POLYNOMIAL COMPLEXITY SAMPLING FROM MULTIMODAL
DISTRIBUTIONS USING SEQUENTIAL MONTE CARLO
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ABSTRACT. We study a sequential Monte Carlo algorithm to sample from the
Gibbs measure with a non-convex energy function at a low temperature. We
use the practical and popular geometric annealing schedule, and use a Langevin
diffusion at each temperature level. The Langevin diffusion only needs to run
for a time that is long enough to ensure local mixing within energy valleys,
which is much shorter than the time required for global mixing. Our main
result shows convergence of Monte Carlo estimators with time complexity that,
approximately, scales like the forth power of the inverse temperature, and
the square of the inverse allowed error. We also study this algorithm in an
illustrative model scenario where more explicit estimates can be given.

1. Introduction

We show that under general non-degeneracy conditions, the Annealed Sequential
Monte Carlo algorithm (detailed in Algorithm 1) produces samples from multimodal
distributions with time complexity that is a polynomial in the inverse temperature,
with a precise dimension independent degree. We begin (Section 1.1) with an
informal description of the algorithm, and our results. Following this we survey
(Section 1.2) the literature, provide a gentle introduction to the area, and place
our work in the context of existing results. Our main results are stated precisely
(Section 2) below, and the remainder of this paper is devoted to the proofs.

1.1. Informal statement of main results. Let U: X — R be an energy function
defined on a configuration space X. Consider the Gibbs distribution 7. whose
density is given by

(1.1) me(x) = Zifrg(x), where 7.(z) = e~ V®)/¢ and Z. dZCf/ 7 (y) dy.
€ X

where dy denotes some fixed measure on the configuration space X. In many
applications arising in physics, the parameter € > 0 is proportional to the absolute
temperature. We adopt (and abbreviate) this terminology and will subsequently
refer to the parameter € as the temperature. In this paper the space X will typically
be the d-dimensional Euclidean space R, or the torus T¢.

Our aim is to study convergence of an Annealed Sequential Monte Carlo (ASMC)
algorithm. This is a Sequential Monte Carlo (SMC) algorithm (see for instance [CP20,
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Chapters 3.3, 17], or [Liu08, Chapter 3.4]), where particles are moved through a
sequence of interpolating measures obtained by gradually reducing the temperature
according to a specified annealing schedule. We use the practical and popular geomet-
ric annealing schedule where the inverse temperatures are linearly spaced [SBCCD24].
Our main result shows convergence of Monte Carlo estimators using ASMC with
time complexity that, approximately, scales like the forth power of the inverse
temperature, and the square of the inverse allowed error.
Before stating our main result, we briefly recall the ASMC algorithm.

1. Choose a finite sequence of temperatures n; > 7o - -+ > 1y (called an annealing
schedule) so that m,, is easy to sample from and 7ys = 7 is the desired final
temperature.

2. Choose a family of Markov processes {Yz,.}.>0 so that for every ¢ > 0 the
stationary distribution of Y7 . is 7, and fix a running time 7" > 0.

3. Choose arbitrary initial points yi, ..., yx-

4. For each 7 € {1,..., N}, run (independent) realizations of Y;, . for time T,
starting from y!, to obtain z?%.

5. Assign each point % the weight 7, (z%)/7,, (z1). Choose (y3,...,4Y) to be a
resampling of the points (z1,...,2Y) from the multinomial distribution with
probabilities proportional to the assigned weights.

6. Repeat the previous two steps, reducing the temperature until the final
temperature is reached.

This is stated more precisely as Algorithm 1 in Section 2.1, below. Clearly if
we choose T' larger than the mizing time of Y, . at the final temperature n = 7/,
then the above procedure will produce good samples from 7,,. This, however, is
not practical — when U is not convex the mixing time of Y, . grows exponentially
with 1/n. When 7 is small waiting for the mixing time of Y, . at the desired final
temperature computationally infeasible. We will instead show that we only need
to choose T' to be larger than the mixing time of Y;,, . at the initial temperature
71. Since 7)1 is large, this is computationally tractable. The price we pay is only
polynomially many temperature levels M, provided we use the popular geometric
annealing schedule, [VCK25], where the inverse temperatures are linearly spaced
(and hence the densities form a geometric sequence).

Roughly speaking, our main result is as follows.

Theorem 1.1. Suppose U: T% — R is a non-degenerate double-well function with
wells of equal depth (but not necessarily the same shape). For e > 0 let Y, . be a
solution to the overdamped Langevin equation

(1.2) dYe; = —VU(Ye,) dt + V2 dWy,

where W is a standard d-dimensional Brownian motion on the torus. There exists
constants Cn,Cr, depending on U and d, such that the following holds. For
any 6 >0, n >0, choose M, N, T according to

[t -

CnM?

5 and T>CT(M2+1og(1) +%)

]

and o suitable geometric annealing schedule {1/nx}k=1,....m So that m1 is sufficiently
large, and nar = 1. Then the points 2*, ..., N obtained from ASMC (with the
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parameters above) are such that for any bounded test function h we have

E(% XN: h(a') — /T h(w)T, () dx>2 < [|h])20°.

Theorem 1.1 shows that the time complexity of obtaining good samples from m,
using ASMC is polynomial in 1/7, with a degree independent of dimension. We
note that the drift in (1.2) is independent of temperature ¢, and so computational
complexity of ASMC is proportional to M NT'. In contrast, the time complexity of
obtaining good samples by directly simulating the process Y, . is eC/n)

The assumption that U has a double-well structure is mainly to simplify the
technical presentation. Our proof will generalize without difficulty to the situation
where U has more than two wells, at the expense of several technicalities that
further obscure the heart of the matter. As a result we only present the proof of
Theorem 1.1 in the double-well setting.

We assumed that the wells have equal depth above only for simplicity. Our main
result (Theorem 2.8) will generalize of Theorem 1.1 so that it applies to a large class
of double-well energy functions, where the low temperature sampling problem we
study is a nondegenerate in the sense that each well has a non-negligible fraction
of the total mass. The precise assumptions required are laid out in Section 4.1. In
particular, Lemma 4.4 shows that if the wells have nearly equal depth, then the
problem is nondegenerate and Theorem 2.8 applies.

We also remark that Theorem 1.1 requires no prior knowledge of the location
or the depth of the wells. In particular, if the target distribution is a mixture, we
require no knowledge of the decomposition of the domain into components of a
mixture, and only require access to the energy and its gradient.

The main tool used in the proof is a spectral decomposition. This decomposes
any initial distribution into components corresponding to the (target) stationary
distribution, a mass imbalance between wells, and higher order terms. The higher
order terms decay exponentially and do not present a problem. The term corre-
sponding to the mass imbalance extremely slowly (at a rate that is exponentially
small in the inverse temperature), and is the bottleneck.

This, precisely, is the term that can be eliminated using ASMC. At high tem-
peratures, all terms converge rapidly, and it is easy to obtain samples with a small
mass imbalance. The resampling step used to move between temperature levels does
not disturb this much, resulting in a distribution that has a small mass imbalance
at a lower temperature. Iterating this should, in principle, yield samples from
distributions that have a small mass imbalance at every temperature level. This is
the main idea behind of the proof of Theorem 1.1, and is presented in Section 4,
below.

The details of the proof, however, are somewhat involved. To precisely quantify
the error at each level, we require precise bounds on the shape of the eigenfunctions,
and how they change with temperature. In particular, the proof relies on bounding
the inner-product between the normalized eigenfunctions at successive temperature
levels, which involves dimensional constants that are not explicit. As a result, the
constants C, Cr in Theorem 1.1 are not explicit. Moreover, the assumption that
the state space is the compact torus T¢, while inconsequential to issues arising from
of multimodality, is required to ensure the validity of some of our spectral estimates.
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To obtain a better understanding of the dynamics, and a more explicit constants,
we also study ASMC in an idealized scenario. In this idealized scenario, we assume
the domain is divided into J energy valleys, and we have access to a Markov process
that mixes quickly in each valley but very slowly globally. In this case (Theorem 2.2,
in Section 2.2, below) we also prove polynomial time complexity bounds, but obtain
more explicit constants, and control their dimensional dependence.

We numerically illustrate some aspects of the performance of ASMC algorithm
in Section 2.4. In particular we highlight how the algorithm adjusts the mass
in each valley, which can change as temperature changes and we investigate how
the accuracy of the algorithm depends on the number of levels M, under fixed
computational budget. A reference implementation is provided in [HIS25].

1.2. Literature review. We first recall the widely used sampling techniques for nice
(e.g. log-concave) measures and then discuss the literature on sampling multimodal
distributions.

1.2.1. General sampling algorithms. Perhaps the simplest practical technique for
drawing samples of the target distribution 7 o< exp(—U) is based on rejection
sampling. One first draws samples of distribution p from which exact samples can
be obtained easily (say a Gaussian or a Lebesgue measure on a square), and is such
that 7 is absolutely continuous with respect to p. One then accepts these samples
with probability proportional to g—”. If the measure 7 is much more concentrated
than p the acceptance probability becomes very small. For a Gibbs distribution
in d-dimensions at temperature 7, the acceptance rate is typically proportional to
1/n?, making the cost of this method prohibitively expensive.

Thus in high-dimensions, a different approach is needed. Most of the widely used
methods are based on a stochastic process whose invariant measure is 7. The largest
class of these are Markov Chain Monte Carlo (MCMC) methods which include
the seminal Metropolis-Hastings algorithm, Langevin Monte Carlo, Metropolis
adjusted Langevin Algorithm (MALA), Hamiltonian Monte Carlo (HMC) and
others [SAAG24]. We now briefly recall some of the main algorithms, as any of
these can be used in the step 2 of ASMC (the Markov transition step), provided it
rapidly mixes within the modes of the distribution.

The Langevin Monte Carlo (LMC) algorithm relies on updating individual
particles following the overdamped Langevin equation (1.2). The law of the solution,
denoted by pj, satisfies the Fokker—Planck equation and converges to the stationary
distribution 7. exponentially as t — oco. If the energy function U is uniformly
convex, and satisfies ol < HessU, then it is known that the 2-Wasserstein distance
converges exponentially with rate o (i.e. Wa(u§, 7o) < exp(—at)Wa(po, m:)). To
use this algorithm in practice, one needs to discretize the SDE, which is often done
using the explicit Euler-Maruyama scheme. Convergence of the time discretized
SDE were proved in [VW19] using KL divergence, and in [Che23] using W5.

The general Langevin dynamics allows for inertial effects and is modeled by
a system of an SDE for momentum and ODE for position. This property is the
foundation of popular Hamiltonian Monte Carlo (HMC) algorithm, which extends the
configuration space to include the momentum variable p, and considers Hamiltonian
dynamics whose invariant measure is 7 o exp ( — U(x) — 1|p[?). Observe that the
first marginal of ¥ is exactly the target Gibbs measure 7; (with temperature & = 1).
To numerically obtain samples from 77, the HMC algorithm alternates between the



POLYNOMIAL COMPLEXITY SAMPLING FROM MULTIMODAL DISTRIBUTIONS 5

flow of the Hamiltonian dynamics in the phase space, and drawing a new random
momentum, whose marginal distribution is a standard Gaussian. The optimal
convergence rate for the idealized (i.e. one with an exact Hamiltonian dynamics
solver) HMC was proved by Chen and Vempala in [CV22].

While the dynamics above have 7 as the invariant measure at the continuum
level, this is not preserved at the level of numerical schemes resulting in bias that
the estimates above control. The original Metropolis—Hastings algorithm [MRR 53,
Has70] offers an algorithm where the target measure 7 is the invariant measure at
the discrete level. The algorithm proposes a new sample from a (simple) proposal
distribution, and then accepts/rejects the proposal in a manner that ensures the
desired target distribution is the invariant measure. This accept/reject step can
be combined with several other methods. In particular when added to LMC one
obtains the popular MALA algorithm. Other algorithms in this direction include
the Proximal sampler, both of which are studied in [Che23].

1.2.2. Sampling from multimodal distributions. Sampling from multimodal distri-
butions, is challenge that none of the algorithms like LMC, MALA, or HMC can
effectively overcome as their convergence rate becomes extremely slow as the sepa-
ration between the modes increases. As a result, there is a broad spectrum of works
studying algorithms that are suitable for sampling multimodal distributions.

Annealed importance sampling, introduced by Neal [Nea0Ol], involves drawing
samples from a sequence of auxiliary distributions starting from starting from one
that is easy to sample from, and ending with the target distribution. Samples are
moved from one distribution to the next by a reweighting procedure, and then
improved by iterating a Markov chain. The algorithm outputs a set of weighted
sample points representing the target distribution. While this is extremely popular
and versatile, one drawback is that the variance of the weights can become extremely
large, and with most of the mass being distributed over only a few points [CP20,
Chapter 9].

Sequential Monte Carlo (SMC) was first developed to study of the average
extension of molecular chains [HM54, RR55]. Its use in sampling [DAFGO01, CP20,
SBCCD24] can be seen as generalization of AIS, with the addition of a key resampling
step that leads to balanced particle weights. SMC algorithms are enormously popular
in a variety of applications and numerous modifications have been developed.

There are a number of works that consider convergence of SMC including obtaining
central limit theorems [Cho04, CP20]. As remarked in Section 11.2.4 of [CP20], the
variance of the error typically grows exponentially with the number of levels. The
variance can be controlled [CP20, Section 11.4] under restrictive conditions that do
not apply to multimodal distributions.

The works of Schweitzer [Sch12] and Paulin, Jasra, and Thiery [PJT19] are the
first to rigorously consider the convergence of SMC for multimodal distributions
and prove bounds on the variance of the error. However their assumptions require a
strong stability condition on the underlying Markov kernels, which can not be used
to in the context of Theorem 1.1. Building on the coupling technique developed
in [MMS23], Matthews and Schmidler [MS24] prove finite sample error bounds for
SMC in multimodal setting. Their assumption on the underlying Markov kernels
is restrictive requiring knowledge of partition of the domain corresponding to the
modes, and also can not be used in the context of Theorem 1.1.
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The recent work of of Lee and Santana-Gijzen [LSG24] takes a similar angle as
our work in that it shows convergence results for SMC under assumptions of local
mixing within the wells and boundedness of ratios of the densities of consecutive
levels. While these assumptions resemble the assumptions we make, there is a key
difference: they require a sequence of interpolating measures where the mass in
each component of the mixture is known and remains constant. Devising such an
interpolation sequence requires knowing the components of the mixture, which is not
available in many practical problems and in particular precludes using interpolations
based on adjusting the temperature in the Gibbs measure, such as the geometric
annealing we study.

The main differentiating factor between our work, and the SMC papers mentioned
above, is that we do not require structural assumptions on the underlying Markov
kernels, and do not require any prior knowledge of the mixture components. As such,
our result, stated in Theorem 2.8, is the first to provide polynomial time complexity
bounds for ASMC using Langevin diffusions and a geometric annealing schedule.

Parallel, simulated, and related tempering methods. Parallel tempering was
introduced in a form by Swendsen and Wang [SW86] and developed by Geyer
in [Gey91]. Simulated tempering introduced by Marinari and Parisi [MP92] and
developed further by Geyer [GT95]. These algorithms rely on Markov chains that
run on a product space of the desired configuration space and various levels of
the temperature. Samples drawn at a particular value of the temperature may be
modified into samples from either a higher, or a lower temperature. At the lowest
temperature the marginal of the invariant measure on the product space is the
target measure, while at the highest it is a measure where the Markov chain mixes
rapidly.

There are notable results on rigorously showing convergence of parallel and
simulated tempering. In particular, Woodard, Schmidler, and Huber [WSH09a]
obtain conditions under which tempering methods are rapidly mixing. When applied
to sampling multimodal distributions the authors considered distributions which have
separated modes, but require the variance near each mode to be of size one. Thus
their results do not address the low temperature regime that Theorem 1.1 applies to.
In [WSHO9b] the authors prove that the mixing of these tempering approaches slows
exponentially with dimension if components of multimodal measures have different
variances. If all the modes have the same shape, Ge, Lee, and Risteski [GLR18,
GLR20] show the convergence in TV norm of simulated tempering with error rates
that are polynomial in inverse temperature and dimension, provided we have initial
estimate on the ratio of the normalizing constants. The precise degree of the
polynomial, however, is not explicitly identified.

Further tempering methods in this family include tempered transitions introduced
by Neal in [Nea96], which rely on compositions of transitions steps that result in
jumps at the lowest temperature and tempered Hamiltonian Monte Carlo [Neall].
Though, to the best of our knowledge, there are no results that apply in the setting
of Theorem 1.1 and provide polynomial time complexity bounds.

Annealing without reweighting or resampling. There are a number of annealing
approaches that evolve a measure from one that is easy to sample from, to the desired
target distribution. In particular, the annealed Langevin Monte Carlo considers
Langevin dynamics with slowly changing stationary measure [GTC25,VCK25]. These
papers show rigorous convergence results for target measures satisfying restrictive
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structure conditions. In general the annealed LMC lacks a way to easily adjust
the mass within a well at low temperatures. As a result, the convergence rate is
exponentially small in the inverse temperature, and this was rigorously shown for
geometric tempering schedule in [VCK25].

Further approaches. Some recent papers explore new avenues to sampling mul-
timodal distributions. These include approaches based on exploring ideas from
diffusion models [VCK25] where the authors show rigorous complexity bounds. This
method, however, suffers from the curse of dimensionality and the error bounds
scale like 6%, where § is allowable error and d is dimension.

The work [PHLa20] proposed a framework of MCMC algorithms for multimodal
sampling, which combines an optimization step to find the modes with Markov
transition steps. They showed the weak law of large numbers of Monte Carlo integral
using samples generated by the Auxiliary Variable Adaptive MCMC algorithm.

Another direction explored is to use ensemble methods that involve Markov
Chains whose jump rates use the estimating the density of the measure represented
by the particle configuration [LLN19, LWZ22, 1.SW23]. These approaches can be
seen as particle approximations of gradient flows of KL divergence in spherical
Hellinger metric, which converge exponentially fast with rate that is independent
of the height of the barrier. However this method also suffers from the curse of
dimensionality, as the kernel density estimation used to estimate density based on
the configuration of particles introduces bias that becomes large in high dimensions.

A few methods modify (1.2) in a manner that allows particles to move between
modes faster. The authors of [ERY24] do this by modifying the diffusion, and the
authors of [RBS15, DFY20, CFIN23] do this by introducing an additional drift term.
In both cases the modified equation has terms that grow exponentially with the
inverse temperature, and a numerical implementation is computationally expensive.

Plan of the paper. In Section 2 we precisely state our algorithm, and state results
guaranteeing convergence both for ASMC in an idealized scenario (Theorem 2.2),
and for a double-well energy function (Theorem 2.8, which generalizes Theorem 1.1).
For the idealized scenario we are able to obtain explicit constants, and track
the dimensional dependence (Proposition 3.1). Numerical simulations illustrating
relevant aspects of the performance of ASMC in model situations are shown in
Section 2.4. We prove Theorems 2.2 and 2.8 in Sections 3 and 4 respectively. The
proof of Theorem 2.2 relies on a few lemmas which are proved in Section 5. The
proof of Theorem 2.8 is a little more involved and the required lemmas are proved
in Sections 6, 7 and 8 respectively. Finally in Section 9 we show that that regular
enough energy functions satisfy the assumptions required for Theorems 2.2 and 2.8,
and obtain the dimension independent stated in Proposition 3.1.

2. Main results

2.1. Annealed Sequential Monte Carlo (ASMC). We now briefly introduce
the ASMC algorithm, which is stated precisely as Algorithm 1, below. In many
situations of interest, the configuration space X admits a decomposition into energy
valleys. MCMC samplers (such as (1.2)) are typically confined to an energy valley
for time e?(1/) before moving to a different valley (see for instance [Arr89]). Of
course, waiting time e©(1/) to explore the state space is practically infeasible, and
directly using an MCMC sampler is prohibitively slow at low temperatures.
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Annealing and tempering (both terms having origin in metallurgy and describing
heat treatment of metals) based algorithms, in particular ASMC we study, have been
introduced to overcome the issue of slow global mixing of the MCMC algorithms.
ASMC a special case of a sequential Monte Carlo algorithm, as samples are drawn
in sequence from an auxiliary family of distributions, starting from one that is easy
to sample from and ending with the target distribution. The name ASMC stems
from the fact that the auxiliary family of distributions used are obtained by starting
from the Gibbs distribution at a high temperature, and then gradually lowering the
temperature until the desired temperature is reached.

To use ASMC, we choose an annealing schedule, which is a sequence of tem-
peratures 11 > ng -+ > 17, chosen so that the MCMC sampler converges fast at
temperature 71, the desired final temperature is ny; = 7. Samples at temperature 7
are transformed to samples at temperature 7,1 by reweighting them with the
ratio of densities m,, , /7, . To ensure the mass is spread across sample points,
the weights are redistributed using a resampling process. The samples are then
improved by iterating an MCMC sampler for a fixed amount of time, and then the
above processes is repeated at the next temperature until the final temperature is
reached.

It is important to note that for the reweighting step, one does not have access
to the normalized densities m,, in practice, as the normalization constants are not
known and are hard to compute. However, using weights proportional to the ratio
of the normalized densities 7, ., /m,, is equivalent to using weights proportional to
the ratio of the unnormalized densities 7, , /@y, . The unnormalized densities are
known, and are used in the reweighting step instead of the normalized densities.

We now describe the resampling step: given points z}, ..., :c,lvv which are
(approximate) samples from 7, , we obtain y,i FETIR y,]cv ',1 by resampling from the
points {z},..., 2} using the multinomial distribution with probabilities

I
, where 7, =

= &N

>on—1 Tr(}) T
Some points may be repeated or lost. Nevertheless, an elementary heuristic (ex-
plained in Section 3.3, after (3.12), below) suggests that the new points y;,,, ...,
yé\g_l should be good samples from 7, ., .

(2.1) P(yi,, ==l) = _ T(rR)

Remark 2.1. Instead of resampling at every step, modern, practical algorithms
typically control the variance of the weights using more sophisticated resampling
procedures. A popular approach is to introduce a measure of the quality of the
weight distribution and only resample when the quality becomes lower than a
desired threshold, which is called adaptive resampling. For this and other resampling
approaches see, for instance, the books [CP20, Sections 10.2] or [Liu08, Chapter
3.4].

We now provide a brief heuristic explanation as to why one may be able to obtain
good quality samples in polynomial time using Algorithm 1. First, since n; is large
and the process Y, . mixes quickly, and so the distribution of i, 22, .. 2 will be
close to the Gibbs measure 7, . Now the resampling step may produce degenerate
samples with several repeated points. However the fraction of points in each energy
valley will be comparable to the m,,-mass of the same valley. In the situation we
consider, the main bottleneck to fast mixing is moving mass between valleys. Since
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Algorithm 1 Annealed Sequential Monte Carl (ASMC) to sample from .

Require: Temperature 7, energy function U, and Markov processes {Yz.}o>y so
that the stationary distribution of Y, . is m..
Tunable parameters:
(1) Number of levels M € N, and annealing schedule n; > -+ > ny = 7.
(2) Number of realizations N € N, and initial points yi, ..., y¥ € X.
(3) Level running time T > 0.
1: for ke {l,...,M —1} do

2: For each i € {1,... N}, simulate Y,, . for time T starting at y} to obtain z}.
Choose (y,iﬂ, . ,y,]cvﬂ) by resampling from {z},...,z} } using the multi-
nomial distribution with probabilities given by (2.1).
4: end for
5: For each i € {1,... N}, simulate Y,,,, . for time T starting at v}, to obtain z’.
6: return (z!,... zV).

the samples at temperature 7o have approximately the right fraction of mass in
each energy valley, the distribution after running Y;,, . for time T" will be close to
the Gibbs distribution m,,. Repeating this argument should iteratively yield good
samples at the desired final temperature 7.

A rigorous proof of the above quantifying the convergence rate, however, requires
some care. The number of levels M is large (grows linearly in the inverse tem-
perature), and the error going from level &k to k + 1 accumulates multiplicatively.
Nevertheless, we will show that if 71, ...,ny according to the geometric annealing
schedule, then the total error accumulates slowly enough that Algorithm 1 produces
good samples in time that is polynomial in 1/n. Carrying out the details of this
heuristic for a double-well energy function using Langevin diffusions as the MCMC
sampler (as described in Theorem 1.1) is technical, and requires several model spe-
cific bounds that distract from the main idea. Thus, we first consider an illustrative
model problem where we can study Algorithm 1, and then revisit it in the context
of Theorem 1.1.

2.2. ASMC for a Local Mixing Model. We now present an idealized scenario
where we can analyze Algorithm 1 quantitatively, and obtain explicit constants in
our error estimates. Suppose the number of components of the multimodal measure,
J > 2, and the domain & can be partitioned into J domains €5, ..., ;. We are
interested situations where we have access to a process Y; . that mixes quickly in
each domain §);, however, transitions very slowly between domains and hence mixes
slowly overall.

To model this behavior, for every ¢ > 0 let x. € (0,1) denote probability of
staying in the same domain after time 1. Let Y, . be the discrete time Markov
process defined as follows. At time n € N, let j be the unique element of {1,...,J}
such that Y ,, € Q;. Flip an independent coin that lands heads with probability x.
and tails with probability 1 — x.. If the coin lands heads, we choose Y, 41 € X
independently from the distribution 7. If the coin landed tails, we choose Y ,,+1 €
; independently from the distribution with density

’/Ts]-ﬂj
= (825) .
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In other words, Y; . is the Markov process whose one step transition density is

J
(2.2) ﬁmw:u<wm@+m§ﬁwwmgﬁ%.

j=1

Notice that the expected transition time between domains is the bottleneck to
mixing, and is of order 1/(1 — x.). One situation of interest, is when x. is extremely
close to 1 (for instance y. ~ exp(e~?(1/9))). This models the behavior that arises
several applications of interest, including Langevin dynamics driven by the gradient
of an energy function with multiple wells, and this is studied in detail in Section 2.3,
below. In such situations waiting for time 1/(1 — x.) is prohibitively expensive
when ¢ is small, and can not be done in practice.

Suppose now we are interested in computing Monte Carlo integrals with respect to
the Gibbs distribution 7, for some small temperature n > 0. A direct Monte Carlo
approach simulating Y7, . is unfeasible as it requires simulating Y;, . for time O(1/(1—
Xn)), which very long when 7 is small. We now show that Algorithm 1, with a
judicious choice of parameters, makes this time an order of magnitude smaller.

Theorem 2.2. Suppose for some 0 < Npin < Nmax < 00 we have
I [Nmax
(23) CLBV dof Z/ |85 lnwg(ﬂj)\ de < 0.
j—]_ min

For any finite m1 € (Mmins Mmax), 9,1,V > 0 with n € [Nmin,N1), and constants Cr,
Cy > 0 choose M,N,T € N so that'

1 CyM? J
(24) M = ’71/77—‘ s N = 52 s and T 2 tmix (Ymm FT),
and choose na,...,nr so that nyy =n and 1/, ..., 1/nar are linearly spaced.

For every 6,v > 0, there exists (explicit) constants Cy = Cn(U/n1, J,v), and
Cr = Cr(U/m, J,v) such that if the process Y. in Algorithm 1 have transition
density (2.2), and if the parameters to Algorithm 1 are chosen as in (2.4), then for
every bounded test function h, and arbitrary initial data {z}}, the points (z*,... =)
returned by Algorithm 1 satisfy

(2.5) H;imw—/mwmmﬁu®<MM&
i=1 X

We prove Theorem 2.2 in Section 3, below.

Remark 2.3. In (2.5) above, we clarify that the Monte Carlo sum Eiv h(z?) is a
random variable, as the points x? are random, and the notation |-|| r2(p) denotes

the L2(P) norm with respect to the underlying probability measure P. Explicitly,
if X is a random variable, then || X||r2(p) = (EX?)'/2.

1Here tmix(Yz,.,8) denotes the §-mixing time of the process Yz . (see for instance [LP17]), and
measures the TV-rate of convergence of Y. . to the stationary distribution 7.. Explicitly, if p,
denotes the n-step transition density of Yz ., then the J-mixing time is given by

b (Ve 8) 2 inf{n €N

sup [Ip5 (2, ) — 7 (|1 < 25}.
reEX
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Remark 2.4. The constants Cy and Cp can be computed explicitly in terms of the
energy function U, the number of domains J and the parameter v and their values
are stated precisely in Section 3.2, below.

Remark 2.5. We will show (Corollary 9.1, below) that the finiteness condition (2.3)
will be satisfied for a large class of double-well energy functions where the sampling
at low temperature is a nondegenerate problem and each well has a non-negligible
fraction of the total mass. In particular, (2.3) will hold for double-well functions
with wells of nearly equal depth. More precisely, if the difference between the energies
at local minima is comparable to the minimum temperature 7yi,, then Cpgy can
be bounded independent of 7y .

Remark 2.6. If the difference between the energies at local minima is much larger
than the minimum temperature 7min, then the as € — i some of the domains €2,
will contain a fraction of the total mass which is exponentially small in the inverse
temperature. Hence the multimodal nature of the target distribution degenerates,
and the sampling from this distribution requires the simulation of rare events. This
goes beyond the scope of the present work and Theorem 2.2 does not apply.

Remark 2.7. Theorem 2.2 shows that the averaged empirical measure is TV close to
the Gibbs distribution. Explicitly, the averaged empirical measure p is defined by

N N
1 )
AE ZEY 6,:(A)==) P'cA
M) E B Y004 = 3 Pt ),
where 2!, ..., 2 are the points returned by Algorithm 1. Now Theorem 2.2 and
Jensen’s inequality immediately imply |p(A) — m,(A)| < § for every Borel set A,
and hence

| =7 llTv < 0.

Computational Complexity. We now estimate the computational cost of Monte
Carlo integration using Theorem 2.2 and compare it to the direct approach using
the process Y;, .. In this idealized situation, we assume the cost of simulating the
process Y for time T is O(T'). Using an alias method [Vos91] one can perform the
resampling step in time O(N), which makes the computational cost of Algorithm 1
of order MNT. To estimate T, we need to estimate the J-mixing time of the
process Yz . for € = n;. For this, we use (2.2) to deduce that the n-step transition
density of Y, . is

J
e n n ey
o) = (L= XD 0 Y Len) o
B

j=1
This immediately implies
In(9/2)  |Ind|

In x. T1- Xe .
Thus Theorem 2.2 implies the computational cost of running Algorithm 1 to achieve
the Monte Carlo error (2.5) is

tmix(%,w 5) g

C(U)|In g

(2.6) cost(Algorithm 2.2) = O(MNT) < peroT

for some U-dependent constant C'(U).
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On the other hand, achieving the same Monte Carlo error by simulating indepen-
dent realizations of Y;, . has a computational cost of

(2.7 cost(Direct Monte Carlo) = O(L)

62(In x|
We note that the cost of ASMC in (2.6) involves a polynomial in the final tem-
perature 7, and the mixing time at the initial temperature 7;, which is small. In
contrast, the direct Monte Carlo cost (2.7) involves the mixing time at the final
temperature 7, which is typically exponential in 1/7.

2.3. ASMC for a double-well energy function. We now study Algorithm 1
when the configuration space X is the d-dimensional torus T¢. Here the Gibbs
measure 7. arises naturally as the stationary distribution of the overdamped Langevin
equation (1.2).

When U is convex, the process Y mixes quickly even in high dimensions [BGL14],
and provides a very efficient way to sample from the Gibbs distribution 7.. When U
is not convex, however, the process Y; . mixes extremely slowly. In fact, the well
known Arrhenius law [Arr89] states that in general it takes time ¢ ~ e“/¢ before the
distribution of Y . becomes close to the Gibbs distribution .. At low temperatures,
this is too long to be practical.

The reason Langevin dynamics mixes so slowly is because the drift in (1.2) pulls
trajectories towards local minima of U. In order to escape an energy valley, the
noise term in (1.2) has to go against the drift for an O(1) amount of time, which
happens with exponentially small probability. In each energy valley, however, the
energy function U is essentially convex which makes the process Y. . mix quickly
in valleys. We also note that the situation considered in Section 2.2 is an idealized
model for the dynamics of (1.2).

We study Algorithm 1 for target distributions corresponding to double-well
energy functions and show that appropriate choice of parameters allows one to
compute integrals with respect to the Gibbs distribution, with time complexity that
is polynomial in the inverse temperature. We again remark that the assumption
that U is a double-well energy function is mainly to simplify the presentation, and
the generalization to energy functions with more wells is straightforward.

Theorem 2.8. Suppose for some 0 < Nmin < Mmax < 00, the function U is a
double-well function that satisfies Assumptions 4.1, 4.2 and 4.8 in Section 4 below.
Let A, > 1 be the ratio of the saddle height to the energy barrier, defined precisely
n (4.3), below. Given 11 € (Mmin, Mmax] finite, a, d,m,v > 0 with n € [Nmin, M), and
constants Cp, Cny > 0 choose M, N € N, and T € R so that

1 5 1 1 M?
28) Mz|—|, T>0r (M<1+a>% n log(f) n 7) and N> DM

vn ) 7 02
and choose ng,...,na so that nyy =n and 1/ny, ..., 1/na are linearly spaced.

For every «, §,v > 0, there exist constants Cr = Cr(a,v,U/m) and Cn(v,U/m1)
such that if the process Ye . in Algorithm 1 is given by (1.2), and the parameters
to Algorithm 1 are chosen as in (2.8), then for every bounded test function h, and
arbitrary initial data {x}}, the points (x', ..., 2V) returned by Algorithm 1 satisfy

(2.9) |+ fjh(ﬂ) - / @@y da] < s
=1

L2(P
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We remark that Assumptions 4.1-4.3 are nondegeneracy assumptions, and do not
require symmetry, or similarity of the shape of the wells. The proof of Theorem 2.8
follows the same general strategy as that of Theorem 2.2, however the details more
technically involved. In Theorem 2.2 the main idea is to show that if at level k, the
initial mass distributions in the domains €, ..., €2 is distributed according to =, ,
then the process Y, . will correct the shape and quickly give a distribution that is
close to the Gibbs distribution m,, . To show this in the context of (1.2), we consider
a spectral decomposition based on eigenvalues of the generator of (1.2). We will
show that if the projection of the initial distribution onto the second eigenspace
is small, then the Langevin dynamics will quickly correct the shape and yield a
distribution close to the Gibbs measure. The proof of this involves several technical
lemmas controlling the shape of the eigenfunctions and introduces dimensional
pre-factors that are not explicit. This takes up the bulk of the paper and begins in
Section 4, below.

Time and computational complexity. We now briefly discuss the computational cost
of integration using Theorem 2.8. Suppose U is a double-well function with wells
of equal depth, so that 4, is exactly 1. As mentioned earlier, the resampling step
costs O(N) and so the time complexity of running Algorithm 1 (for n < 1 with
v = 1) to achieve the error tolerance (2.9) is

Cq Ca 1 1
(2.10) OMTN) < 56T < o3 <n1+°‘ + log(g)) ,
for some dimensional constants Cy, Cy. The second inequality gives us the precise,
polynomial, time complexity of the algorithm. The significance of the first inequality
is that the computational complexity of the algorithm is, up to dimensional constant,
773% times the computational complexity of the numerical algorithm which mixes
the distribution sufficiently well within the wells.

In order to use Algorithm 1 in practice, one has to time discretize (1.2) and
consider the bias induced by this discretization. Obtaining the precise errors
for numerical discretizations of LMC and other algorithms is an active area of
research, and we refer the reader to the notes by Chewi [Che23] for comprehensive
overview. Obtaining rigorous computational complexity of ASMC is a challenging
open problem, as the wells are not exactly log-concave and one would need to control
various terms in our proof up to discretization error. We remark, however, that in
our formulation the drift in (1.2) is independent of the temperature £, and so for
our purposes, the number of iterations required to simulate (1.2) for a given length
of time T is proportional to time 7" and independent of the temperature €. Let us
also remark that, assuming the scaling for smooth log-concave wells can be reached
the estimates of Chewi [Che23, Theorem 4.1.2] suggest that the total computational
complexity of the algorithm, in terms of the number of evaluations of VU, would be
cUdéi2 times the time complexity, when applied to integrating bounded, Lipschitz
continuous functions. The restriction to a smaller class of test functions is needed
since the Wasserstein error controlled in Theorem [Che23, Theorem 4.1.2] needs to
control the integration error. We remark that better error bounds can be obtained
by using different discretizations of LMC and by using MALA (see [Che23]).

For comparison we note the cost of using rejection sampling to achieve a com-
parable error is Cyq/n?, which is huge when 7 is small and the dimension is large.
Also, the cost of using LMC requires simulating 1/62 realizations of (1.2) for a time
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that is comparable to the d-mixing time. By the Arrhenius law [Arr89, BGKO05] this
is e/ which is much larger than (2.10) when 7 is small.

2.4. Numerical experiments. In practice, one typically needs to sample from
the target distribution with density proportional to e~", for some given energy
function V. In situations of interest the energy V has deep valleys and the associated
Gibbs measure has several components (modes). To apply ASMC, we choose a
temperature 1 > 0, which is small enough so that the Gibbs measure with energy
function
U =gV,

is easy to sample from. Then we run Algorithm 1 with the energy function U, with
initial temperature n; = 1, and final temperature 7 to deliver samples from the
Gibbs measure with density proportional to e~". A reference implementation is
provided in [HIS25].

1.0
0.5 1
0.0 1 @
—0.51
-1.0 T T T
-2 -1 0 1 2

FIGURE 1. Contour plot of the anisotropic Gaussian mixture in R?,
defined in (2.11), and used in experiments for Figure 2.

For the first illustration, we consider a two-dimensional distribution. In this case
integrals with respect to the Gibbs distribution can also be effectively computed
using quadrature, and can be used as a reference for our numerical simulations. We
choose the Gibbs measure to be a mixture of two dimensional, anisotropic Gaussians
given by

2
(2.11) =Y a;Gp,5,
i=1

Here G, x is the PDF of the two dimensional Gaussian with mean y and covariance
matrix X. We choose parameters a; = 0.7, as = 0.3, 41 = —eq, o = e1 and

0.09 0 002 0
El_( 0 0.04)’ 22_( 0 0.18)

A contour plot of 7 is shown on the left of Figure 1. The left panel of Figure 2
shows the results of numerical simulations computing the Monte Carlo integral of
the indicator function of a separating hyperplane using samples from Algorithm 1.
For comparison, we also show the results of computing the same integral using direct
LMC, and using quadrature. To generate this plot we used N = 10%, time step
0.0025, M =5, T = 500. For confirmation, we verify the mean error and standard
deviation decrease like 1/v/N, and show our results in Figure 2.
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Log-log plot

0.70{ — ASMC (M=5)

LMC 10714 —8— Mean error

Quadrature (each level) -~ Standard deviation
SN Fitted slope = -0.52
Fitted slope = -0.47

10-2 4

T T T y T y 02 03 04 s T
0 500 1000 1500 2000 2500 10 10 10t 10 10
number of iterations Sample size N

FIGURE 2. Left: A Monte Carlo integral computed using ASMC, LMC,
and quadrature in 2D. Right: A Log-log plot of the mean error and
standard deviation using ASMC as the number of particles varies.

Our next experiment, illustrated in Figure 3, focuses on the trade-off between
increasing the number of levels and the number of time steps under a fixed com-
putational budget. We use samples obtained by Algorithm 1 to compute a Monte
Carlo integral in dimension 20. The target measure is a mixture of Gaussians given
by (2.11) with parameters a; = 0.2, ag = 0.8, u1 = —ey, po = e; and

3= ILGId’ 3o = %Id, d = 20.

We vary the number of levels M and the level running time 7', while keeping the
total number of iterations MT constant. To generate the plots we used a total
of 5000 iterations per run, sample size N = 10* and time step 0.001, and 100
independent Monte Carlo runs per choice of M and T. We observe that ASMC
produces good results for intermediate values of M, but performs poorly when M
is too large or too small when compared to d. We note that this is not surprising.
When M = 1 ASMC becomes the rejection sampler, and with M being small it
is closely approximating a rejection sampler with a few intermediate levels. Since
the jumps in temperature are large the resulting bias is large. When M is very
large and T is quite small the Markov transitions do not have a chance to mix even
within the wells. Thus the procedure basically only involves importance reweighting
and resampling, thus leading to most of the mass concentrated at few nodes, and
large error.

3. Error Estimates for the Local Mixing Model (Theorem 2.2)

3.1. Notation and convention. Before delving into the proof of Theorem 2.2 we
briefly list notational conventions that will be used throughout this paper.

(i) We will always assume C > 0 is a finite constant that can increase from line
to line, provided it does not depend on the temperature 7.

(ii) We use the convention that the expectation operator E has lower prece-
dence than multiplication. That is EXY denotes the expectation of the
product E[XY], and EX?, denotes the expectation of the square E[X?]

(iii) When taking expectations and probabilities, a subscript will denote the condi-
tional expectation / conditional probability. That is ExY = E(Y | X) denotes
the conditional expectation of Y given the o-algebra generated by X.
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1.01

0.8 —— Mean Error

9 9
0.71 25% to 75% error

0.8 0.64
0.54
0.6 04l
0.3

0.4 0.24
— M=2
M=20
0.2{ — M=2500
True value

0.14

0.0

0 1000 2000 3000 4000 5000 log M (number of levels)
number of iterations

FIGURE 3. Mean error of an integral in dimension d = 20 computed
using ASMC as M, T vary, while holding MT constant. Shaded regions
indicate the 25%-75% quintile range. Left: A plot of the Monte Carlo
integral vs the number of iterations for a few values of M. Right: A plot
of the mean error vs log M.

(iv) When averaging functions of Markov processes, a superscript will denote the
initial distribution. That is E* f(Y};) denotes E f(Y;) given Yy ~ pu. When p =
dy is the Dirac d-measure supported at y, we will use EY to denote Edv.

(v) We interchangeably use 7. to denote the measure and the density. That
is for x € T¢, m.(x) is given by (1.1), however for Borel sets A, m.(A) de-
notes [, m.(x) dz.

3.2. Description of the Constants in Theorem 2.2. As remarked earlier, the
constants C'y and Cr in Theorem 2.2 are explicit. Since these determine the
efficiency of Algorithm 1, we state them precisely before embarking on the proof of
Theorem 2.2. First we need auxiliary constant C, = C,.(U/n,v) that will be used
to bound the ratio of the densities at each level. For k € {1,..., M}, by a slight
abuse of notation we define

def ~ def o def

Ty = My, Tk = 7, and Zp = Z,,

where 7, , 7y, and Z,, are defined by (1.1) with ¢ = 1. Next we define

(3.1) rp 2 ThL

Tk
to be the ratio of normalized densities at levels £ + 1 and k. In practice, we do
not have access to 7 as we do not have access to the normalization constants Zj.
This is why Algorithm 1 is formulated using the ratio of unnormalized densities 7
defined in (2.1). The auxiliary constant C, mentioned above is defined by

def

(3.2) Cr = max Irlle(x)-

Clearly C,. — 1 as v — 0. However, choosing v very small increases the number
of levels M and hence the computational cost of Algorithm 1. A bound for C,.,
which may be easier to check in practice, is

(3.3) C, < ir>11(")(1 + s¢) exp(cv)
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where

s def f{Uo>c} e”0dx <oo and U def U-—- inU'
f{Uogc} e~ Uodx m

We prove (3.3) in Lemma 9.2, below.
Now, the proof of Theorem 2.2 will show that constants Cr and C'y are given by

(3.4)

(3.5) Cr € 4JC.(2C5 +1), COn = J*(205 +1)2(1 +C,)%
where
(3.6) CB = eXp(207-CL]3v).

Dimensional dependence. Suppose now X = R?. For a certain class of energy
functions, it is possible to make the constants Cr, Cx independent of d by choosing
a geometric annealing schedule with M linear in d. One such class of energies are
those which can be separated into a sum of two functions — one which depends on
the first d coordinates and may have multiple local minima; and the other only
depends on the last d — d coordinates and is convex.

Explicitly, suppose there exists an integer d < d such that the function U is of
the form

(37) Uo(x):00(.%1,...,1‘(1)+‘/()(],‘Cz+1,...,xd).

Here Up is an any function for which e=Uo ig integrable, and may have several
local minima. The function Vj is assumed to be a convex function for which there
exist constants ag > 0, ko > 1, oy, ap € R and a point 29 € R4 such that for all
x € R4 we have

(3.8) ol — z0]" + ap < Vo(z) < aplz — 20| + ay.

One class of functions that have this structure are Gaussian mixtures of points
that are located on a d dimensional hyperplane, and whose covariance matrices in
the perpendicular direction are all equal. For such energies we have the following
dimension independent bounds.

Proposition 3.1. Assume that Uy satisfies and (3.7) and (3.8). Choose

wiff

and ng such that 1/ny, ..., 1/na are linearly spaced. Then Cr and Cy in (3.5) can
be bounded above in terms of ag, ap, au, ko, Uy, but independent of d.

Proposition 3.1 can be proved using asymptotics for the incomplete gamma
function and is presented in Section 9, below.

3.3. Proof of Theorem 2.2. In order to prove Theorem 2.2, we note that Al-
gorithm 1 consists of repeating two steps: (local) exploration using using the
process Y . (Algorithm 1, step 2), and then resampling (Algorithm 1, step 3). We
now state lemmas for the errors accumulated in each of these steps.

To quantify the Monte Carlo error made by running the process Y;,. in the (local)
exploration step, we introduce the following notation. Given ¢,¢ > 0 and a bounded
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test function h, define the Monte Carlo error Err. ,(h) by

def

Err. . (h) =

N
1 .

S h02) [ hmeda|
N; oo = Joume ] )

where Y; are N independent realizations of a Markov process with transition
density (2.2).

Lemma 3.2. Given N (random) points y', ..., y~, let YEZ be N independent
realizations of the Markov process with transition density (2.2) and initial distribu-
tion Y;O =y'. Then for any bounded test function h, and any T € N we have

o, Ho(@y) [

3.9 Erre 7(h) < x7 (170 ])/hﬂdx 4 [llose
( ) E,T( ) Xe ; Wa(Qj) o, € L(P) 2\/N
where gy is the empirical measure

| N
(3.10) o=+ > 6y

i=1
Consequently,
[ ” 1
11 Brrer(h) < 0% (\I Y Brreo(la,) + —= ).

(3 ) rr&T( ) 9 Xs ]; I‘I'E’Q( QJ)—'_ \/N

We clarify that 110(€2;) is random as the initial points y* are themselves random.
The second term on the right of (3.11) is the standard Monte Carlo error which
can be made small by making IV large. To make the first term small, we have two
options: The first option is to wait for the mixing time of Y; ., and obtain smallness
from the I factor. The second is to ensure > ; Erre o(1g;) is small. In our situation
the first option is undesirable as it requires 7' > 1/|In x|, which is too large to
be practical. Instead we use the second option, and make j Errg,o(lgj) small by
ensuring the fraction of initial points in each domain 2; is close to m.(£2;).

We now turn to the resampling step. Suppose we have N i.i.d. samples z!, ...,

2 from a distribution with an unnormalized probability density function p. Let §
be another unnormalized probability density function, such that {§ > 0} C {p >

0}. Choose (y!,...,y"V) to be a resampling of the points (z!,...,2"V) using the
multinomial distribution with probability

) ) Pl q
(3.12) Py'=2a)= ') , where 7% 4

3

N - .
D1 T(aY)
Of course, some of the points 2’ may be chosen multiple times and the points !,
.., yny may not be distinct. Nevertheless, a simple heuristic argument suggests
that when N is large the distribution of each of the points y* will have a density
proportional to ¢. Indeed, suppose X is finite, N > |X| and p, ¢ are the normalized
probability distributions corresponding to p, g respectively. Then each x € X occurs
amongst the points {z!,..., 2V} roughly Np(z) times, and so
(@) Np(a) i(a)

Pl =)~ > wex T(@)Np(a') B Yowex @) ~ @)
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To make the above quantitative, and usable in our context, some care has to be
taken. The points 3* are only conditionally independent given z!, ..., 2"V; they are
not unconditionally independent, and it is hard to estimate the unconditional joint
distribution. We will instead obtain a Monte Carlo estimate which both quantifies

the error and is sufficient for our purposes.

Lemma 3.3. Suppose z*, ..., ¥ are N (not necessarily i.i.d.) random points

in X. Let p, §: X — [0,00) be two unnormalized probability density functions, and
choose y*,...,yN independently from {z',..., 2™} according to (3.12). Then for
any test function h € L>=(X), we have

N
1 . 1
N hwiy— | n dx’ <—Hh7/ h d:cH
HN; W) /X ¢ L2(P) /N X ¢ Loo

+Hh—/ hqde Hl—ir(xi)

i=1

L2(P)
XN
1 FGICER .
(3.13) + N;r(x)(h(x) thdx) i
Here r is the ratio

(3.14) re g, where p=
p

Jxpdx
Note Lemma 3.3 does not assume z', ..., 2 are independent, or even that they
have distribution p. If, however, the points z!, ..., ¥ give good Monte Carlo
estimates for integrals with respect to p, then the right hand side of (3.13) will be
small. Explicitly, in the typical situation where 2* ~ p are i.i.d, we will have

by St [l < R

L2(P) N
for any bounded test function g. Combined with the fact that

/rpdx:/quzl and /hrpdx:/hqu,
x x x x

this shows the right hand side of (3.13) is O(1/v/N).

We now use Lemma 3.2 and Lemma 3.3 to derive a recurrence relation for the
Monte Carlo error between levels k and k 4 1 in Algorithm 1.

Lemma 3.4. For eachk=1,.... M —1,

1+ {7k lose
25 Brtero(la,) < S
315 (e A ) s Bt

Here ry, is the ratio of the normalized densities defined in (3.1), and by a slight
abuse of notation we use Erry . to denote Erry, ..

The proof of Theorem 2.2 now reduces to solving the recurrence relation (3.15) and
using Lemma 3.2. Notice that (3.15) involves a bound on |7 |/osc, and the maximum
of this as k varies is precisely the constant C,. defined in (3.2). A bound on C, that
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may be easier to obtain in practice is (3.3), which we prove in Lemma 9.2, below.
Momentarily postponing the proofs of the above lemmas, we prove Theorem 2.2.

Proof of Theorem 2.2. Applying (3.11) with € = nps gives that

h 0oscC 1
(3.16) Erras,r(h) < ” ! (sznll’z'%‘)‘(’]Erero(lgj) + ﬁ)

We will show that the right hand side of (3.16) is bounded above by d||A||osc. For
the first term, a direct calculation using (3.15) immediately shows that

maXJEI'I'M70(1Q (H o, t+ 1)) rrl1aXJErr2 o(1lq,)

j=1,..., j=

M—-1 1+ ‘T‘ H M—-1
(3.17) +> s I ec.e+1)
k=2 l=k+1

where

o, +1) def1+2z‘w+1 ‘

To finish the proof, we now need to estimate the terms Hé\i;l O, ¢+ 1) and
maxlgng EI‘I‘270(1QJ).

Step 1: Estimating Héﬁ;l ©(¢, ¢+ 1). Notice that for every j = 1,...,J, and
every k=1,..., M, we have

Q (32)
(3.18) 0< ”“(1( ;) ikl 2 C
Using the fact that
(3.19) ly =1 < (1Vy)lnyl,
forany k=1,..., M — 1, we obtain
M—1 AMLGM 9 J M1 () M-k
2 o< (1 ‘M _ 1’
3200 JJ] ew.t+1) <+M_kz ()
=k j=1 t=k
(3.18),(3.19) 9 J M-l mer1(Q5) M=k
<1 i J ‘
(+M—kzz Og( W(Qj)))
j=1 ¢=k
9 J M-1 ne M-k
= (1+ c, 0. lnws(ﬂj)dao
( M—k 12:21 =k Ne+1
(2.3) (3.6)

< exp(2C,Crpy) =" Cp.

Step 2: Estimating Errs o(1a;). Applying Lemma 3.3 with p = 71, ¢ = 72, h = 1q,,
and z° = Yf’T7 to obtain

(321) EI‘I‘Q 0(1Q ) s EI‘I‘LT(’I‘l) + EI‘I‘LT(’/‘l(le — ﬂg(Qj))).

\/>
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Now the processes Yll’,, ey Yl{\{ are all independent.? Thus for any bounded test
function h,
N

1 i 2
(ErrLT(h))Q = E(ﬁ ;h(YLT) - \/‘X h,’/Tl dm)
1 & , A 1 & _ 2
= B4 0 - B ) + & S B~ [ )
1 1
N
L2 1 ; 2
< Il + (5 X Bhin) - | o)

1 1 ) 2
< Sl + 0l (5 > lphoi.) - mln) s

and hence
1 1
3.22 Erry 7(h) < —||hl|p~ + ||P||po — Lyt ) — L.
(3.22) 1r(h) \/NH Iz + 1Al & ;HPT(% ) —mlL
Notice that the choice of Cr and Cy in (3.5), implies
) 1 1+C, @4 §
3.23 T>tmix(Y —) d —< < 2
(3.23) mege ) M UN S TUN M
where
(3.24) Fo__ 90
’ - J(2C5+1)°
Using (3.23) in (3.22) with h = r; gives
5 (3.2),(3.23) § 5
(325)  Ermig(n) < \annL TR QC iz < s
Similarly,
5 4
(326) EI‘I‘l,T(’I‘l(le - 7T2(Qj))) M 5
Plugging (3.25),(3.26) and (3.23) into (3.21) yields
30 -
(3.27) ]_n}axJErrg 0(lg,) < <yt 5.

Now using (3.17), we obtain

- L (3.20),<(3.27)C 30 5 o 5 5
Jmax (o)) < Co(57+9) + 2 ot
3.28 — (205 + = 5209
(3.28) = (205 47)8 < 5
Using (3.23) and (3.28) in (3.16) implies
h J§ 5\ (324)
Errpsr(h) < %(7 + 7)< Sl
2For k > 2 the processes Yk{» ey iji are no longer independent as the initial distributions

are not independent.
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This proves (2.5), concluding the proof. O

4. Error Estimates for a double-well energy (Theorem 2.8).

The aim of this section is to prove Theorem 2.8 and obtain error estimates when
ASMC is used to sample from a double-well energy function on a d-dimensional
torus.

4.1. Assumptions and Notation. We begin by precisely stating the assumptions
that were used in Theorem 2.8. The first assumption requires U to be a regular,
double-well function with nondegenerate critical points.

Assumption 4.1. The function U € C%(T% R), has a nondegenerate Hessian at
all critical points, and has exactly two local minima located at Tmin,1 and Tmin2. We
normalize U so that

0= U(l‘mjn’l) < U(xmin72)-

Our next assumption concerns the saddle between the local minima %min,1
and Zmin,2. Define the saddle height between zpin,1 and Tmin,2 to be the mini-
mum amount of energy needed to go from the global minimum Zmin,1 t0 Zmin,2, and
is given by
(4.1) U= ﬁ(xmin’l,xmin,g) < inf sup U(w(t)).

@ t€0,1]
Here the infimum above is taken over all continuous paths w € C([0, 1]; T4) such
that w(0) = @min,1, Ww(1) = Zmin,2. To prove Theorem 2.8 we need to assume a
nondegeneracy condition on the saddle.

Assumption 4.2. The saddle height between Tmin,1 and Tmin2 @5 attained at a
unique critical point s12 of index one. That is, the first eigenvalue of Hess U (s1,2)
is negative and the others are positive.

We can now define the ratio 4, that appeared in (2.8), above. The energy barrier,
denoted by 4, is defined to be the minimum amount of energy needed to go from
the (possibly local) minimum %,y 2 to the global minimum #yi,,1. In terms of sq 2,
the energy barrier 4 and the saddle height are given by

(4.2) 4= U(s12) — UlTminz), and U =U(sz).
The ratio 4, is the ratio of the saddle height U to the energy barrier 4, given by
U
4.3 A = =
(4.3) 5

Finally, we require the distribution =, to be truly multimodal in the temperature
range of interest. That is, we require the mass in the basins of attraction around
each of the local minima Zmin,1 and zmin,2 to be bounded away from 0. We recall
the basin of attraction around zmin,;, denoted by £2;, is the set of all initial points
for which the gradient flow of U eventually reaches xmin ;. Precisely, €2; is defined
by

Q; = {y €T ‘ tli)fgo Yt = Tmin,i, where 3; = —VU(yt) with yo = y}7

and our multimodality condition is as follows.
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Assumption 4.3. There exists 0 < Nmin < Pmax < 00, a constant Cy, such that

(4.4) inf ()
€€ [Mmin,Mmax]
0<e<oo

1
= Cf?n
We will show (Lemma 4.4, below) that (4.4) is satisfied if the wells have nearly
equal depth. That is, if U(2min,2) — U(Zmin,1) < O(Mmin), then one can show (4.4)
holds for some constant C, that is independent of n,;,. We state this precisely as
the following lemma.

Lemma 4.4. Suppose U satisfies Assumptions 4.1, 4.2, and there exists a tempera-
ture Mmin = 0 and constant Cy > 0 such that

(45) U(xmin,Q) - U(mmin,l) < Clnmin-

Then for any finite Nmax > Nmin there exists a constant Cp, = Cp(U, Dmax, Cr),
independent of Nmin such that (4.4) holds.

Remark 4.5. We note that the condition (4.5) implies the finiteness condition (2.3)
that was used in Theorem 2.2. This is shown in Corollary 9.1, below, and was
previously referred to in Remark 2.5.

4.2. Proof of Theorem 2.8. In this subsection, we explain the main idea behind
the proof of Theorem 2.8. For simplicity and without loss of generality we assume
m = 1. We begin by rewriting our algorithm in a manner that that is convenient
for the proof. Fix T'> 0 and N € N that will be chosen later.

Step 1: We start with N arbitrary points yi, ..., y¥.

Step 2: Langevin step. For each k € {1,..., M}, and i € {1,... N}, let X,i be the
solution to the overdamped Langevin equation (1.2) with initial data X,QO =y,
driven by independent Brownian motions.
Step 3: Resampling step. Given the processes {X}€ |t < N,k < M — 1} we choose
the points {y,i+1, e ,y,ﬁ_l} independently from {Xéj7 e ,X,i\fT} so that
P(yi — xJ ) = fk(Xi,T)
k+1 = k1) T &SN - N
D1 Tk (XIZC,T)
Here 7, is the ratio defined by (2.1).
We now briefly recall a few standard facts about the overdamped Langevin

dynamics (1.2) that will be used in the proof. Let L. be the generator of (1.2),
whose action on smooth test functions is defined by

(4.6) L.f < —eAf+VU-Vf.
Let L} be the dual operator defined by
(4.7) Lif=-V-(VUf)—eAf.

def

It is well known [@ks03, Chapter 8] that if Y. . solves (1.2) then its density f; =
PDF (Y. ;) satisfies the Fokker-Planck equation, a.k.a. the Kolmogorov forward
equation

(4.8) Ouf + L7 f =0.
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One can readily check that the Gibbs distribution . is a stationary solution of (4.8),
and hence must be the stationary distribution of (1.2). A direct calculation shows
that

(4.9) at(ﬂi) + L(Wi) —0.

The mixing properties of Langevin dynamics can be deduced directly from the
spectral properties of the operator L., as we now explain. It is well known (see for
instance [Kol00, Chapter 8]) that on the weighted space L?(rw.) the operator L. is
self-adjoint and has a discrete spectrum with eigenvalues

0= /\1,8 < /\2,5 < )\3,5"'

with corresponding L?(7.) normalized eigenfunctions 1 , 1a ¢, etc. The first eigen-
value A\ . = 0 corresponds to the constant eigenfunction 1 . = 1. In our situation,
because U has two wells, it is well known that (see for instance Propositions 2.1,
2.2 in Chapter 8 of [Kol00]) for every v < 4 there exists constants C,, and A
(independent of ¢) such that

(4.10) Yoo <Cyexp(=2) and Aoz A, Viz3
g

As a result, equation (4.9) implies

2
ol - ) o
Te L2(7e) Te L2(7.)

< exp(—2t076_7/6)<f0,1/)2@%2 +e M

2

fo

Te

_1’

L2 (7"5)

The second term on the right decays fast with ¢, and the metastability phenomenon
described above is due to the slow decay of the first term. While the first term
decays slowly with ¢, we can make it small by ensuring

<f0ﬂ/’2,s>%2 = </'J1‘d foae dcc>2

is small. We note that (fo,2,) > measures the difference in the fy and the 7.-mass
distribution in each well. This confirms our previous statement that the Langevin
dynamics mixes quickly when the mass of the initial distribution in each well is
close to the m,-mass of the same well.

To use this quantitatively in our situation, we need an estimate on the Monte
Carlo error when using N independent realizations to compute the integral of a
test function. We recall the standard Langevin Monte Carlo algorithm (LMC)
approximates the integral of a test function h with respect to the Gibbs measure .
by

Td

1o
hre dz ~ N ; h(YZ,),

where Y1 .. YN are N independent solutions to (1.2). The right hand side
approaches the left "hand side as N,t — oco. Our first lemma controlling the error is
as follows.
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Lemma 4.6. Assume that for each i € {1,...,N}, PDF(Y}() = q.,. Then for
any bounded test function h,

(4.11) Brro (k) < e | | by e da| Brre o (tn,) + = [hllose + -1 (R)
T

2v' N
where

3 1
9oz
Te

(4.12) Eer(h) = [[Allosce™ i:rg«??fN’

Loo(ﬂ's).

We will now use Lemma 3.3 and Lemma 4.6 to derive Monte Carlo error estimates
between levels k and k& + 1 in Algorithm 1. Recall in Algorithm 1, M is chosen

according to (2.8), n; = 1, nar = 1, and the reciprocals 1/, ..., 1/ny are linearly
spaced. That is 7 is chosen according to

. M -1
(4.13) e 2 A= 1)

(M =1+ (k=11 -n)
For simplicity of notation, we use a subscript of k£ on the error, eigenvalue and
eigenfunction to denote the corresponding quantities at ¢ = . Explicitly, we write

Aok =

cl(,f duf

Moes Yok = o, and  Errgo(or) = Erry, 0(Yo.r).

The main idea behind the proof of Theorem 2.8 is to first estimate Erryii (12 kx+1)
in terms of Errg o(t2,%), and then use Lemma 4.6 to obtain (2.9). Obtaining this
recurrence relation, however, requires a fair amount of technical work. We state this
in the next lemma.

Lemma 4.7. Choose M as in (2.8) and ng as in (4.13). For any o > 0, there exist
constants Cp, = Co(a,U) > 0 (depending on o) and Cy = Cn(U) > 1 (independent
of a) such that for any 6 > 0, if

) 1
T>0C, (M(H")W n log<g> + 7), N>
7

then for each 2 < k < M — 1, we have

(4.14) Errgy1,0(V2r41) < Br Errgo(t2x) + .
Here the constants By, ¢ are such that for every k € {2,...,M — 1} we have

CyM?
52

0
(4.15) U B <Cp and cx <4,

for some dimensional constant Cg > 1 (independent of «, §).

The proof of Theorem 2.8 now reduces to solving the recurrence relation (4.14)
and using Lemma 4.6. Notice that in order to use Lemma 4.6 and Lemma 4.9, we
need an estimate for ||qx,0/mx| 7o (r,). This is addressed in the following lemma.

Lemma 4.8. For every2 < k< M,1<1<N, let qk o be the probability density

function of X}%O. For any Ty > 0, there exists a constant Cy = Cy(U,Tp) such that
if T > Ty, then

qlico 1
416 max H—H <O, ex ( U (7_1»_
( ) . N Lo (nr) q €Xp U] osc I~
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While the right hand side of (4.16) is exponentially large, it will only be used
in (4.12) which has an exponentially small e AT factor. Choosing 7' > O(1/n;.) will
allow us to control it.

Finally, we will need an estimate for Errs g(1)2,2) which we obtain as the mixing
time when k£ = 1 is of order 1.

Lemma 4.9. There exists a constant C; = Cy(U) such that for any § > 0, we have

(4.17) Errg o(2,2) <6 provided T > Cl(log(%) + 1)7 N > %2\’
Here Cy is the same constant as in Lemma 4.7.
We are now well-equipped to prove Theorem 2.8.
Proof of Theorem 2.8. Fix o, > 0, and define
(4.18) 6= Léﬁ,
where Cj is the constant in Lemma 4.7. Choose M as in (2.8) and define

(4.19) T= maX{C’a (M(Ha)% + log(%> + %), C <log(£) + 1),

0
() + s o) 1

CnM?

—=—

Here C, = C,(U, 1) is the constant in Lemma 4.8 with Ty = 1, and C,, C1, A and
are the constants in Lemma 4.7, Lemma 4.9, and (4.10) respectively.

Notice that if T, N are chosen according to (4.19) and (4.20), then we can find
constants Cp = Cp(a,U) > 0 and Cy = Cn(U) so that this choice is consistent
with the choice in (2.8). We will now show that (2.9) holds for any bounded test
function h € L>(T9).

Using Lemma 4.6, we obtain

EI‘I‘]\/[,TUL) < ‘/ h’(/}z)k;ﬂ'k dl‘ e_AZ’kTEITM’()(wQ,M)
Td

L

2VN

We will now show that the right hand side of (4.21) is bounded above by d|A||osc-

For the first term, a direct calculation using (4.14) immediately shows that for T, N
as in (4.19), (4.20) we have

(4.20) N<=

(4.21) + [7llosc + Ey,(h).-

M—-1 M—2

M-1

(4.22) Errpro(th2,mr) < (H ﬂj) Errg o(1p2,2) + Z Ck( H ﬂj) + -1
=2 2 =kl

(4.15), (4.17)

k=
. 5 0 < (4.18) 0
<0+ Y Cpr 4 o7 <2050 28 -

Next, we see

(4.23)
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Finally,
(4 12) 4
Ena(h) = Nhllosce™ max |22
™M
(4.16) 1 ‘
< C;nhnoscexp(—” 2'1';’“)5“
(4.19) . b
(4.24) < lhllosed < [Allosc

Using (4.22), (4.23) and (4.24) in (4.21) implies
EI‘I‘MyT(h) < 6Hh||osc
This proves (2.9), concluding the proof. O

It remains to prove Lemmas 4.6, 4.7, 4.8 and 4.9, which will be done in subsequent
sections.

5. Proof of Lemmas for the Local Mixing Model.

In this section, we prove Lemmas 3.2, 3.3 and 3.4 that were used Section 3 to
prove Theorem 2.2. We also prove the bound for ||rg||L~ stated in (3.3), that may
be easier to use in practice. Since the ideas used in Lemma 3.2 and 3.4 are related,
we prove Lemma 3.3 first.

5.1. The Resampling Error (Lemma 3.3). Notice that the points y!, ..., yx
chosen according to (3.12) are identically distributed, but need not be independent.
However, given the points !, ..., zy, the points y!, ..., yy are (conditionally)
independent. The main idea behind the proof of Lemma 3.3 is to split the error
into the sum of a conditional mean, and a conditional standard deviation, and use
conditional independence of y!, ..., yn.

Proof of Lemma 3.3. For simplicity of notation, let
(5.1) x = {2, .., 2V}, and hd—dh—/ hqdzx,
x

and let Eyx denote the conditional expectation given the o-algebra generated by x.
By the tower property,

N 2 N
E(;V;h(yi)—/xhqu) - (1 ;

AR
(5.2) :E[EX(NZh(yl)) ]

We write

:z
\_/
[\v]

<.

1L L A T\ A
B (S BG)) and B DR -+ > Edh()
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Notice that the points y', ..., ¥V are not independent; however, when conditioned
on x, the points y* are independent and identically distributed. Thus

N
1 7 i 1 7
(5.3) Ja < 2 g Varg (h(y")) < NHh”%x
(=1

To bound J;, we note

12

SN b)) @ T, ha))r(a)
S () YL, ()

N
1 - -
3 Euh(y') = Exh(y:) =
{=1
(54) = J3 + J47

where

Thus

N
1 ] 2
=Sy’ - hdH < (BL)Y? + (EJy)'?

(5.3)

hl| Lo

VN
Using the definition of & in (5.1) we obtain (3.13) as desired. O

<

5.2. The Monte Carlo error (Lemma 3.2). In this section, we prove Lemma 3.2
which provides an estimate for the error when using independent realizations of the
process Y, . to compute Monte Carlo integrals.

Proof of Lemma 3.2. Since

S0-EG e -

both sides of (3.9) remain unchanged when a constant is added to the function h.
Thus without loss of generality we may replace h with h — inf h + $[|h/|osc, and
assume ||| = 3||[losc. Next we write

N
1 .
(5.5) ~ > h(Yip) - / hr.dr = I, + I,
1 X
where
1 & , , 1
I ~ > (MY p) = Eoh(Yiy)), , o Z h( /X hr. dz,

1

and Ey denote the conditional expectation with respect to o(y',...,y").
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Now since Y; are conditionally independent given !, ..., y",

1 1
2 2 _ 2
(56)  Bolf =+ ZEO — Boh(Vig))" < lhlEe = 1l

Next using (2.2) and (3.10) we compute
1 N _ X _
NE0 Y hin) = 5 3 [ 2n) dz
1 i=1
=(1-xD h7rE dx + x Z Ho (€2 hm. dx
g g ﬂ_E ’

= J

and hence

(5.7) Z(ﬂs 1)/ hr. dz.

J

Using (5.6) in (5.5) implies
< IPlose
2vV'N

Erre r(h) = |11 + LflL2py < [illz2py + 2] L2(p) < + |12l 2 Py

Using (5.7) in the above implies (3.9) as desired.

. e Q
(4, T) = 7T iOEQJ; +(1=xD).
e3¢5

Finally, (3.11) follows immediately from (3.9) and the fact that for every j €
{1,...,J} we have

‘ hme dx‘ < Hh||oo/ e dx = MWS(Qj). O
Q; Q; 2

5.3. A recurrence relation for the error (Lemma 3.4). We now prove
Lemma 3.4, which obtains a recurrence relation for the Monte Carlo error be-
tween levels k and k + 1 in Algorithm 1.

Proof of Lemma 3.4. Fix k € {1,....M — 1}, and ¢ € {1,...,J}. Applying
Lemma 3.3 with p = 7, ¢ = mk41, h = 1q,, and b= Y,iT gives

1
(5.8) Errgy1,0(la,) < Wil + Erry, r(re) 4+ Brr 7 (ri (Lo, — meg1 ().

We now bound the last two terms on the right hand side of (5.8). Applying
Lemma 3.2 with h = rg, € = 1, and using (3.1) gives

|| ||osc 1% (Q)
Errg r(ry) < 2]\€F + X1 2(1— O(Q )>7Tk+1(9j) .
_ ||rk||osc T ! 1— (Q ) Q QO
= W"’X}c ;( QY ))(WHI( i) — m($2;) L)
L
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Here pi9 is defined by (3.10) with y* = Y,jyo, and the second equality above is true
because > y10(§2;) = 1.

For the last term on the right of (5.8) again apply Lemma 3.2 with ¢ = 7
and h = r;(lg, — mk+1(2¢)) to obtain

T osc
(510) Errk,T(Tk(]-Ql — 7Tk+1(Qg))) < M + ngl

2v/N

where

def

J1 =

7k (€2;) L2(P)’

EJ:(1 _ uo(Qj))ﬁkH(Qz)(aﬂ - wkH(Qj))‘
j=1

Since >, po(€2;) = 1 we note

=[S

) Tt ()
< g1 () Z‘ 5t ZERIVS) ) ax Errgo(1g;)
j=1

)Wme)(é — T () + ()

L2(P)

T, (€25) () 11<G<s
Tk
(5.11) (1 + () 2‘1 - LD max Brro(lg,).
Using (5.9), (5.10) and (5.11) in (5.8) yields (3.15) as desired. O

6. Error estimates for the Langevin Dynamics (Lemma 4.6 and 4.8).

In this section we prove Lemmas 4.6 and 4.8. The proof of Lemma 4.6 is based
on a spectral decomposition, and is presented in Section 6.1, below. The proof of
Lemma 4.16 is based on the maximum principle and is presented in Section 6.2,
below.

6.1. The Monte Carlo error in the Langevin Step (Lemma 4.6). The proof
of Lemma 4.6 has three main steps. First, we separate the error into the sum of the
conditional mean and the conditional standard deviation. The conditional standard
deviation is O(1/v/N) and is easily bounded. Then we decompose the conditional
mean as the sum of Err, (12 ) and a remainder using the spectral decomposition
of L., and bound the remainder terms.

Proof of Lemma 4.6. Since de 9 e dx = 0, both sides of (4.11) remain unchanged
when a constant is added to the function h. Thus without loss of generality we
may again replace h with A — inf h + 1[|h/[osc, and assume [|A]|f = ||h]losc. As
before, let Ey denote the conditional expectation given the o-algebra generated
by {}/5170’ Tt 1/s:‘],\(ZJ}

Step 1: By the tower property of conditional expectation, we have

1 N . 2
(6.1) (Err.7(h))? :E[EO(NZh( ) —/Td hir. da;) }
i=1
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Observe that
1
N E h(Y;‘Z,T) - hﬂ'e dr = Il + 12,
i—1 Td

where

e 1 i
L= i ZEOh(Ye,T) -

=1

N
L= N Zh Yep) - Z hY:r),
/ hr. dz.

Td

Notice EoI; = 0, and I is o(Y, ..., Y))-measurable. Hence

N
1 ; 2
(62) EO(N E h( EI,T) - /Ed h’ﬂ'g d{)_’:) = _E()Il2 + ,[22
=1

Next, notice that after conditioning on {Yy, ..., YE%}, the random variables YE"’T
are independent. Hence

N
1 . 1
(6.3) Eol} = el Zvaro(h(ysj)) < N”hH%m-

Thus, we conclude

(6.4) (Eon o) ) B[ S - [ mear)]

) (6.3) 1
W EE21+ER < ~lhllE~ + BI3.

Step 2: In this step, we use a spectral decomposition to rewrite I5. Notice that h

can be decomposed into components along the subspace spanned by {1, } and
its orthogonal complement. This decomposition gives

h= [ hmdot fos i,
Td
where

(6.5) = / hpa e e d$)¢2 ()

(6.6) FL(y) < h(y) /hﬁgdx— /ngwsd:c)w%()
Therefore,

N
1 .
(6.7) L=+ S Eoh(Yir)— | hmedv=1Is+ 14,
i=1 T

where

N
e 1 i or 1
Iy = N §E0f0(YE,T)7 and I = ZEOfO er)
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Step 2.1: I3 bound. To bound bound I3, we first claim

(6.8) EO'¢2,€(Y;,T) = E_M’ETW,E(Y;O)

To see this, recall that for any go € L>(T) the function g defined by
9:(y) = E¥g0(Yz ),

solves the Kolmogorov backward equation
(6.9) 09+ Le.g =0,

with initial data go. Here Y . is a solution to the Langevin equation (1.2). Since )2 .
is the second eigenfunction of the operator L. (defined in (4.6)), we see

BV (Yor) = €7 o c(y),
which immediately implies (6.8).
Now (6.5) and (6.8) imply

1 & i
=~ ; E, [(/Td hapg e dCU) ¢2,5(Y5,T)}

N
:(/W hapg eme dﬂﬁ) % ; e 2Ty (YY),

and hence
1 1
2\5 __ —)\2,5T _ i
(EI2)% = ’/Td hpg e dm‘e HN ;wz,e(Y;,o)‘ L)
(6.10) = '/d hapa e dw‘e_’\z*eTErrs,o(z/;g,E).
']r L

Step 2.2: I bound. To bound I4 we note

ZEOfO ET ZfT EO
where fit(y) = EY f3-(Y.+) and, as before, Y. . is a solution of (1.2). Observe that,
1 7 g
EIsz(NZf%‘(}QO)) ZE.fT Yso NZ/ fT qsO
i=1

q570

Te

N i
1 qe,O
o1 =53 P e < gy i, |

To bound | f£ | 12(x.)> We note that f L solves the Kolmogorov backward equa-

Lo ()

tion (6.9), and hence we have the spectral decomposition

oo
7Ny = D €722
i=1

Using (6.5) and (6.6) the first two terms on the right vanish, and hence the spectral
decomposition gives

(6.12) 1712y = Z e AT
=3

/f&i/}i,e Te dﬂc’2

N 2 (410) AT
fO ql}i,e Te d{E‘ < ||f0 HLz(ﬂ's)e :
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We will now bound || fg"|| £2(x.). Notice

ooy < = [t ([ pmem )
Td L2(w.) Td
<Wlzzgeo +] [ e,
Td
Together with (6.12) this gives

(6.13) 17 I z2(my < 20|Allpee™T.
Therefore, plugging (6.13) into (6.11) yields

L2(7.)

< 2[hllz>(ry < 2[Al Lo

=

=& r(h).

14 AERS (mye
(6.14) (EL)? < 2[lhllpe(rye™™ | max Lo ()

Loy

Te
Step 3: Based on the previous steps,

2 Y 1 2 o 60 1 2 2\3 21\
Bz () < lhl3e + BB < lbli + (BB + BUD?)

(6.10),(6.14)

1 2
< I (| [ n e dale e T Bin gl ) + Eax(h)
Td

Taking square root on both sides and using ||h[ 2 = %|/h/losc finish the proof.
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6.2. Growth of ||gj, o/7||L~ (Lemma 4.8). In this section, we prove Lemma 4.8
which will be used in the proof of Lemma 4.7, and was also used in the proof of

Theorem 2.8 to obtain (4.24). Let q,iC,t denote the probability density of XL

. The

proof Lemma 4.8 involves controlling the growth of ||q,’:€’t/7'rk||,;m in the Langevin

step, and in the resampling step. In the Langevin step, ||g;, , /|| is nonincreasing
due to maximum principle. In the resampling step, the growth of ||qx,0/7x|| o0 (xy)

between levels is tracked using duality.

Proof of Lemma 4.8. The proof contains three steps. Fix Ty > 0. In the first step,

there exists a constant Cy = Cy(U, Tp) such that for any T > T we have

q
(6.15) max ‘ LT < (.
i=1,..,N L
Next we will show that for every k >

1
(6.16) | 52 |52

——  ma
oo\ k—1 oo?
N L [1,=; minr, =1 *N L

where 7, is defined in (3.1).
Finally we show by direct computation that

(6.17) H minry > exp((l - %) ||UHOSC).

Combining (6.15), (6.16) and (6.17) completes the proof. We will now each of the

above inequalities.

Step 1: Proof of (6.15). Since X{ _solves (1.2) with e = n; = 1, it’s density, denoted
by ¢} ; must solve (4.8) (with & = n;). Since L} (defined by (4.7), with e = 1) is
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nondegenerate, parabolic regularity implies there exists a constant C = C(U,Tp)
such that

i—r{laxj\]Hq’iTo||Loo < C||qi,TO/2||L1 =C

The last equality above followed because q{')t is a probability density and so Hqit Iz =
1 for every t > 0. Thus
i
< HQI,'TOHL < .C
Loe min mp min 7y

i
HqLTO
™

(6.18)

and we choose Cy = Cy(U,T) to be the right hand side of the above.

Since ¢f ,/m solves the backward equation (6.9) with e =71 = 1, the maximum
principle and (6.18) imply (6.15) for all T' > Tj.
Step 2: Proof of (6.16). We claim that for all k € {1,... ,M — 1}, we have

Ghi10 1
e e g
NI gy llpee ~ minry i=1,...,N Lo

(6.19) | max

Next we note that q}m/ﬁk satisfies (6.9) with ¢ = 7. Thus, by the maximum
principle we have

@
=
T Lo

for every k € {2,...,M} and every i € {1,..., N}. The bound (6.16) immediately
follows from (6.19) and (6.20). Thus it only remains to prove (6.19).

We note that if X} ,, ..., X,é\fT were i.i.d. then one has an explicit formula

(6.20) H Gieo H

Loo

for g, +1,0» from which (6.19) follows immediately. In our situation these processes
are not independent, and so we prove (6.19) using duality, and without relying on
an explicit formula.

For any test function h € L*(m,11) be a test function we have

[, M@ o(o) d = BR(X10)

G h Tr XjT
:EE(h(XZH-Lo)’Xf,T,...,XéYT) <Z ( k, )7k ( k, ))

> (X 1)
1

=~ Nmin rk

(6.21) ZE|h kT Tk(XkT)|

Next, we note that for every j =1,..., N,

, . ; (3.1) T ],
E|h(Xl]€T)Tk(XIJg7T)| = /d |h‘7‘kQ£,T dr = ‘h| kkTﬂ'k_A,q dr
T
6.22 h %1
(6.22) <Al (i) ol |

Thus (6.21) and (6.22) imply

1Rl a
‘/ h(@)gh 1o d‘< Il Er ) ma H kTH

minr,  j= N L’

from which (6.19) follows by duality.
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Step 3: Proof of (6.17). Observe that

(6.23) rk(w):ZZk exp(—( ! —i)U(x)>

k+1 Nk+1 Nk

where Z, = Z,,, and Z,, is the normalization constant in (1.1). Hence, for
all k € {1,..., M — 1} the minimum of 7 is attained at the same point, which we
denote by z*. Thus,

k—1 k—1

(6.24) H minr, = H re(z”) = (@) = % exp((l — i)U(Jc*))

=1 =1 m(27) "Ik

Since U > 0 by assumption, and n < n; = 1, we must have Z; > Z;. Using
this in (6.24) immediately implies (6.17) as desired. This completes the proof of
Lemma 4.8. (]

7. Iterating error estimates (Lemmas 4.7 and 4.9)

Lemma 4.7 consists of two main parts: the derivation of recurrence relation (4.14),
and obtaining the estimate (4.15) for Bk, cx. We do each of these steps in Sec-
tions 7.1, 7.2 and 7.3. We combine these and prove Lemma 4.7 in Section 7.4.

7.1. Recurrence relation. We will now prove (4.14) by combining the estimate
for the Monte Carlo error (Lemma 4.6) and the resampling error (Lemma 3.3). For
clarity, we state this as a new lemma and give explicit formulae for the constants S
and ¢ appearing in (4.14).

Lemma 7.1. For each 2 < k < M — 1, the inequality (4.14) holds with By and cy,
given by

(7.1) B = e*’\MT(’ /d T2,k dx’ Y241l
T

+‘/ V2 k102 kTh+1 dﬂCD
'H‘d

def

q
(7.2)  ex =3[ Pa il oo 7] o 50

+ efAT ) max

N‘ Loo(rrk))

1
(2\/N
\/»Hl/)z k1 [ o
Proof of Lemma 7.1. Applying Lemma 3.3 with

i i i [
P="Tk q=Tkt1, h=tv2p41, ' =Xpp, ¥ =Xt

gives

N
1 ,
Erry1,0(t2,641) = HN Z%,kﬂ(xlzgﬂ,o)‘
i=1

L2(P)
(3. 13) 1 Ly '
2 \ﬁH‘/& k1l + |2, k41 Lo Hl N ;Tk(XIZg,T)’ L2(P)
1 ' i
+ HN ;%’kJrl(X;c,T)Tk(X’Z%T)‘ L2(P)
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1
(7.3) = ﬁ”%,kHHLm + |2, k+1l| oo Errg 7 (rk) + Errg v (V2 p117%)-

We will now bound the last two terms on the right of (7.3). For the term
Erry, v(rk), we apply Lemma 4.6 with
e=nk, h=rTg, ge 0= qro,

to obtain

(a11) 1 -
Errpr(ry) < 2\/NHTI€HL°° + ’/d T2 kT dl”€ 2267 Brry, o (2.

1
2

(7.4) + ||r,€||Looe—AT _max

Lee ()

Similarly, for the term Errk7T(w2,k+1rk), we apply Lemma 4.6 with

€=k, h=vokt1Ths ¢e,0 = Q0

to obtain
(4. 11) .
Errp, r(Y2,6417%) ‘/ Y2, k+1V2 kTt dz‘ 2207 Brry o (12 1)
+ WHWHLoo 12, k411 Lo
- qk 0
7.5 + 2||7k|| oo we AT ,nax ‘ ,
(7.5) 7l zoe 192,641z Xy L)

where we use the fact that

1Tk, kt1llose < 2||TkWokt1llne < 2|7kl Loe |102,k+1] Lo

Plugging (7.4) and (7.5) into (7.3) and using (7.1), (7.2) yields (4.14), completing
the proof. O

7.2. Estimate of c¢g. Of the terms on the right hand side of (7.2), the term
9k o/ 7kl Lo (x,) has already been bounded in Lemma 4.8. We will now bound the
remaining terms. First, using a local maximum principle we will obtain an L*°
bound on the second L2-normalized eigenfunction of L. that is uniform in e. This
is our first lemma.

Lemma 7.2. There exists constant Cy, = Cy (U, d, Cy,) > 0 independent of € such
that
(7.6) SUp [[¥2.cllzo(rey < Cop-
£X

Lemma 7.2 immediately gives a bound on |12 x|/ that is uniform k. Since the
proof of Lemma 7.2 is somewhat lengthy, we postpone it to Section 8.4.

We will now show how N and T can be chosen so that we obtain the bound
for ¢ in (4.15). Now we are equipped to prove Lemma 7.3.

Lemma 7.3 (Estimate of ¢x). Fiz § > 0, let Cy = C,(U, 1) be the constant from
Lemma 4.8 with Ty = 1, and Cy, C, be the constants defined in (7.6) and (3.2)
respectively. Define Cy by

(7.7) Cn d_°f4(01,, (1 +3c ))2
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If N and T are chosen such that
2

(79) T3> maX{A(l g(a) 4 W0lose g M +1og(6C,C,CF )) }

2n
then
c;ggﬂ, forevery2 <k < M-—1.
Proof of Lemma 7.3. We first rewrite (7.2) as
(7.10) cn =1 +1Iy
where

1 3
h= = lnllis (14 5l ).

AT 3

Iy = 3| ¢z [[poe[|rafl L™ max

NH Lo ()

Notice that the choice of T and N gives that

711 I (3. 2)%(7 6) 1 o (1 30 (7.7)%(7.8) 5
(7.11) 1 < \/T 111( + 5 'r) < BV
and
(7.9) U osc 1 1

(7.12) e ML (5exp( 1l )— -

2 S Mgc,.c,0f

Therefore,
(7.6),(3.2),(4.16) 1 1 (1.12) §
—AT

(713) I < 30, Cre N OF exp (”UH"SC(% - 1)) < g
Using (7.11) and (7.13) in (7.10) concludes the proof. O

7.3. Estimate of ;. Recall from (4.14) the error grows by a factor of 3 at each
level, and so to prove Theorem 2.8 we need to ensure [] 85 remains bounded. The
main result in this section (Lemma 7.9, below) obtains this bound and shows that
the first inequality in (4.15) holds. For simplicity of notation, let

def

(7.14) O(k Kk +1) <

/ T2k dx| - (|2 kg1l Lo + ‘/ V2 k41V2 kTh+1 dT|,
Td Td

and note
Br = e 2 1Ok, k + 1).

We will bound HJM:? B; differently when the temperature 7 is low, and when
it is high. First, when the temperature is low, the exponential factor e *2:+T" is
very close to 1, and does not help much. In this case will show that the product
H;w:;l O(j,7 + 1) stays bounded, by approximating ©(k,k + 1) in terms of the
mass in each well and estimating the mass distribution using small temperature
asymptotics. When the temperature is high, the small temperature asymptotics are
not valid anymore. However, in this case Ay j is not too small, and can be used to
ensure O < 1 in a relatively short amount of time.
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We begin by stating the fact that when e is small, the second eigenfunction 5 .
is very close to a linear combination of 1o, and 1g,. To state a precise bound,
consider the subspaces E., F. C L?(r.) defined by

(7.15) F.= span{l,¢2 .}, E: = span{lq,,1q,}.
We measure closeness of 1 ¢ to a linear combination of 1o, and 1g,, by measuring
the “distance” between the subspaces F. and F. defined by
d(E., F.) < ||Pg, — Pg_Pr.|| = | Pe. — Pr. Pg.||.
Here Pg_, Pg. are the L?(m.) orthonormal projectors onto E. and F. respectively.

The next result gives an estimate on d(E., F.).

Proposition 7.4 (Chapter 8, Proposition 2.2 of [Kol00]). Let 4 be the energy
barrier defined in (4.2). For any v < 4, there exists a constant C, > 0 such that for
all e < 1, we have

(7.16) d(E.,F.) < C\yexp (?)

We will use Proposition 7.4 to estimate the two integration terms appearing in
O(k,k + 1). The bounds we need are stated in the next two lemmas, and their
proofs will be postponed to Section 8.1.

Lemma 7.5. Let ¢’ < e and define r. by

def Tg’

(7.17) re =

Te

Then,
1 1
| [ vncvnonme | <nin (Il b, Il
T

(7.18) (1 (re(2) = 7o) (7 (1) — 7e(@))) .

Lemma 7.6. Let &’ < e. Then

‘ Yo e da:‘ mln{|r5||Lx(,r5),

\/775(92 \/7'('5 Q1
(7.19) <\/ﬂ'€( \/71-5 Q2

To apply the previous two results we need to ensure the masses in the two wells
stay away from 0 (Assumption 4.3), and do not oscillate too much. We will now
show that the required oscillation condition hold provided U satisfies Assumption 4.1
holds.

) ) ‘7"6’(91) - 776(91)| + d(EavFe)HTE”L‘X’(TrE)}-

Lemma 7.7. If U satisfies Assumption 4.1 then there exists a constant Cgy such
that such that for every n € (0,1), and every i € {1,2} we have

(7.20) / 10.7.()| d= < Ciy.

Notice that (7.20) combined with our assumption Assumption 4.3 implies (2.3)
holds. This was the condition required to obtain error estimates for ASMC applied
to the local mixing model (Theorem 2.2). We prove Lemma 7.7 in Section 8.2,
below.
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Finally, we require a lower bound on Ay to ensure that in high temperature
regime we can make S < 1 in a relative short time.

Lemma 7.8. Suppose U satisfies assumptwns 4.1 and 4.2, and recall U is the

saddle height defined in (4.1). For every H > U, there exists A= A(H,d,U) > 0
independent of € such that for every e <1,

(7.21) Ao > Aexp(—g).

Postponing the proof of Lemma 7.8 to Section 8.3, we now bound [] 3; to obtain
the first inequality in (4.15).

Lemma 7.9 (Estimate of B;). For any a > 0, there exists constant Cy, = Cy(a,U)
such that for 2 < j < M, if at each step T > Co MY+ then for 2 <k < M —1,
the first inequality inequality (4.15) holds with

(7.22) Cs 2 exp(Civ (20 Cy + %) +OyCy+ CF ).

Here Cy., Cyp,, Cy and Cpy are the constants defined in (3.2), (4.4), (7.6), and (7.20),
respectively.

Proof. Given a fixed o > 0, we choose

(7.23) HY(1+a)0>0, and 7% T _ <4,
1+t
which gives that
H
Given H and «y as (7.23), there exists Ay, Cy > 0 independent of e such that
I (7.21) (4.10)
(7.25) Ay exp(—?) < A < G exp(—%), for all e < 1.
We choose a critical temperature 7., > 0 so that
~ ¥ 1
2 (— —) -
(7.26) (Cy Vv Cy)exp i

Ccr
Recall that CN’,Y is the constant defined in (7.16). We will prove the first inequality
in (4.15) holds by splitting the analysis into two cases.
Case I: 1 = ne. In this case, for every k > 2 we have nx > 1 > 1., and so
¥ 1
7.27 ex (— —) > —
(7.27) PAT0) T e v
This implies
(7.24),(7.25) A\ ()3 (7:27) 1 (14a)4r
(728) >\2,k: 2 AH(exp ( — 7)) 2 AH(7~) .
Mk (C
Therefore, for
(7.29) T >CoMUtlr ¢, = A (v G F i log(Cy €y + CF)
H
we have that for k > 2

(7.28)
(7.30) AoxT > log(CuCr+CF).
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Therefore, by Lemma 7.6 and Lemma 7.5,
e 2 1Ok, k+1)

(714) _», . T
=e "2k (‘ T2 kT dﬂE‘||¢2,k+1||Lao + ‘ Yo k12 K Thy1 dl“D
Td Td

(7.19),(7.18),(7.6) 1
< e T (Cylrnll + )

(7.30) 1 1 (3.2)
(7.3) < —————(Cyllrllz= + lInellf=) < 1.
CyCr +C7
We conclude that, if 7] > ncr, and T satisfies (7.29), then for every k,
(7.31)
(7.32) H B; = H ( _A"‘*T@(k,kﬂrl)) <L

Jj=k
Case II: 1 < ne,. Define kg by
ko = min{2 <k <M —1]|n, < e}

We first consider k > kg, in which case we have n, < 7.

Proposition 7.4, we have

(7.16) . A (7:26) 1
. d( By, , Iy, < -——) < —.
(7.33) (Eno o) < Cyesp(=0) < g
To bound O(k, k + 1), we write
(734) @(k, k + 1) == J1||w27k+1||Loc + JQ,
where

J1 = ‘/ T2 kT d|,
Td

Observe that by

Jo = ‘/ V2 k41V2,kTh41 dT|.
’H‘d

Step 1: Estimating J, and Jo. We first estimate J; and Js using Lemma 7.5 and
7.6 respectively. For simplicity, by a slight abuse of notation we write

def

ﬂk(Qi) = Wnk(Qi), 1= 1,2
By Lemma 7.6,

Mk

B A(En Fy) il + (L2 L YOOy (o)) )

V() V()
L U(By Fy)rilie + 200 - | (1) — m(20)]

Mk

(7.33) C,
(7.35) < i +2C, - [mrg1 (1) — T (1))

By Lemma 7.5, using the fact that (14 y)2 <1+ 1y when y > 0, we have

(7.18) 1
T2 < Ikl F (B, By ) + (1 (ma(Q2) = mu(20)) (micsa (D) = m(0)) )

(7.33),(3.2) O3 1
< M + (1+|7Tk+1(ﬂ1)*77k(91)|)2

C2

36) <
(7.36) -

+1+ = ’Wk+1 Q )—ﬂ'k(Ql)|.

1
2
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Hence,
7.34)
Ok, k + 192 1y |[ha s |l e + Jo
(7.35),(7.36) 1 CuC, + C’r%
(7.37) < 14(20,Cp + 5) g () — mR(Q1)] + wT

Step 2: Estimating HM:;l O(j,j + 1). By direct computation, for k > ko,

M-1
I1 5 < H® J+1)
=k

(737 chr+c7§)

(1+ (2C,,Cy + + o

3 ) - i (Q1) = w5 ()] +

; ::E T

1

AMGM( - CyCy + CF

< (1
(+ v

M-1

M-k
7 (2¢ Cw+ ) - mian () —Wj(Ql)D

j=k
(7.20) Cov(20mCy +3)  CuC, + O M ()
) g 1 m 2 T r <
(7.38) ( + Uk + i ) O,

where the last inequality uses the fact that M — k < M.

Next, for the case or k < kg, we observe that 7 > 7.. Now using the same
argument as in the case n > 7. we see,

ko
(7.39) H B <1,
j=k

provided T satisfies (7.29). This implies that
M-1 ko M-1 M-1
(7.39) (7.38)
(7.40) [Ta=I18)(118) < IIs < ¢
i=k Jj=k J=ko J=ko

Combining (7.32), (7.38) and (7.40) completes the proof. O

7.4. Proof of Lemma 4.7. Now we prove Lemma 4.7. The proof follows immedi-
ately from Lemmas 7.1, 7.9 and 7.3.

Proof of Lemma 4.7. Choose a > 0. For any given § > 0, we take

_ 1 1T llose 3
T—maX{K<log(5)+ 3+ log(M )+10g(6C’,.C’¢C’q)),

1, C’QM(HQ)’%}.

Notice that if T', N are chosen as above, then we can find constants C, = Cy (e, U) >
0 so that this choice is consistent with the choice in Lemma 4.7. Using Lemmas 7.1,
7.3 and 7.9 we obtain (4.14) and (4.15) as desired. O
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7.5. Mixing at the First Level (Lemma 4.9). In this section we prove Lemma
4.9 which bounds Errg ¢(102,2). We obtain this bound without relying on the initial
mass distribution, but instead using fast mixing at first level.

Proof of Lemma 4.9. The proof is analogous to that of Lemma 7.1 except when
applying Lemma 4.6, we choose ¢. 0 = ¢1,1, with Ty = 1. For T > 1, using (6.15)
we obtain

Erra o(¢2,2) < f1 Erry,m, (v2,1) + ¢,

where

(7.41) By = e P2aT=D (‘ /Td r1tPo 1M1 dﬂf’ b2zl e + ’ /Td o 2th2 172 d!ED
(3.2),(7. 6)_/\2 TG0 1),

and

(142) e =3faalim Il (5 + e 0CH) +

(3.2),(7.6) 3 1
< Cyp(l+=C,)—
w1+ 3 )\/N

Here C, = Cy(U,1) is from Lemma 4.8 and Cy, C, are the constants defined in
(7.6) and (3.2) respectively.
Therefore, for a given ¢, we take

4 30,0, CEeAT-D),

(7.43) CN527

(7.44) T> 1+max{ (10g(%)+10g(120¢0r0q%))7
1 1
yo (108(5) +log4c3(C, + 1)) }.

Notice that (7.43) and (7.44) imply that there exists constant C; = C1(U) such that
-1 1
N>Cng T2 Ci(log(5)+1).
It remains to check (4.17). Using the fact that

(7.6)
Erry g (d2,1) < [[P2alle= < Cy,
and (7.41), (7.42), (7.43) and (7.44) we obtain

Errg o(¥2,2) < B1 Erry g, (¥2,1) + 1

(T 3 .01 L e
L e AT I)Ci(crvL1)+C’¢,(1+§C’T)ﬁ+30¢0r0qe AT-1)
6 & O
-4 -4 -=4. O
<4+2+4 0

8. Proof of Lemmas from Section 7.

In this section, we prove Lemmas 7.2, 7.5, 7.6, 7.7 and 7.8 that were used in
Section 7 to prove Lemma 7.9.
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8.1. Estimation of integrals in 5; (Lemma 7.5 and 7.6). We first prove
Lemmas 7.5 and 7.6. Using Proposition 7.4, the proofs of both these lemmas is a
direct calculation.

Proof of Lemma 7.5. Step 1: Using the Cauchy-Schwarz inequality and recalling r.
is defined by (7.17) we obtain

‘/ d}Q,E’l/)Q,E/TETrE dJC‘ = ’/ 1/12,51/12,5/7%/ d'r‘
Td Td
(8.1) < N2ellee o lze L2y = [1¥2,e

It remains to compute |[¢2c||L2(x ). Clearly,

| L2y

1

2 1
L2(m.) = (/ (w2,8)2rsﬂ'e diE)z < “T6||zx(ﬂs)~
Td

To prove (7.18), we need a better bound when ¢ is small.

(82) HwQ,s

Step 2: We decompose 15 . into the sum of the projection into E. and Ej, where
E. is defined in (7.15). Explicitly,

V2.(x) = a1.elq, + azclq, +ve(2),
where ve € EX. Thus we can bound [[¢.c||r2(r_,) by

(8.3) [

|L2(ﬂ'5/) < ||a1,5101 +a2,51Q2 L2(7,/) + HUEHL2(‘IT5/)‘
Step 2.1: Solve a1 . and as . Since de Yo ()T (x) dz = 0, we have
(84) CLLEWE(Ql) + ag,gﬂ'e(Qg) =0.

Moreover, since v, is orthogonal to 1o, and 1q, in L?(7.), we define

(85) bs d:ef \/(a1’€)2ﬂ'5(91) + (aQ’E)zﬂ'E(Qg) = 4 /1 — ||’U5||%2(ﬂ_5).

Then we solve a1 . and as . using (8.5) and (8.4), whose solutions are

_ e ({2) _ e ((2)
a1, = be are = —b:
(8 6) WE(QI) r 7T'a(Ql)
_ (1) o (1)
a2 e = be a2 ¢ = be .
me(§22) T (§22)
Step 2.2: Now we compute
2 (0 7 (0
Hal,slﬂl +az.1q, ||L2(7Ts/) - bg(ﬂ':gﬂj;ﬂy(gl) * WZEQ;;WEI(QQ))

= 021+ (7e(92) — 7 () (7o (%) — 7-()))

®.7) O (1) — 7 (00)) (e (1) — (1)),

Here the second equality is obtained by substituting
Ter (i) = e () + (7 () — (), i=1,2,

and using the identity Z?Zl(WE/(Qi) —m(Q;)) =0.
On the other hand, using the fact that

lvell2(ry = 1P, (2.l 22y = (I = Pp.)(W2.0)l| 2.
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(8.8) = |[(Pr. = Pe. Pr,)(Y2.c)l2 () < [|PF. — Pp, Pr.|| = d(E:, Fy),

we obtain

3 1 (8.8) 1
(8.9) llvellzzr = ( / (@rem)” < el lvellzage < el fd(Ex, F2).

Therefore,
(8. 1) (8.3)
’/d Yo P2 o1 TeTe dd)’ ||CL1 elo, +az:lq, ||L2(7r ) + ||Ue||L2(7r€/)
']1‘ €
(8.7),(8.9) 1
(8.10) S 1+ (7 (Q2) — 7= () (mer (1) — 7 () + [Ire | F d(Ee, F2).
Combining (8.2) with (8.10) completes the proof of (7.18). O

The proof of Lemma 7.6 reuses the arguments in the proof of Lemma 7.5.

Proof of Lemma 7.6. An easy bound can be obatined by directly using Cauchy-
Schwarz as follows

(811) | / nemerda| = | / Wereme de| < [aelaenn el ey < lircllze=-
T T

To prove (7.19) we need a more careful bound when ¢ is small. Using the argument
in the proof of Lemma 7.5,

/ '(/)2,57'['5’ dx = / w2}a(r€ — 1)71'5 dx
Td

(8:3).(8. / ( @ o \/r
\/7Ts Q) \/7r6
(\/7(6 o) \/ﬂs %) ) S(mer (§) — e (1)) +/Td verem. dx

where the last equality we use the fact that v. € EX and ZZ 1 (e (Q4) =7 () = 0.
Therefore,

(8:5),(88) / \ /7 (O \/71'5
[ pemeda| < (m Ao ) - re(52) = )

(8.12) +d(Ee, Fe)||rel poe (ro)-
Combining (8.11) with (8.12) yields (7.19), as desired. O

1Q2 + ’U5> (re — 1)m. dx

8.2. BV bounds on 7.(9;) (Lemma 7.7). In this section we prove Lemma 7.7.
As we stated above, we prove Lemma 7.7 by calculating the derivative of 7.(£2;)
with respect to €. It turns out that the derivative either has a sign or stay bounded
as € — 0, which implies that 7.(€;) is a BV function.

Proof of Lemma 7.7. We only prove (7.20) for i = 1. In fact, if (7.20) holds for i = 1,
then from the identity 7. (22) = 1 — 7.(Q1), we see that (7.20) holds for 7. (Q2) for
the same constant Cgy.

Using the definition of 7.(€Q;), and the fact that U € C®, we see that () is
differentiable in £. We compute

- f exp(—*)dm
Oeme (1) = O: <f91 exp( ? )dx + fQZ exp( _g)dgc>
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1 (Jo, o= D0 o) (fo, exp(—2) da)

F (Joy expl(-Lydo + fy expl-Y)do)’
1 (o= de) (fo, exp(=L) de)
“(foy exp(—L)dr + iy exp(~ ) da)

We now split the analysis into two cases: U(Zmin,1) = U(@min,2) and U(zmin,1) <
U(xmin,Q)-

Case I U(Zmin,1) = U(@min,2). We start by estimating the integrals involved in
(8.13). According to Proposition B4 and Remark under the proof of Proposition B4,
(page 289-290) in [Kol00],

(8.14) /Q eXp(—g)de = (2me)

(8.13)

4
2

g(ci + 0(5))7

where ¢; = ¢;(U) depends on derivatives of U up to order 3 evaluated at Zmin i, and
is independent of €. The O(e) involves constants that may depend on derivatives of
U up to order 6 evaluated at iy ;. On the other hand, Proposition B2 in [Kol00]
guarantees

U Tmin,i
——

a €Xp c .
2 14+0()), foriel, 2.
det VzU((Eminﬁ')( ( ))

(8.15) j@ =4 do = (2me)
Therefore, when ¢ is sufficiently small, combining (8.14) and (8.15),
1 (561 + 0D (Aet(V2U (min 2)) )
P (S pldet(V2U (i) )
1 (52 + 0E)(AH(V2U (i) )

(B etV ) )

We now discuss two different cases.
Case I.1: ¢;det(V2U (#min.2))) "% — c2det(V2U(wmin71)))*% = 0. In this case,

10.7.(Q) = O(1), & — 0.

65775<Ql) =

MBS

Since the function € — 9.m:(21)) is a continuous function on (0,1], it must be
bounded which implies (7.20).

Case 1.2: ¢;det(V2U (Zmin.2))) 2 — codet(V2U (Zmin1))) 2 # 0. Without loss of
generality we assume ¢;det(V2U (Zmin2))) "2 — c2det(V2U (#min.1))) % < 0. In this
case there must exist some e, > 0 such that 9.7 (€21)) < 0 for all € € (0, ec,]. Thus,
for any 1 € (0,ecr),

Ecr

(8.16) /”@mmmwz—/ Do () de = 7y () — 7o, () < 1.
n

n

For € € [ecr, 1], the function € — 9.7 (£21)) is continuous and hence bounded. This
immediately implies (7.20), concluding the proof of Case I
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Case II: U(Zmin,1) < U(@min,2)- Using (8.14) and (8.15) we see

(/Q e—‘ide)(/Qze—‘! d) - (/Q e—%de)(/Q e do)

= (27T€)de_U(zm‘“*2)/s< Ofc)

\/det(VQU(xmin,g))
_ (U(:Emin-,Q) + 0(6)) (1 =+ O(S)))
\/det(VQU(l‘min)l)) ’
which is negative when ¢ is small. Using this in (8.13) implies implies d.7-(£21) < 0.
Using (8.16) and the same argument as in Case 1.2 finishes the proof. O

8.3. Lower bound of the second eigenvalue (Lemma 7.8). In this section
we prove Lemma 7.8. We begin by introducing the notion of Poincare constants.
Let & be an Euclidean space, and p be a probability measure on X. We say p
satisfies PI(p) if it satisfies the Poincaré inequality with constant g. That is, for all
test functions f € H'(u) we have

R
Var, (1) < 5 [ 197 dp.

Here Var,(f) is the variance of f with respect to the measure p and is defined by

Var, (1) * | (f— / fdu>2 .

Corollary 2.15 from Menz and Schlichting [MS14] provides bounds on the Poincaré
constant for the Gibbs measure in our setting.

Proposition 8.1 (Corollary 2.15 in [MS14)). If U satisfies Assumption 4.1 and 4.2
then w. satisfies PI(p.) with

1 wg(m)wg(ﬁz)\/ldet(VQ(U(Sl,z)))leX U(s1,2) o U/% g
Qag (2me)e ! A= (51,2)] p( £ >/X o

where A\~ (s1,2) denotes the negative eigenvalue of the Hessian V(U (s1,2)) at the
communicating saddle s1.2.

We note that in [MS14] their domain is the whole space R?. The proof can
easily be modified to work in the setting of the compact torus. Proposition 8.1
immediately implies Lemma 7.8, as we now show.

Proof of Lemma 7.8. Since
/ |V f|?7. do = / fL.f - dx
X X

we immediately see Ao . > 0.. Thus, Proposition 8.1 implies

lim sup — (e log(A2.c)) < limsup — (e log(o.)) < U.
e—0

e—0

Thus, for every H > U > limsup, o —(clog(As.c)), there exists e such that
A2,e = exp(—£) for every £ < ey Choosing

Ap = min{ inf ()\Q’Eexp(g)),l}'

eg<e<l

immediately implies (7.21) as desired. d
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8.4. Uniform boundedness of eigenfunctions (Lemma 7.2). In this section we
prove Lemma 7.2. In the proof, the constant C' = C(U, d, C,,) may change from line
to line. The main tools are local and global maximum principles. In particular, we
first find proper compact neighborhoods of the local minima and use local maximum
principle to show that 5 . is uniformly bounded in € in these neighborhoods. Then
we apply global maximum principle to show the uniform boundedness outside these
regions.

We start by a description of those compact neighborhoods. Define the R; > 0,

i€ {1,2} as
(8.17) R Y sup{r ’ B(Zwmin,i ) € Q, sup U(z) — U(@min,) < }

2E€B(Tmin,i:T)

00|

and then define

Bi == B(xmin,iv R7)7 Bl = B(-Tmin,ia

3R;
=)

We will show )3 . is uniformly bounded in ¢ both on B; U By and T\ (B1 U By).
We first bound 7 . in the regions B; and Bs.

Lemma 8.2. There exists a constant Cq = Co(d,U,Cy,) and € = £(d,U) such that
for every

1
‘ < mind L i 7 &
(8.18) 0<e mm{ — min{Ry, Ry} 5}
we have
34 .
(8.19) Ve € B;, |thae(z)—aic] <Cy exp(—ZZ), 1=1,2.

Here a1 and az are defined as in (8.6).

Proof of Lemma 8.2. Fix i =1 or 2, for each x € B, there exists y € B; such that
x € B(y,¢€). By the triangle inequality, it follows that B(y,2¢) C B;. Thus,
(8.20) B(y,2¢) C B; C Q.
First notice that the function 2. — a; . satisfies
(Le - )\2,5)(1?2,5 - ai,s) = >\2,6ai,€~

Thus using [GTO01, Corollary 9.21], there exists dimensional constant C' such that
for every y € B; for which B(y,2¢) C B;, we have

1

1
—_— Poo(x) —a; |2 dz)’
B 7] S o [P25(0) — il o)

sup )|¢2,a($) - ai7a| < C((

z€B(y,e

(8.21) + |/\2,8ai78|>.
Now we bound fB(y 2¢) |h2.c(x) — ai | dr that appears on the right hand side
of (8.21). Using the fact that when (8.18) holds, for i = 1,2,

/W e~ dr = (/Qi e % d;v) : (1 + fjrfzﬂé_e:ijgc)

() () (] o

i i

S
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d _ U@min,i)
2e €

(8.15)
(8.22) < C(2me) :

we have that

/ WJQ,E - ai,€|2 dx = / W]Q,E — Qe
B(y,2¢) B(y,2¢)

U(z) _u
< ( sup e = )/ |1/12,s _ai,alQiPe =dz
B(y,2e)

z€B(y,2¢)
(8.20) )
< (/ e e dx) ( sup e / |V2.e(x) — a1, |” dre(z)
Td zGB
(8.22) 4 V() U @min.i) 2
< C(27me)2 ( sup e )H% e —a1elo, — a2,5192HL2(7rE)

z€B;

(8.8) 4 U(2)=U(min,i) 2
< C(27e)2 ( sup e c )d(Es;Fa)

2€B;

(7.16) U(2)=U(@min,i) 7
< 0(277&')%( sup e%) exp(—l)
2€B;

(8.17) 4 134
(8.23) < C(2me)% ex p<—§),

where the second last inequality we use (7.16) with v = Z4.
Notice that there exists constant £ = &(d,4) that whenever ¢ < ¢,

(8.24) exp(—g—g) (2775)%
Thus, for € < €,
(8.23),(8.24) 34
(8.25) / [, — aic|? do < C(2me)? exp(—l).
B(y.2¢) 2e

Therefore, plugging (8.25) into (8.21) gives

(8:25) , C(2me)? 39\ 2
sup |tae(z) —ar1e| < (())| exp(f—v)> s ClA2c01 6]

z€B(y,e) |B(ya 2e 2e
(4.10),(8.6), C'(2me)? 39\ 2 el
< D S =7 1
h ( (2e)d exp( 2 )) +CCm exp( 8¢ )
< Ca exp (_ 3i> ’
4e
which implies (8.19). O

We will now bound 5. on T¢\ (By U By) by first bounding the L.-harmonic
extensions of 12 . and then bounding the eigenfunction of L. in T\ (By U By) with
inhomogeneous Dirichlet boundary conditions specified by )2 .. For simplicity of
notation, define

Q= T\ (B, UB,).

Lemma 8.2 can be used to immediately bound the L.-harmonic extensions of s .
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Lemma 8.3. Fori=1,2, let félg be the solution to

Lefl(y) =0, yed
52 (y) = 1/)2,8(?4)7 Yy e GBZ
2 =0, y € (0B UBy) \ 9B;.
For every e satisfying (8.18) and every y € Q we have
@] < la, 3
(8.26) 520 < Jaicl + Caexp(=32).

Proof. Observe that fézg satisfies L. fég(y) = 0 on . Thus, by weak maximum
principle [Eval0, Section 6.4.1, Theorem 1],

i i (8.19) 34
suplfod| = sup |fgll= sup [doo| < laie| +Ca exp(—Z),
Q dB1UOB> OB1UOB> £
which implies the inequality (8.26). 0

We now bound the eigenfunction of L. in € with inhomogeneous Dirichlet
boundary conditions specified by ¥ ..

Lemma 8.4. Fori=1,2, let f solve

(Le = A2e) fa(y) = O, ye
Ialy) = P2e, y € 0B,
fy) =0, y € (0B, UOBy) \ 0B;.
There exist g > 0, Tj > 0 such that for
. 7’3’ min{Rl, RQ} _) def
N < ) ) ) = )
(8.27) c mm{go 81og(2C,TY) 12 5} °1
we have
37 ~
. < A _2 .
(8.28) W] <2(Jaicl + Coexp(-T ). Wye

Here C, is the constant in (8.19) and C, is a constant such that (4.10) holds
with v = 74/8.

Proof of Lemma 8.4. We only prove when ¢ = 1. The proof in the case i = 2 is
identical. Let fy solve

LefO(y):Oa yGQ
foy) =v2., Yy €OB
fO(y):Oa y€332-

Let 6f\ = fa — fo. Then 0 f) satisfies

Lsfr(y) =Xecfaly), yeQ
dfaly) =0, y € 0B U 0OB,.

Let 7 be the first exit time of X¢ from By U By. We know g(y) = EY7 solves the
Poisson equation

Lsgszlv yEQ
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ge =0, y € 0B1 UJBs.
Thus if M/ < sup,cq | fa(2)] < oo, the comparison principle immediately implies

sup|5fx\ Ao e M’ sup e

Since fx = dfx + fo, we see
(8.29) M’ < ||f0||Loo(Q) + )‘276M/||98HL°°(Q)'

According to [FW12, Corollary of Lemma 1.9, Chapter 6], for £ smaller than
some €g, there exist constant Ty and ¢ such that
&2

(8.30) sup B'7 < Ty + — < Tp + 60 =
yeQ
Notice that the choice (8.27) ensures that (8.18) and
1
(8.31) e<eo, M T < >
which implies that
(829 |l foll oo () (8:30),(8:31) || fol| o @)
Tl Noellgellie@ 0 122 Th
(8.26),(8.31) 34
< 2(|ai75\ +Caexp(—4—7)>. O
€

Proof of Lemma 7.2. We discuss two cases, € < €1 and € > &1, where ¢ is defined
n (8.18).
Case I: ¢ < e1. For y € By U By, we apply Lemma 8.2, to obtain

~

(8.25) 35
(832  swp Pne®) < max{larel,laxcl} + Coexp(=7L) < O+ C
y€EB1UB2 c

To obtain the last inequality above we used the fact that
(8.5),(8.6) Q) (4.4)
(8.33) max{|a ¢, azc]} < max{ Ve(d) V/me( } < Chy.

\/Ws(Ql \/7'(5

For y € Q, we write

1/}2)5 - (1) + wQ
where wgll solves that
(Le — M. )uiil(y) = yed

(” L(y) = o, y € 0B,

(” Ly) = y € (0B UB,) \ 0B,;.
Applying Lemma 8.4 to wé gives

(8.28) 34 (8:33)

(8.34)  sup |thoc(y)] < 2max{|are|, lazc|} + Ca eXp(_E) < 20 + C.

yeQ

Combining (8.34) and (8.32), we obtain that for 0 < ¢ < ¢1, there exists C' =
C(U,d, C,y,) independent of e such that [|¢g || oo (pay < C.
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Case II: € > ;. According to [GTO1, Corollary 9.21], for y € T¢,

C
sup |2 (z)] < (7
z€B(y,e) | ? E( )‘ |B(y7 2€)| B(y,2¢)

¢ U(2)=Unmin )
S \[B(y,29)] : <(@)]* dre
<|B(y,25)| <f§§e )/W [2.c ()| dr. ()

—4d ||U||osc
= C 2 (7
(e1) 2 exp 2,

We conclude from the above two cases that (7.6) holds. O

[Yo.e(@)? da)

Nl

) — C(U,d,C,).

9. Energy valley estimates

9.1. The Mass Ratio (Lemma 4.4). In this section we prove Lemma 4.4, whose
main idea is that when ¢ — 0, the value of integral [, exp(—U/e)dz is mainly
determined by landscape near the local minima.

Proof of Lemma 4.4. We will prove that there exists C' > 0 independent of 7y
such that
FE(Ql) <C WE(QQ)

(9.1) sup , sup
£€[Nmin,Mmax] 1€ (QZ) €€ [Nmin,Mmax] T (1)

Combing this with the fact that

1 Q Qy) (44) of
sup < sup T ET@2) O e o
€ minimax] Te(§4)  c€fmin mmax] e ($2:)
for i € {1,2}, we obtain (4.4) as desired.
To prove (9.1), we note that Assumption 4.1 implies, via Laplace method as in
(8.15), that there exists eo > 0 such that for all € < g2 we have

1

(1) (8.15) (det(V2U (min1))) 2
e (Q2) (det(V2U (2min,2))) % exp ( (L mina) U @mn.2)l)

€

+O(e),

The assumption (4.5) further shows that for all € € [fmin, €2], we have
(@) _ (det(V?U (@mina))) "
775(92) h (det(VZU(zmin 2)))7%
217
and T () > (det(V=U (#rmin, 1))) 0.
Te (QQ) (dCt(v2U(zmm 2))) CXP(OZ)

Thus, making 5 smaller if necessary, for every € € [Nmin, 2], we have

+ O(e),

M\»—l

1

1 (det(VPU(%min,1))) "2 < () < 3 (det(V?U (2min,1)))~
2 (det(V2U (Zmin2))) "% exp(C)  Te(Q2) 2 (det(V2U (Tmin2)))~

Since € — 7 (£21)/7m-(€2) is continuous and positive on the interval [e2, Nmax], We
obtain (9.1) as desired. O

1
2
1
2

Lemmas 4.4 and 7.7 immediately shows the following corollary, showing the
finiteness condition (2.3) holds provided Assumptions 4.1, 4.2 hold and the wells
have nearly equal depth.
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Corollary 9.1. Assume the function U satisfies Assumption 4.1, Assumption 4.2
and there exists Nmin = 0 and Cy < 0o such that (4.5) holds. Then for any finite
Nmax > Tmin the constant Cppy in (2.3) can be bounded above in terms of U, Cy
and NMmax, but independent of Nuin -

Proof of Corollary 9.1. Notice that the inequality (7.20) applied to U/nmax gives
that there exists constant Cgy independent of 77 such that for i = 1,2,

TImax ~
(92) / |85W5(Qi)| de < CB\/.
n

Therefore,

Nmax Nmax [P (4.4),(9.2) -
/ |8€ IHWE(Qi)|d€ = / Mdé < O,znOBv.
n n e (§2:)

Taking n — 0 on the left hand side finishes the proof. O

9.2. Uniform boundedness of r;. We recall that C, defined by (3.2) is the
maximum of the ratio of the normalized densities. Since this may be hard to
estimate in practice, we now obtain a bound for C). in a manner that may be easier
to use in practice.

Lemma 9.2. Suppose M is chosen by (2.4), and choose ng, ..., na so that ny = 1
and 1/m, ..., 1/ny are linearly spaced. If C,. = C.(U/m,v) is defined by (3.2),
then C, satisfies (3.3).

Proof of Lemma 9.2. Without loss of generality, we take U = Uy , where U is
defined in (3.4). Then we have n; =1 and U > 0.
Observe that for every k=1,...,.M — 1, x € X, since U > 0, we have

6.23) Zi o (_( 1 1)U )< Zr fxexp(;—g)dy

9.3)  ru(z i = B '
(9.3) o ( 5 Mes1 Mk Zk+1 erXp(n;fl)dy

Now we bound the ratio on the right hand side of (9.3). For ¢ > 0, the constant
sc defined in (3.4) now becomes

k+1

o f{U>c} e Vdx

Udax

= < 00.
‘ f{Ugc} e

Then for ¢ < 1,

Jwsa e % dn < exp(c(1 - 2)) Jivse) e”Vdx _ Jesa e Ydx
f{U<C} e ¢ du exp(c(l - %)) f{Ugc} e~Vdx f{Ugc} e VUdx
Therefore, for n, < m,

_u _u _u o (94 _u
/e "kdxz/ e "kdx—i—/ e " dr < (1—|—sc)/ e " dx
X {U<c} {U>c} {U<e}

104 ( U U

:(1+sc)/ e T ) gy
{U<c}

cavsmlelG - D[,

(9.5) < (14 sc) exp(ev) ( /

X

(9.4)

= Sc.

__u_
e Tkl dx).
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Here the last inequality is true because the choice of M and n, (in (2.8) and (4.13)
respectively) ensures

1 1
—— <.
Tk+1 Nk

Since 1y, is always positive, using (9.5) in (9.3), we obtain that for every ¢ > 0,

sup  ||7xllze < (1 + sc) exp(cv).
1<k<M—1

Taking infimum on the right hand side gives (3.2) with C,. defined as in (3.3). O
9.3. Dimensional dependence of constants for separated energies.

Proof of Proposition 3.1. We only need to consider the case where d > kg, where
we recall kg is the constant in (3.8). According to (3.5) and (3.6), it suffices to show
that both C, and Cppy are independent of d. For Cygv, we note that (3.7) implies
that we can take the domain €;,7 =1,...,J in the form

Qj = Q] X Rd_[i7
where Qj, j=1,...,J are subsets in Rd, corresponding to the domain of measure
proportional to eV, Then, Fubini’s theorem shows that for any j =1,...,J and

any € > 0, we have
Jo €700/ da
— J _ ,
JpaeVo/edx

which is independent of d. Now using (2.3) shows Crpy is also independent of d.
Now it remains to find an upper bound of C,. which is independent of d. Since
Uy is positive, we note

Te (QJ)

Ug Vo
(3.1) ;e "k dx _g€ " dx
I7kllLexy < Ti-Ta, where Ty = 7fRd R , Tp = —fRd - ——
Jpae "t dx Jpa—ae TeT da

Given our choice of 7, we bound 77 by

9:5) ~ c\ _ . o e
T < inf(1+50(00) exp(5 ) < inf(1+s0(To)e
where
_ ) e~0o dg
sc(Up) = —f{UO>C} = < 00,
f{Uggc} e~ Vo dx

which implies that an upper bound of T} only depends on Uy and is independent

of d.
Similarly for T5, we compute

def f{V0>c} eV dy

Vo dg”

(9.5) c
T, < ig%(lJrsc(Vo))exp(f), where  s.(Vp)

d a f{vogc} €

Using (3.8) when ¢ > «,,, we compute
—ao\x—w0|k° dx

38 fiusa €
SC(VO) S {¥h>e) e—aolz—zo|F0 4

f{Vogc}
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ko
e~ olz=z0l*0 go
Qi —Qp f{a0‘1*$0|k0 +a,>c}

—ag|z—zo|*0
f{a0\17$g|k0+au<c} € dx

ko
—a, e=olzl™ dq
o f{\$\>(%)”’“0}
_ ko
f{‘z‘g(%)l/ko}e Ct0|$| dx
Oy — d _
e D50 c— au) eu—a

r(i)—r(%,c—au)\ RC

L (5 c—aw)

(9.6) -

By the estimate of incomplete gamma function [Gab79, Satz 4.4.3], when % >1

and ¢ — ay > %, we have

F(%,c - au> < k%exp(—(c— o)) (c— au)%—l.

On the other hand, Stirling’s formula gives

r(g) = en(f)” e (),

for a positive constant Cr. We now choose ¢ — «,, = d/kg, where 7 > 1 is such that

- ~ 3 2
(9.7) v —log(v) = 3 + log(cr)
This gives
a1
F(%) S CF(%) ko 2 GXP(*%)

L(ic=ou) ~ L exp(—(c — au))(c — ay) 0!

#=d/ko Cr exp((u —1z—= log(z) (z— 1) log( ))
(9 7)
(9.8) > Cr exp((u — log(v )z)
where the last inequality we use the fact that z = kio > 1. Therefore, for this choice
of ¢,
(9.6),(9.8)
s¢(Vo < et

which implies that

14 | 407 14
Ty < (1+ se(Vo)) exp(— + ") < (1 4 eanmaw) exp(— n Dau),
ko d ko
which is independent of d. O
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