-axis. In-
deed, any polygon can be built up from such triangles, and since D is a nice domain
its boundary is piecewise C1, and hence can be approximated well by polygonal
curves. We need to show that the double integrals over these polygonal domains
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converge to the double integral over D, and then do the calculation directly for a
triangle.
[Insert image of a triangulated domain.]
The only edges in the triangulation of D∆ which are not traversed twice in

opposite directions after applying Green’s theorem to each sub-triangle are the
exterior edges, Γ∆. The theorem for triangles hence adds up to the theorem for D∆
and ∂ D∆ = Γ∆. If we show that the errors in the integrals go to zero as the error
in the polygonal approximation goes to zero, then we are done.

Assume that Γ is parameterized by γ : [a, b]→ Γ and Γ∆ is the polygonal curve
corresponding to the time points {a = t0, . . . , tN = b}. For a single segment,
[Insert image of a single segment [γ(t i−1),γ(t i)]].
The area error is not more than max(|γ̇|2)(∆t)2 and the length of the linear

piece is about max(|γ̇|)∆t.
�

�

�

�

∫∫

D∆

G d xd y −
∫∫

D

G d xd y

�

�

�

�

≤
∫∫

D∆D∆

|G| d xd y

≤
N
∑

i=1

max(|G|)(max area of symmetric diff)

≤∆t max(|G|)|D̃| → 0 as ∆t → 0

Note that
∫

Γ∆
F · ds =

∑N
i=1 F(γ(t i)) · (γ(t i)−γ(t i−1)) since Γ∆ is a polygonal curve.

�

�

�

�

∫

Γ∆

F · ds−
∫

Γ

F · ds

�

�

�

�

≤
N
∑

i=1

�

�

�

�

F(γ(t i)) · (γ(t i)− γ(t i−1))−
∫ t i

t i−1

F(γ(t))γ̇(t)d t

�

�

�

�

≤
N
∑

i=1

∫ t i

t i−1

|F(γ(t i))− F(γ(t))||γ̇(t)|d t

≤max(|DF|)length(Γ )∆t

Now we prove Green’s theorem for a triangle with one edge parallel to each
axis. Without loss of generality, the triangle has one vertex at the origin and may
be described by the following curves.

γ1(t) = (0, b− t) t ∈ [0, b]
γ2(t) = (t, 0) t ∈ [0, a]
γ3(t) = (a− t, bt/a) t ∈ [0, a]

Note that the above parameterization gives a positive orientation. Then

∫∫

D

∂ F2

∂ x
dA=

∫ b

0

∫ a−a y/b

0

∂ F2

∂ x
d xd y

=

∫ b

0

F2(a− a y/b, y)− F2(0, y) d y
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∫∫

D

−
∂ F1

∂ y
dA=

∫ a

0

∫ b−bx/a

0

−
∂ F1

∂ y
d yd x

=

∫ a

0

−F1(x , b− bx/a) + F1(x , 0)d x

We compute the line integral by breaking it up as
∫

Γ
=
∫

Γγ1
+
∫

Γγ2
+
∫

Γγ3
. Note that

γ̇1 = (0,−1), γ̇2 = (1,0), and γ̇3 = (−1, b/a).
∫

Γγ1

F · ds =

∫ b

0

F(0, b− t) · (0,−1) d t =

∫ b

0

−F2(0, b− t) d t

∫

Γγ2

F · ds =

∫ a

0

F(t, 0) · (1,0) d t =

∫ a

0

F1(t, 0) d t

∫

Γγ3

F · ds =

∫ a

0

F(a− t, bt/a) · (−1, b/a) d t

=

∫ a

0

−F1(a− t, bt/a) + (b/a)F2(a− t, bt/a) d t

=

∫ a

0

−F1(t, b(a− t)/a) d t +

∫ b

0

F2(a− as/b, s) ds

The sum of these integrals is equal to the result obtain for the double integral, so
Green’s theorem is proved. �

7.2.3 Examples.
1. Show that area(D) = 1

2

∫

∂ D x d y − y d x . Let F(x , y) = (−y, x) and γ̇ d t =
(d x , d y), so that F · ds= x d y − y d x . Then, by Green’s theorem,

∫

∂ D

F · ds =

∫∫

D

(1− (−1)) dA= 2area(D).

2. Let Γ be the collection of four line segments connecting, in order, the points
(0, 0), (1,1), (0,1), (0, 1), (0, 0). Evaluate

∫

Γ
(y4 + x3) d x + 2x6 d y . Here

F(x , y) = (y4 + x3, 2x6). We may use Green’s theorem with D = [0, 1]2 (if
it is convenient to do so) since Γ = ∂ D. The line integral hence is equal to

∫∫

D

(12x5 − 4y3) dA=

∫ 1

0

∫ 1

0

(12x5 − 4y3) d xd y = 2− 1= 1.

7.3 Flux and Gauss’ theorem

Given a vector field F : R2 → R2, the flux is the rate of flow through a surface,
which is 2-dimensions is the rate across a curve Γ bounding a region D. Let n
be the outward normal vector. The amount going in across a small piece ∆Γ is
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“−F ·n∆Γ ,” where the minus sign appears because n points outward. After taking
Riemann sums, the total flux is seen to be

∫

Γ
(F ·n) ds. With the same assumptions

on the vector field and on the domain as in Green’s theorem, we obtain Gauss’
theorem,

∫

Γ

(F · n) ds =

∫∫

D

div(F) dA.

The proof is straightforward. Assume that Γ has unit-length parameterization γ,
with a positive orientation, so that n= (γ̇2,−γ̇1). Let G= (−F2, F1), so that

∫

Γ

(F · n) ds =

∫

Γ

G · ds=

∫∫

D

∂ G2

∂ x
−
∂ G1

∂ y
dA=

∫∫

D

div(F) dA

7.3.1 Example. Compute the flux of F(x , y) = (y3, x5) across the boundary of the
unit square. By Gauss’ theorem,

∫

Γ

(F · n) ds =

∫∫

D

div(F) dA=

∫∫

D

0 dA= 0.

7.4 Stoke’s theorem

Green’s theorem may be written as
∫∫

D

curlR2(F) dA=

∫∫

D

∂ F2

∂ x
−
∂ F1

∂ y
dA=

∫

∂ D

F · ds

Heuristically, how does rotation “add up” locally? Rotation in opposite directions
cancels, so the net rotation in a region is what is happening around the boundary.
What if particles are moving according to F inR3, but are constrained to lie on some
2-dimensional surface? Is there an analog to Green’s theorem for this situation?

Consider Φ : D ⊆ R2
u,v → R

3 defining a surface S = Φ(D) in R3. Perhaps it
has a boundary ∂ S. We need to define orientation on S and ∂ S. For a single
(2-dimensional) triangle sitting in R3 with a specified “normal direction” (there
are two to choose from) both notions are clear. Pasting triangles together along
common edges, with “compatible” normal directions, gives an orientation for the
resulting surface and its boundary. Adding up the integrals over the boundaries
of all the triangles will result in integrals over the common edges cancelling out,
leaving only the integral over the boundary of the combined surface.

On any given small triangle (with specified normal direction n), the contribu-
tion of the curl in the plane of that triangle is curl(F) · n.

7.4.1 Theorem (Stoke’s theorem). Let Ω̃ be bounded domain inR3 (so Ω̃ is open,
connected, and bounded) and let S = Φ(D) be a smooth, 2-dimensional, positively
oriented surface in R3, compactly contained in Ω̃. If F : Ω̃→ R3 is a C1 vector field
then

∫

∂ S

F · ds=

∫∫

S

curl(F) · dS=

∫∫

D

(curl(F) ◦Φ) · (Φu ×Φv) dA.
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For our purposes, S = Φ(D), where D ⊆ R2
u,v and Φ is smooth, injective, and

orientation preserving, i.e. det(DΦ)> 0. Then ∂Ω inherits orientation from ∂ D via
Φ. The same intuitive definition applies: ∂Ω has a positive orientation if a person
walking along ∂Ω in the direction of the parameterization, with head pointing in
the direction of the normal vector, the surface is on the left hand side.

7.4.2 Example. Let F(x , y, z) = (y,−x , exz). Compute
∫∫

Ω
∇× F · dS where Ω is

the larger portion of the sphere of radius 2 which has been sliced in such a way
that the boundary is the circle of radius 1 lying in the x-y plane, with orientation
given by the usual outward pointing normal for the sphere (anti-clockwise in the
plane). It would be a real pain to parameterize Ω and compute curl(F), but of
course we have Stoke’s theorem, which says that

∫∫

Ω
∇×F · dS=

∫

∂Ω
F · ds. Note

that γ(t) := (cos t, sin t, 0) parameterizes the boundary, so γ̇(t) = (− sin t, cos t, 0),
whence F(γ(t)) · γ̇(t) = − sin2 t − cos2 t = −1, so the integral is −2π.

7.5 Proof of Stoke’s theorem for a graph

Recall that Stoke’s theorem states that
∫∫

Ω
curl(F) · dS =

∫

∂Ω
F · ds, where Ω is

a surface and ∂Ω is the positively oriented boundary of Ω. We will prove it now
for the case where Ω = {(x , y, z) : z = f (x , y), (x , y) ∈ D} is the graph of a C1

function f : D ⊆ R2 → R. We need to decide what is the positive orientation for
∂Ω and calculate curl(F) · dS using the parameterization Φ(u, v) = (u, v, f (u, v)).
In this case Φu ×Φv = (−

∂ f
∂ v ,− ∂ f

∂ v , 1) and recall that

curl(F) =
�

∂ F3

∂ y
−
∂ F2

∂ z
︸ ︷︷ ︸

G1

,−
�

∂ F3

∂ x
−
∂ F1

∂ z

�

︸ ︷︷ ︸

G2

,
∂ F2

∂ x
−
∂ F1

∂ y
︸ ︷︷ ︸

G3

�

.

Whence
∫∫

Ω

curl(F) · dS=

∫∫

D

G1

�

−
∂ f
∂ u

�

+ G2

�

−
∂ f
∂ v

�

+ G3 dA

For the parameterization of ∂Ωwe must use a positively oriented parameterization
of ∂ D in R2. Let σ be such an orientation and let γ(t) = (σ1(t),σ2(t), f (σ(t))).
Then

γ̇3(t) =∇ f (σ(t)) · σ̇(t) =
∂ f
∂ u
σ̇1(t) +

∂ f
∂ v
σ2(t),

so
∫

∂Ω

F · ds=

∫ b

a

F(γ(t)) · γ̇(t) d t

=

∫ b

a

F1σ̇1 + F2σ̇2 + F3
∂ f
∂ x
σ̇1 + F3

∂ f
∂ y
σ2 d t

=

∫ b

a

�

F1 + F3
∂ f
∂ x

, F2 + F3
∂ f
∂ y

�

︸ ︷︷ ︸

H(σ(t))

σ̇(t) d t =

∫

∂ D

H · ds
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Now we apply Green’s theorem.

∂

∂ y
H1(x , y) =

∂

∂ y

�

F1(x , y, f (x , y)) + F3(x , y, f (x , y))
∂ f
∂ x
(x , y)

�

∂ H1

∂ y
=
∂ F1

∂ y
+
∂ F1

∂ z
∂ f
∂ y
+
�

∂ F3

∂ y
+
∂ F3

∂ z
∂ f
∂ y

�

∂ f
∂ x
+ F3

∂ 2 f
∂ y∂ x

∂ H2

∂ x
=
∂ F2

∂ x
+
∂ F2

∂ z
∂ f
∂ x
+
�

∂ F3

∂ x
+
∂ F3

∂ z
∂ f
∂ x

�

∂ f
∂ y
+ F3

∂ 2 f
∂ x∂ y

Subtracting and applying Green’s theorem,
∫

∂ D

H · ds=

∫∫

D

∂ H2

∂ x
−
∂ H1

∂ y
dA

=

∫∫

D

∂ F2

∂ x
+
∂ F2

∂ z
∂ f
∂ x
+
∂ F3

∂ x
∂ f
∂ y
−
∂ F1

∂ y
−
∂ F1

∂ z
∂ f
∂ y
−
∂ F3

∂ y
∂ f
∂ x

dA

=

∫∫

D

�

∂ F2

∂ z
−
∂ F3

∂ y

�

∂ f
∂ x
+
�

∂ F3

∂ x
−
∂ F1

∂ z

�

∂ f
∂ y
+
∂ F2

∂ x
−
∂ F1

∂ y
dA

=

∫∫

D

G1

�

−
∂ f
∂ u

�

+ G2

�

−
∂ f
∂ v

�

+ G3 dA

=

∫∫

Ω

curl(F) · dS.

This completes the proof of Stokes’ Theorem for the case thatΩ is the surface made
by the graph of f over D ⊂ R2.

7.5.1 Example. Use Stoke’s theorem to evaluate
∫

Γ
−y3d x + x3d y − z3dz, where

Γ is the curve in R3 made by intersection of the cylinder {x2 + y2 = 1} and the
plane {x + y + z = 1}, oriented anticlockwise in the x-y plane.
[Insert diagram.]
To apply Stoke’s theorem we need to identify someΩ such that ∂Ω= Γ with the

correct orientation. First let’s compute curl(F) to see whether it is worth applying
Stoke’s theorem. F = (−y3, x3,−z3), so curl(F) = (0,0, 3x2 + 3y2). Let’s take
Ω to be the graph of z = 1 − x − y over the unit circle in the x-y plane, i.e.
Φ(u, v) = (u, v, 1− u− v). The vector normal is (1,1, 1), so

∫

Γ

F · ds=

∫∫

D

(3x2 + 3y2) dA= 3

∫ 2π

0

∫ 1

0

r2(rdrdθ ) =
3π
2

.

Recall that Stoke’s theorem says that if you evaluate the surface integral the
curl of a smooth vector field over a surface then this is equal to the line integral of
the vector field over the positively oriented boundary of that surface.
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7.5.2 Corollary. If Ω1 and Ω2 are two nice surfaces with the same boundary Γ
(and the same positive orientation) then

∫∫

Ω1

curl(F) · dS=

∫∫

Ω2

curl(F) · dS.

Note that ndS = dS. Indeed, assume that Ω= Φ(D) is a parameterized surface
and Φu × Φv is in the outward pointing normal direction at Ω at each point. The
unit normal is hence

n(x) =
Φu(x)×Φv(x)
|Φu(x)×Φv(x)|

.

Since dS = |Φu ×Φv |dudv, it follows that

ndS =
Φu ×Φv

|Φu ×Φv |
|Φu ×Φv |dudv = (Φu ×Φv)dudv = dS.

7.5.3 Examples.
1. Evaluate

∫∫

Ω
(∇× F) · n dS where Ω is the portion of the unit sphere such

that x + y + z ≥ 1 also holds and F = (x , y, z) × (1, 1,1). By the corollary
to Stoke’s theorem, we can instead choose the “flat” surface with the same
boundary as Ω and do the computation over it. This has the advantage of
having a constant (rather than varying) normal vector. Let Ω2 be the circle
lying inside the plane x+ y+z = 1 with boundary ∂Ω. The normal vector to
Ω2 is (1, 1,1)/

p
3, so the integral is equal to

∫∫

Ω2
∇×F · ds. It can be shown

that∇×F= (−2,−2,−2), implying that the integral is equal to−6/
p

3 times
the area of the circle.

2. Evaluate
∫

Γ
F · ds where Γ ⊆ R2 is the unit circle, Γ = {x2 + y2 = 1}, and

F(x , y) =
�

y
x2 + y2

,
−x

x2 + y2
, 1
�

.

Is it okay to naively use Stoke’s theorem to try to compute
∫∫

Ω
curl(F) · dS

for some surface in R3 whose boundary is the unit circle? This would be
fortuitous because curl(F) = (0,0, 0), so the integral would be zero by Stoke’s
theorem. However, the line integral is not too hard, so we can compute it
via brute force. Let γ(t) = (cos t, sin t), so γ̇(t) = (− sin t, cos t) and F(γ(t)) ·
γ̇(t) = −1. Hence the line integral is actually −2π, which is not zero.

What happened? Stoke’s theorem requires that F ∈ C1(Ω̃) for some open
domain in R3 with Ω ⊂⊂ Ω̃. Any such domain in R3 is going to lie over the
point (x , y) = (0, 0), which is a point of discontinuity of F.

7.6 Gauss’ theorem

Recall Homework 9, question 0.4, parts 1–3, which asks you show that, for a fixed
constant vector v,

∫∫

∂ Br (x0)

v · n(y) dS(y) = 0.
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Recall that Green’s theorem identifies a trade off between difficulties: a lower
dimensional integral is easier than a higher dimensional integral to compute, but
the higher dimensional integral is of a differential operator applied to the vector
field. Differential operators tend to simplify functions because they reduce the
order of polynomials. The 3-dimensional analog is Gauss’ theorem.

7.6.1 Theorem (Gauss’ theorem). Let F ∈ C1(W̃ ) be given, where W̃ ⊆ R3 is a
domain, and let W ⊂⊂ W̃ be a nice region with nice surface boundary ∂W . Then

∫∫

∂W

F · n dS =

∫∫∫

W

div(F) dV.

7.6.2 Examples.
1. Evaluate

∫∫

Ω
F · dS, where F = (x y2, x2 y, y) and Ω is the surface of the

can {x2 + y2 = 1,−1 ≤ z ≤ 1}. Either we can evaluate three surface inte-
grals (corresponding to the top, side, and bottom of the can), or try Gauss’
theorem. Here div(F) = y2 + x2 + 0 (= r2 in polar coördinates).

∫∫

Ω

F · dS=

∫∫

Ω

F · n dS

=

∫∫∫

can

div(F) dV

=

∫ 1

−1

∫ 2π

0

∫ 1

0

r2(r drdθdz) = π

2. Compute the outward flux of v= (x3, y3, z3) through the unit sphere. Recall
that the total flux is the net volume rate of flow via v through the surface,
which is

∫∫

Ω
v ·n dS. By Gauss’ theorem, since div(v) = 3(x2+ y2+ z2), the

flux is
∫∫∫

∂ B1(0)

3(x2 + y2 + z2) dV =

∫ 2π

0

∫ π

0

∫ 1

0

3ρ2(ρ2 sinψ dρdψdθ ) =
12π

5

3. Show that an incompressible flow cannot point inward at all points on any
given nice closed surface which bounds a nice region. In this case an incom-
pressible flow is one for which there is no local volume change, i.e. for which
the divergence is zero. Let v = v(x , y, z) be such a flow and let W be a nice
domain with nice boundary ∂W . By Gauss’ theorem,

∫∫

∂W

v · n dS =

∫∫∫

W

div(v) dV = 0.

If it were the case that v pointed in at all points of ∂W then it would be the
case that v · n ≤ 0 for all points on ∂W . If v is not the identically zero flow,
then v ·n< 0 for some non-trivial portion of the surface. But then we would
have

∫∫

∂W v · n dS < 0, which is a contradiction.
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4. Let W be a nice region in R3 with a nice boundary. Prove that
∫∫

∂W r·n dS =
3vol(W ), where r= (x , y, z). By Gauss’ theorem the integral is equal to

∫∫∫

W

div(r) dV = 3

∫∫∫

W

dV = 3vol(W ).
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closed set, 2
compactly contained, 39
composition, 5
connected, 3
conservative vector field, 33
continuously differentiable, 10
critical points, 21, 22
curl, 38
curve, 10

differentiable, 8, 10
direction, 10
directional derivative, 10
distance, 2
divergence, 37
domain, 3
double integral, 24

elementary region, 27

flux, 41
full differentiable, 7

gradient, 8
graph, 12

incompressible flow, 46
inner product, 2
iterated integral, 24

Jacobian, 7
Jordan domain, 39

Lagrange multiplier, 22
level curves, 3
level surface, 11
limit, 4

line integral, 33
local minimum, 19

neighbourhood, 2
nice domain, 39
norm, 2

open ball, 2
open set, 2
orientation preserving, 43

partial derivative, 6
path, 3, 10
path integral, 33
path-connected, 3
positive orientation, 39

region of type I, 25
region of type II, 25
reparameterization, 34
Riemann integrable, 27, 30
Riemann sum, 29

saddle point, 20
second partial derivative, 13
strict local minimum, 19

tangent hyperplane, 13
tangent line, 10
tangent plane, 9, 13
total differentiable, 7

underlying space, 2
unit-length parameterization, 34

velocity field, 37
velocity vector, 10
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