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Abstract. We study a sequential Monte Carlo algorithm to sample from the
Gibbs measure with a non-convex energy function at a low temperature. We
use the practical and popular geometric annealing schedule, and use a Langevin
diffusion at each temperature level. The Langevin diffusion only needs to run
for a time that is long enough to ensure local mixing within energy valleys,
which is much shorter than the time required for global mixing. Our main
result shows convergence of Monte Carlo estimators with time complexity that,
approximately, scales like the forth power of the inverse temperature, and
the square of the inverse allowed error. We also study this algorithm in an
illustrative model scenario where more explicit estimates can be given.

1. Introduction
We show that under general non-degeneracy conditions, the Annealed Sequential

Monte Carlo algorithm (detailed in Algorithm 1) produces samples from multimodal
distributions with time complexity that is a polynomial in the inverse temperature,
with a precise dimension independent degree. We begin (Section 1.1) with an
informal description of the algorithm, and our results. Following this we survey
(Section 1.2) the literature, provide a gentle introduction to the area, and place
our work in the context of existing results. Our main results are stated precisely
(Section 2) below, and the remainder of this paper is devoted to the proofs.

1.1. Informal statement of main results. Let U : X → R be an energy function
defined on a configuration space X . Consider the Gibbs distribution πε whose
density is given by

(1.1) πε(x) = 1
Zε
π̃ε(x), where π̃ε(x) def= e−U(x)/ε and Zε

def=
∫

X
π̃ε(y) dy.

where dy denotes some fixed measure on the configuration space X . In many
applications arising in physics, the parameter ε > 0 is proportional to the absolute
temperature. We adopt (and abbreviate) this terminology and will subsequently
refer to the parameter ε as the temperature. In this paper the space X will typically
be the d-dimensional Euclidean space Rd, or the torus Td.

Our aim is to study convergence of an Annealed Sequential Monte Carlo (ASMC)
algorithm. This is a Sequential Monte Carlo (SMC) algorithm (see for instance [CP20,
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Chapters 3.3, 17], or [Liu08, Chapter 3.4]), where particles are moved through a
sequence of interpolating measures obtained by gradually reducing the temperature
according to a specified annealing schedule. We use the practical and popular geomet-
ric annealing schedule where the inverse temperatures are linearly spaced [SBCCD24].
Our main result shows convergence of Monte Carlo estimators using ASMC with
time complexity that, approximately, scales like the forth power of the inverse
temperature, and the square of the inverse allowed error.

Before stating our main result, we briefly recall the ASMC algorithm.
1. Choose a finite sequence of temperatures η1 > η2 · · · > ηM (called an annealing

schedule) so that πη1 is easy to sample from and ηM = η is the desired final
temperature.

2. Choose a family of Markov processes {Yε,·}ε>0 so that for every ε > 0 the
stationary distribution of Yε,· is πε, and fix a running time T > 0.

3. Choose arbitrary initial points y1
1 , . . . , y1

N .
4. For each i ∈ {1, . . . , N}, run (independent) realizations of Yη1,· for time T ,

starting from yi1, to obtain xi1.
5. Assign each point xi1 the weight π̃η2(xi1)/π̃η1(xi1). Choose (y1

2 , . . . , y
N
2 ) to be a

resampling of the points (x1
1, . . . , x

N
1 ) from the multinomial distribution with

probabilities proportional to the assigned weights.
6. Repeat the previous two steps, reducing the temperature until the final

temperature is reached.
This is stated more precisely as Algorithm 1 in Section 2.1, below. Clearly if

we choose T larger than the mixing time of Yη,· at the final temperature η = ηM ,
then the above procedure will produce good samples from πη. This, however, is
not practical – when U is not convex the mixing time of Yη,· grows exponentially
with 1/η. When η is small waiting for the mixing time of Yη,· at the desired final
temperature computationally infeasible. We will instead show that we only need
to choose T to be larger than the mixing time of Yη1,· at the initial temperature
η1. Since η1 is large, this is computationally tractable. The price we pay is only
polynomially many temperature levels M , provided we use the popular geometric
annealing schedule, [VCK25], where the inverse temperatures are linearly spaced
(and hence the densities form a geometric sequence).

Roughly speaking, our main result is as follows.

Theorem 1.1. Suppose U : Td → R is a non-degenerate double-well function with
wells of equal depth (but not necessarily the same shape). For ε > 0 let Yε,· be a
solution to the overdamped Langevin equation

(1.2) dYε,t = −∇U(Yε,t) dt+
√

2ε dWt,

where W is a standard d-dimensional Brownian motion on the torus. There exists
constants CN , CT , depending on U and d, such that the following holds. For
any δ > 0, η > 0, choose M,N, T according to

M =
⌈1
η

⌉
, N = CNM

2

δ2 , and T ⩾ CT

(
M2 + log

(1
δ

)
+ 1
η

)
and a suitable geometric annealing schedule {1/ηk}k=1,...,M so that η1 is sufficiently
large, and ηM = η. Then the points x1, . . . , xN obtained from ASMC (with the



POLYNOMIAL COMPLEXITY SAMPLING FROM MULTIMODAL DISTRIBUTIONS 3

parameters above) are such that for any bounded test function h we have

E
( 1
N

N∑
i=1

h(xi) −
∫
Td

h(x)πη(x) dx
)2

< ∥h∥2
oscδ

2.

Theorem 1.1 shows that the time complexity of obtaining good samples from πη
using ASMC is polynomial in 1/η, with a degree independent of dimension. We
note that the drift in (1.2) is independent of temperature ε, and so computational
complexity of ASMC is proportional to MNT . In contrast, the time complexity of
obtaining good samples by directly simulating the process Yη,· is eO(1/η).

The assumption that U has a double-well structure is mainly to simplify the
technical presentation. Our proof will generalize without difficulty to the situation
where U has more than two wells, at the expense of several technicalities that
further obscure the heart of the matter. As a result we only present the proof of
Theorem 1.1 in the double-well setting.

We assumed that the wells have equal depth above only for simplicity. Our main
result (Theorem 2.8) will generalize of Theorem 1.1 so that it applies to a large class
of double-well energy functions, where the low temperature sampling problem we
study is a nondegenerate in the sense that each well has a non-negligible fraction
of the total mass. The precise assumptions required are laid out in Section 4.1. In
particular, Lemma 4.4 shows that if the wells have nearly equal depth, then the
problem is nondegenerate and Theorem 2.8 applies.

We also remark that Theorem 1.1 requires no prior knowledge of the location
or the depth of the wells. In particular, if the target distribution is a mixture, we
require no knowledge of the decomposition of the domain into components of a
mixture, and only require access to the energy and its gradient.

The main tool used in the proof is a spectral decomposition. This decomposes
any initial distribution into components corresponding to the (target) stationary
distribution, a mass imbalance between wells, and higher order terms. The higher
order terms decay exponentially and do not present a problem. The term corre-
sponding to the mass imbalance extremely slowly (at a rate that is exponentially
small in the inverse temperature), and is the bottleneck.

This, precisely, is the term that can be eliminated using ASMC. At high tem-
peratures, all terms converge rapidly, and it is easy to obtain samples with a small
mass imbalance. The resampling step used to move between temperature levels does
not disturb this much, resulting in a distribution that has a small mass imbalance
at a lower temperature. Iterating this should, in principle, yield samples from
distributions that have a small mass imbalance at every temperature level. This is
the main idea behind of the proof of Theorem 1.1, and is presented in Section 4,
below.

The details of the proof, however, are somewhat involved. To precisely quantify
the error at each level, we require precise bounds on the shape of the eigenfunctions,
and how they change with temperature. In particular, the proof relies on bounding
the inner-product between the normalized eigenfunctions at successive temperature
levels, which involves dimensional constants that are not explicit. As a result, the
constants CN , CT in Theorem 1.1 are not explicit. Moreover, the assumption that
the state space is the compact torus Td, while inconsequential to issues arising from
of multimodality, is required to ensure the validity of some of our spectral estimates.
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To obtain a better understanding of the dynamics, and a more explicit constants,
we also study ASMC in an idealized scenario. In this idealized scenario, we assume
the domain is divided into J energy valleys, and we have access to a Markov process
that mixes quickly in each valley but very slowly globally. In this case (Theorem 2.2,
in Section 2.2, below) we also prove polynomial time complexity bounds, but obtain
more explicit constants, and control their dimensional dependence.

We numerically illustrate some aspects of the performance of ASMC algorithm
in Section 2.4. In particular we highlight how the algorithm adjusts the mass
in each valley, which can change as temperature changes and we investigate how
the accuracy of the algorithm depends on the number of levels M , under fixed
computational budget. A reference implementation is provided in [HIS25].

1.2. Literature review. We first recall the widely used sampling techniques for nice
(e.g. log-concave) measures and then discuss the literature on sampling multimodal
distributions.

1.2.1. General sampling algorithms. Perhaps the simplest practical technique for
drawing samples of the target distribution π ∝ exp(−U) is based on rejection
sampling. One first draws samples of distribution µ from which exact samples can
be obtained easily (say a Gaussian or a Lebesgue measure on a square), and is such
that π is absolutely continuous with respect to µ. One then accepts these samples
with probability proportional to dπ

dµ . If the measure π is much more concentrated
than µ the acceptance probability becomes very small. For a Gibbs distribution
in d-dimensions at temperature η, the acceptance rate is typically proportional to
1/ηd, making the cost of this method prohibitively expensive.

Thus in high-dimensions, a different approach is needed. Most of the widely used
methods are based on a stochastic process whose invariant measure is π. The largest
class of these are Markov Chain Monte Carlo (MCMC) methods which include
the seminal Metropolis-Hastings algorithm, Langevin Monte Carlo, Metropolis
adjusted Langevin Algorithm (MALA), Hamiltonian Monte Carlo (HMC) and
others [SAAG24]. We now briefly recall some of the main algorithms, as any of
these can be used in the step 2 of ASMC (the Markov transition step), provided it
rapidly mixes within the modes of the distribution.

The Langevin Monte Carlo (LMC) algorithm relies on updating individual
particles following the overdamped Langevin equation (1.2). The law of the solution,
denoted by µεt , satisfies the Fokker–Planck equation and converges to the stationary
distribution πε exponentially as t → ∞. If the energy function U is uniformly
convex, and satisfies αI ⩽ HessU , then it is known that the 2-Wasserstein distance
converges exponentially with rate α (i.e. W2(µεt , πε) ⩽ exp(−αt)W2(µ0, πε)). To
use this algorithm in practice, one needs to discretize the SDE, which is often done
using the explicit Euler–Maruyama scheme. Convergence of the time discretized
SDE were proved in [VW19] using KL divergence, and in [Che23] using W2.

The general Langevin dynamics allows for inertial effects and is modeled by
a system of an SDE for momentum and ODE for position. This property is the
foundation of popular Hamiltonian Monte Carlo (HMC) algorithm, which extends the
configuration space to include the momentum variable p, and considers Hamiltonian
dynamics whose invariant measure is πH ∝ exp

(
−U(x) − 1

2 |p|2
)
. Observe that the

first marginal of πH is exactly the target Gibbs measure π1 (with temperature ε = 1).
To numerically obtain samples from πH , the HMC algorithm alternates between the
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flow of the Hamiltonian dynamics in the phase space, and drawing a new random
momentum, whose marginal distribution is a standard Gaussian. The optimal
convergence rate for the idealized (i.e. one with an exact Hamiltonian dynamics
solver) HMC was proved by Chen and Vempala in [CV22].

While the dynamics above have π1 as the invariant measure at the continuum
level, this is not preserved at the level of numerical schemes resulting in bias that
the estimates above control. The original Metropolis–Hastings algorithm [MRR+53,
Has70] offers an algorithm where the target measure π1 is the invariant measure at
the discrete level. The algorithm proposes a new sample from a (simple) proposal
distribution, and then accepts/rejects the proposal in a manner that ensures the
desired target distribution is the invariant measure. This accept/reject step can
be combined with several other methods. In particular when added to LMC one
obtains the popular MALA algorithm. Other algorithms in this direction include
the Proximal sampler, both of which are studied in [Che23].

1.2.2. Sampling from multimodal distributions. Sampling from multimodal distri-
butions, is challenge that none of the algorithms like LMC, MALA, or HMC can
effectively overcome as their convergence rate becomes extremely slow as the sepa-
ration between the modes increases. As a result, there is a broad spectrum of works
studying algorithms that are suitable for sampling multimodal distributions.

Annealed importance sampling, introduced by Neal [Nea01], involves drawing
samples from a sequence of auxiliary distributions starting from starting from one
that is easy to sample from, and ending with the target distribution. Samples are
moved from one distribution to the next by a reweighting procedure, and then
improved by iterating a Markov chain. The algorithm outputs a set of weighted
sample points representing the target distribution. While this is extremely popular
and versatile, one drawback is that the variance of the weights can become extremely
large, and with most of the mass being distributed over only a few points [CP20,
Chapter 9].

Sequential Monte Carlo (SMC) was first developed to study of the average
extension of molecular chains [HM54,RR55]. Its use in sampling [DdFG01,CP20,
SBCCD24] can be seen as generalization of AIS, with the addition of a key resampling
step that leads to balanced particle weights. SMC algorithms are enormously popular
in a variety of applications and numerous modifications have been developed.

There are a number of works that consider convergence of SMC including obtaining
central limit theorems [Cho04,CP20]. As remarked in Section 11.2.4 of [CP20], the
variance of the error typically grows exponentially with the number of levels. The
variance can be controlled [CP20, Section 11.4] under restrictive conditions that do
not apply to multimodal distributions.

The works of Schweitzer [Sch12] and Paulin, Jasra, and Thiery [PJT19] are the
first to rigorously consider the convergence of SMC for multimodal distributions
and prove bounds on the variance of the error. However their assumptions require a
strong stability condition on the underlying Markov kernels, which can not be used
to in the context of Theorem 1.1. Building on the coupling technique developed
in [MMS23], Matthews and Schmidler [MS24] prove finite sample error bounds for
SMC in multimodal setting. Their assumption on the underlying Markov kernels
is restrictive requiring knowledge of partition of the domain corresponding to the
modes, and also can not be used in the context of Theorem 1.1.
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The recent work of of Lee and Santana-Gijzen [LSG24] takes a similar angle as
our work in that it shows convergence results for SMC under assumptions of local
mixing within the wells and boundedness of ratios of the densities of consecutive
levels. While these assumptions resemble the assumptions we make, there is a key
difference: they require a sequence of interpolating measures where the mass in
each component of the mixture is known and remains constant. Devising such an
interpolation sequence requires knowing the components of the mixture, which is not
available in many practical problems and in particular precludes using interpolations
based on adjusting the temperature in the Gibbs measure, such as the geometric
annealing we study.

The main differentiating factor between our work, and the SMC papers mentioned
above, is that we do not require structural assumptions on the underlying Markov
kernels, and do not require any prior knowledge of the mixture components. As such,
our result, stated in Theorem 2.8, is the first to provide polynomial time complexity
bounds for ASMC using Langevin diffusions and a geometric annealing schedule.

Parallel, simulated, and related tempering methods. Parallel tempering was
introduced in a form by Swendsen and Wang [SW86] and developed by Geyer
in [Gey91]. Simulated tempering introduced by Marinari and Parisi [MP92] and
developed further by Geyer [GT95]. These algorithms rely on Markov chains that
run on a product space of the desired configuration space and various levels of
the temperature. Samples drawn at a particular value of the temperature may be
modified into samples from either a higher, or a lower temperature. At the lowest
temperature the marginal of the invariant measure on the product space is the
target measure, while at the highest it is a measure where the Markov chain mixes
rapidly.

There are notable results on rigorously showing convergence of parallel and
simulated tempering. In particular, Woodard, Schmidler, and Huber [WSH09a]
obtain conditions under which tempering methods are rapidly mixing. When applied
to sampling multimodal distributions the authors considered distributions which have
separated modes, but require the variance near each mode to be of size one. Thus
their results do not address the low temperature regime that Theorem 1.1 applies to.
In [WSH09b] the authors prove that the mixing of these tempering approaches slows
exponentially with dimension if components of multimodal measures have different
variances. If all the modes have the same shape, Ge, Lee, and Risteski [GLR18,
GLR20] show the convergence in TV norm of simulated tempering with error rates
that are polynomial in inverse temperature and dimension, provided we have initial
estimate on the ratio of the normalizing constants. The precise degree of the
polynomial, however, is not explicitly identified.

Further tempering methods in this family include tempered transitions introduced
by Neal in [Nea96], which rely on compositions of transitions steps that result in
jumps at the lowest temperature and tempered Hamiltonian Monte Carlo [Nea11].
Though, to the best of our knowledge, there are no results that apply in the setting
of Theorem 1.1 and provide polynomial time complexity bounds.

Annealing without reweighting or resampling. There are a number of annealing
approaches that evolve a measure from one that is easy to sample from, to the desired
target distribution. In particular, the annealed Langevin Monte Carlo considers
Langevin dynamics with slowly changing stationary measure [GTC25,VCK25]. These
papers show rigorous convergence results for target measures satisfying restrictive
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structure conditions. In general the annealed LMC lacks a way to easily adjust
the mass within a well at low temperatures. As a result, the convergence rate is
exponentially small in the inverse temperature, and this was rigorously shown for
geometric tempering schedule in [VCK25].

Further approaches. Some recent papers explore new avenues to sampling mul-
timodal distributions. These include approaches based on exploring ideas from
diffusion models [VCK25] where the authors show rigorous complexity bounds. This
method, however, suffers from the curse of dimensionality and the error bounds
scale like δd, where δ is allowable error and d is dimension.

The work [PHLa20] proposed a framework of MCMC algorithms for multimodal
sampling, which combines an optimization step to find the modes with Markov
transition steps. They showed the weak law of large numbers of Monte Carlo integral
using samples generated by the Auxiliary Variable Adaptive MCMC algorithm.

Another direction explored is to use ensemble methods that involve Markov
Chains whose jump rates use the estimating the density of the measure represented
by the particle configuration [LLN19,LWZ22,LSW23]. These approaches can be
seen as particle approximations of gradient flows of KL divergence in spherical
Hellinger metric, which converge exponentially fast with rate that is independent
of the height of the barrier. However this method also suffers from the curse of
dimensionality, as the kernel density estimation used to estimate density based on
the configuration of particles introduces bias that becomes large in high dimensions.

A few methods modify (1.2) in a manner that allows particles to move between
modes faster. The authors of [ERY24] do this by modifying the diffusion, and the
authors of [RBS15,DFY20,CFIN23] do this by introducing an additional drift term.
In both cases the modified equation has terms that grow exponentially with the
inverse temperature, and a numerical implementation is computationally expensive.

Plan of the paper. In Section 2 we precisely state our algorithm, and state results
guaranteeing convergence both for ASMC in an idealized scenario (Theorem 2.2),
and for a double-well energy function (Theorem 2.8, which generalizes Theorem 1.1).
For the idealized scenario we are able to obtain explicit constants, and track
the dimensional dependence (Proposition 3.1). Numerical simulations illustrating
relevant aspects of the performance of ASMC in model situations are shown in
Section 2.4. We prove Theorems 2.2 and 2.8 in Sections 3 and 4 respectively. The
proof of Theorem 2.2 relies on a few lemmas which are proved in Section 5. The
proof of Theorem 2.8 is a little more involved and the required lemmas are proved
in Sections 6, 7 and 8 respectively. Finally in Section 9 we show that that regular
enough energy functions satisfy the assumptions required for Theorems 2.2 and 2.8,
and obtain the dimension independent stated in Proposition 3.1.

2. Main results
2.1. Annealed Sequential Monte Carlo (ASMC). We now briefly introduce
the ASMC algorithm, which is stated precisely as Algorithm 1, below. In many
situations of interest, the configuration space X admits a decomposition into energy
valleys. MCMC samplers (such as (1.2)) are typically confined to an energy valley
for time eO(1/ε) before moving to a different valley (see for instance [Arr89]). Of
course, waiting time eO(1/ε) to explore the state space is practically infeasible, and
directly using an MCMC sampler is prohibitively slow at low temperatures.
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Annealing and tempering (both terms having origin in metallurgy and describing
heat treatment of metals) based algorithms, in particular ASMC we study, have been
introduced to overcome the issue of slow global mixing of the MCMC algorithms.
ASMC a special case of a sequential Monte Carlo algorithm, as samples are drawn
in sequence from an auxiliary family of distributions, starting from one that is easy
to sample from and ending with the target distribution. The name ASMC stems
from the fact that the auxiliary family of distributions used are obtained by starting
from the Gibbs distribution at a high temperature, and then gradually lowering the
temperature until the desired temperature is reached.

To use ASMC, we choose an annealing schedule, which is a sequence of tem-
peratures η1 > η2 · · · > ηM , chosen so that the MCMC sampler converges fast at
temperature η1, the desired final temperature is ηM = η. Samples at temperature ηk
are transformed to samples at temperature ηk+1 by reweighting them with the
ratio of densities πηk+1/πηk

. To ensure the mass is spread across sample points,
the weights are redistributed using a resampling process. The samples are then
improved by iterating an MCMC sampler for a fixed amount of time, and then the
above processes is repeated at the next temperature until the final temperature is
reached.

It is important to note that for the reweighting step, one does not have access
to the normalized densities πηk

in practice, as the normalization constants are not
known and are hard to compute. However, using weights proportional to the ratio
of the normalized densities πηk+1/πηk

is equivalent to using weights proportional to
the ratio of the unnormalized densities π̃ηk+1/π̃ηk

. The unnormalized densities are
known, and are used in the reweighting step instead of the normalized densities.

We now describe the resampling step: given points x1
k, . . . , xNk which are

(approximate) samples from πηk
, we obtain y1

k+1, . . . , yNk+1 by resampling from the
points {x1

k, . . . , x
N
k } using the multinomial distribution with probabilities

(2.1) P (yik+1 = xjk) =
r̃k(xjk)∑N
n=1 r̃k(xnk )

, where r̃k
def=
π̃ηk+1

π̃ηk

.

Some points may be repeated or lost. Nevertheless, an elementary heuristic (ex-
plained in Section 3.3, after (3.12), below) suggests that the new points y1

k+1, . . . ,
yNk+1 should be good samples from πηk+1 .

Remark 2.1. Instead of resampling at every step, modern, practical algorithms
typically control the variance of the weights using more sophisticated resampling
procedures. A popular approach is to introduce a measure of the quality of the
weight distribution and only resample when the quality becomes lower than a
desired threshold, which is called adaptive resampling. For this and other resampling
approaches see, for instance, the books [CP20, Sections 10.2] or [Liu08, Chapter
3.4].

We now provide a brief heuristic explanation as to why one may be able to obtain
good quality samples in polynomial time using Algorithm 1. First, since η1 is large
and the process Yη1,· mixes quickly, and so the distribution of x1

1, x2
1, . . . , xN1 will be

close to the Gibbs measure πη1 . Now the resampling step may produce degenerate
samples with several repeated points. However the fraction of points in each energy
valley will be comparable to the πη2-mass of the same valley. In the situation we
consider, the main bottleneck to fast mixing is moving mass between valleys. Since
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Algorithm 1 Annealed Sequential Monte Carl (ASMC) to sample from πη.
Require: Temperature η, energy function U , and Markov processes {Yε,·}ε⩾η so

that the stationary distribution of Yε,· is πε.
Tunable parameters:

(1) Number of levels M ∈ N, and annealing schedule η1 > · · · > ηM = η.
(2) Number of realizations N ∈ N, and initial points y1

1 , . . . , yN1 ∈ X .
(3) Level running time T > 0.

1: for k ∈ {1, . . . ,M − 1} do
2: For each i ∈ {1, . . . N}, simulate Yηk,· for time T starting at yik to obtain xik.
3: Choose (y1

k+1, . . . , y
N
k+1) by resampling from {x1

k, . . . , x
N
k } using the multi-

nomial distribution with probabilities given by (2.1).
4: end for
5: For each i ∈ {1, . . . N}, simulate YηM ,· for time T starting at yiM to obtain xi.
6: return (x1, . . . , xN ).

the samples at temperature η2 have approximately the right fraction of mass in
each energy valley, the distribution after running Yη2,· for time T will be close to
the Gibbs distribution πη2 . Repeating this argument should iteratively yield good
samples at the desired final temperature ηM .

A rigorous proof of the above quantifying the convergence rate, however, requires
some care. The number of levels M is large (grows linearly in the inverse tem-
perature), and the error going from level k to k + 1 accumulates multiplicatively.
Nevertheless, we will show that if η1, . . . , ηM according to the geometric annealing
schedule, then the total error accumulates slowly enough that Algorithm 1 produces
good samples in time that is polynomial in 1/η. Carrying out the details of this
heuristic for a double-well energy function using Langevin diffusions as the MCMC
sampler (as described in Theorem 1.1) is technical, and requires several model spe-
cific bounds that distract from the main idea. Thus, we first consider an illustrative
model problem where we can study Algorithm 1, and then revisit it in the context
of Theorem 1.1.

2.2. ASMC for a Local Mixing Model. We now present an idealized scenario
where we can analyze Algorithm 1 quantitatively, and obtain explicit constants in
our error estimates. Suppose the number of components of the multimodal measure,
J ⩾ 2, and the domain X can be partitioned into J domains Ω1, . . . , ΩJ . We are
interested situations where we have access to a process Yε,· that mixes quickly in
each domain Ωj , however, transitions very slowly between domains and hence mixes
slowly overall.

To model this behavior, for every ε > 0 let χε ∈ (0, 1) denote probability of
staying in the same domain after time 1. Let Yε,· be the discrete time Markov
process defined as follows. At time n ∈ N, let j be the unique element of {1, . . . , J}
such that Yε,n ∈ Ωj . Flip an independent coin that lands heads with probability χε
and tails with probability 1 − χε. If the coin lands heads, we choose Yε,n+1 ∈ X
independently from the distribution πε. If the coin landed tails, we choose Yε,n+1 ∈
Ωj independently from the distribution with density

πε1Ωj

πε(Ωj)
.
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In other words, Yε,· is the Markov process whose one step transition density is

(2.2) pε1(x, y) = (1 − χε)πε(y) + χε

J∑
j=1

1{x,y∈Ωj}
πε(y)
πε(Ωj)

.

Notice that the expected transition time between domains is the bottleneck to
mixing, and is of order 1/(1 −χε). One situation of interest, is when χε is extremely
close to 1 (for instance χε ≈ exp(e−O(1/ε))). This models the behavior that arises
several applications of interest, including Langevin dynamics driven by the gradient
of an energy function with multiple wells, and this is studied in detail in Section 2.3,
below. In such situations waiting for time 1/(1 − χε) is prohibitively expensive
when ε is small, and can not be done in practice.

Suppose now we are interested in computing Monte Carlo integrals with respect to
the Gibbs distribution πη for some small temperature η > 0. A direct Monte Carlo
approach simulating Yη,· is unfeasible as it requires simulating Yη,· for time O(1/(1−
χη)), which very long when η is small. We now show that Algorithm 1, with a
judicious choice of parameters, makes this time an order of magnitude smaller.

Theorem 2.2. Suppose for some 0 ⩽ ηmin < ηmax ⩽ ∞ we have

(2.3) CLBV
def=

J∑
j=1

∫ ηmax

ηmin

|∂ε ln πε(Ωj)| dε < ∞.

For any finite η1 ∈ (ηmin, ηmax], δ, η, ν > 0 with η ∈ [ηmin, η1), and constants CT ,
CN > 0 choose M,N, T ∈ N so that1

(2.4) M ⩾

⌈
1
νη

⌉
, N ⩾

CNM
2

δ2 , and T ⩾ tmix

(
Yη1,·,

δ

CT

)
,

and choose η2, . . . , ηM so that ηM = η and 1/η1, . . . , 1/ηM are linearly spaced.
For every δ, ν > 0, there exists (explicit) constants CN = CN (U/η1, J, ν), and

CT = CT (U/η1, J, ν) such that if the process Yε,· in Algorithm 1 have transition
density (2.2), and if the parameters to Algorithm 1 are chosen as in (2.4), then for
every bounded test function h, and arbitrary initial data {xi0}, the points (x1, . . . , xN )
returned by Algorithm 1 satisfy

(2.5)
∥∥∥ 1
N

N∑
i=1

h(xi) −
∫

X
h(x)πη(x) dx

∥∥∥
L2(P )

< ∥h∥oscδ.

We prove Theorem 2.2 in Section 3, below.

Remark 2.3. In (2.5) above, we clarify that the Monte Carlo sum 1
N

∑N
1 h(xi) is a

random variable, as the points xi are random, and the notation ∥·∥L2(P ) denotes
the L2(P ) norm with respect to the underlying probability measure P . Explicitly,
if X is a random variable, then ∥X∥L2(P ) = (EX2)1/2.

1Here tmix(Yε,·, δ) denotes the δ-mixing time of the process Yε,· (see for instance [LP17]), and
measures the TV-rate of convergence of Yε,· to the stationary distribution πε. Explicitly, if pε

n

denotes the n-step transition density of Yε,·, then the δ-mixing time is given by

tmix(Yε,·, δ) def= inf
{

n ∈ N
∣∣∣ sup

x∈X
∥pε

n(x, ·) − πε(·)∥L1 ⩽ 2δ

}
.
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Remark 2.4. The constants CN and CT can be computed explicitly in terms of the
energy function U , the number of domains J and the parameter ν and their values
are stated precisely in Section 3.2, below.

Remark 2.5. We will show (Corollary 9.1, below) that the finiteness condition (2.3)
will be satisfied for a large class of double-well energy functions where the sampling
at low temperature is a nondegenerate problem and each well has a non-negligible
fraction of the total mass. In particular, (2.3) will hold for double-well functions
with wells of nearly equal depth. More precisely, if the difference between the energies
at local minima is comparable to the minimum temperature ηmin, then CLBV can
be bounded independent of ηmin.

Remark 2.6. If the difference between the energies at local minima is much larger
than the minimum temperature ηmin, then the as ε → ηmin some of the domains Ωj
will contain a fraction of the total mass which is exponentially small in the inverse
temperature. Hence the multimodal nature of the target distribution degenerates,
and the sampling from this distribution requires the simulation of rare events. This
goes beyond the scope of the present work and Theorem 2.2 does not apply.

Remark 2.7. Theorem 2.2 shows that the averaged empirical measure is TV close to
the Gibbs distribution. Explicitly, the averaged empirical measure µ is defined by

µ(A) def= 1
N

E

N∑
i=1

δxi(A) = 1
N

N∑
i=1

P (xi ∈ A),

where x1, . . . , xN are the points returned by Algorithm 1. Now Theorem 2.2 and
Jensen’s inequality immediately imply |µ(A) − πη(A)| ⩽ δ for every Borel set A,
and hence

∥µ− πη∥TV ⩽ δ.

Computational Complexity. We now estimate the computational cost of Monte
Carlo integration using Theorem 2.2 and compare it to the direct approach using
the process Yη,·. In this idealized situation, we assume the cost of simulating the
process Y ε for time T is O(T ). Using an alias method [Vos91] one can perform the
resampling step in time O(N), which makes the computational cost of Algorithm 1
of order MNT . To estimate T , we need to estimate the δ-mixing time of the
process Yε,· for ε = η1. For this, we use (2.2) to deduce that the n-step transition
density of Yε,· is

pεn(x, y) = (1 − χnε )πε(y) + χnε

J∑
j=1

1{x,y∈Ωj}
πε(y)
πε(Ωj)

.

This immediately implies

tmix(Yε,·, δ) ⩽
ln(δ/2)
lnχε

≈ |ln δ|
1 − χε

.

Thus Theorem 2.2 implies the computational cost of running Algorithm 1 to achieve
the Monte Carlo error (2.5) is

(2.6) cost(Algorithm 2.2) = O(MNT ) ⩽ C(U)|ln δ|
η3δ2|lnχη1 |

,

for some U -dependent constant C(U).
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On the other hand, achieving the same Monte Carlo error by simulating indepen-
dent realizations of Yη,· has a computational cost of

(2.7) cost(Direct Monte Carlo) = O
( ln δ
δ2|lnχη|

)
.

We note that the cost of ASMC in (2.6) involves a polynomial in the final tem-
perature η, and the mixing time at the initial temperature η1, which is small. In
contrast, the direct Monte Carlo cost (2.7) involves the mixing time at the final
temperature η, which is typically exponential in 1/η.

2.3. ASMC for a double-well energy function. We now study Algorithm 1
when the configuration space X is the d-dimensional torus Td. Here the Gibbs
measure πε arises naturally as the stationary distribution of the overdamped Langevin
equation (1.2).

When U is convex, the process Y mixes quickly even in high dimensions [BGL14],
and provides a very efficient way to sample from the Gibbs distribution πε. When U
is not convex, however, the process Yε,· mixes extremely slowly. In fact, the well
known Arrhenius law [Arr89] states that in general it takes time t ≈ eC/ε before the
distribution of Yε,· becomes close to the Gibbs distribution πε. At low temperatures,
this is too long to be practical.

The reason Langevin dynamics mixes so slowly is because the drift in (1.2) pulls
trajectories towards local minima of U . In order to escape an energy valley, the
noise term in (1.2) has to go against the drift for an O(1) amount of time, which
happens with exponentially small probability. In each energy valley, however, the
energy function U is essentially convex which makes the process Yε,· mix quickly
in valleys. We also note that the situation considered in Section 2.2 is an idealized
model for the dynamics of (1.2).

We study Algorithm 1 for target distributions corresponding to double-well
energy functions and show that appropriate choice of parameters allows one to
compute integrals with respect to the Gibbs distribution, with time complexity that
is polynomial in the inverse temperature. We again remark that the assumption
that U is a double-well energy function is mainly to simplify the presentation, and
the generalization to energy functions with more wells is straightforward.

Theorem 2.8. Suppose for some 0 ⩽ ηmin < ηmax ⩽ ∞, the function U is a
double-well function that satisfies Assumptions 4.1, 4.2 and 4.3 in Section 4 below.
Let γ̂r ⩾ 1 be the ratio of the saddle height to the energy barrier, defined precisely
in (4.3), below. Given η1 ∈ (ηmin, ηmax] finite, α, δ, η, ν > 0 with η ∈ [ηmin, η1), and
constants CT , CN > 0 choose M,N ∈ N, and T ∈ R so that

(2.8) M ⩾

⌈
1
νη

⌉
, T ⩾ CT

(
M (1+α)γ̂r + log

(1
δ

)
+ 1
η

)
and N ⩾

CNM
2

δ2 ,

and choose η2, . . . , ηM so that ηM = η and 1/η1, . . . , 1/ηM are linearly spaced.
For every α, δ, ν > 0, there exist constants CT = CT (α, ν, U/η1) and CN (ν, U/η1)

such that if the process Yε,· in Algorithm 1 is given by (1.2), and the parameters
to Algorithm 1 are chosen as in (2.8), then for every bounded test function h, and
arbitrary initial data {xi0}, the points (x1, . . . , xN ) returned by Algorithm 1 satisfy

(2.9)
∥∥∥ 1
N

N∑
i=1

h(xi) −
∫
Td

h(x)πη(x) dx
∥∥∥
L2(P )

< ∥h∥oscδ.
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We remark that Assumptions 4.1–4.3 are nondegeneracy assumptions, and do not
require symmetry, or similarity of the shape of the wells. The proof of Theorem 2.8
follows the same general strategy as that of Theorem 2.2, however the details more
technically involved. In Theorem 2.2 the main idea is to show that if at level k, the
initial mass distributions in the domains Ω1, . . . , ΩJ is distributed according to πηk

,
then the process Yηk,· will correct the shape and quickly give a distribution that is
close to the Gibbs distribution πηk

. To show this in the context of (1.2), we consider
a spectral decomposition based on eigenvalues of the generator of (1.2). We will
show that if the projection of the initial distribution onto the second eigenspace
is small, then the Langevin dynamics will quickly correct the shape and yield a
distribution close to the Gibbs measure. The proof of this involves several technical
lemmas controlling the shape of the eigenfunctions and introduces dimensional
pre-factors that are not explicit. This takes up the bulk of the paper and begins in
Section 4, below.

Time and computational complexity. We now briefly discuss the computational cost
of integration using Theorem 2.8. Suppose U is a double-well function with wells
of equal depth, so that γ̂r is exactly 1. As mentioned earlier, the resampling step
costs O(N) and so the time complexity of running Algorithm 1 (for η < 1 with
ν = 1) to achieve the error tolerance (2.9) is

(2.10) O(MTN) ⩽ C̃d
η3δ2 T ⩽

Cd
η3δ2

( 1
η1+α + log

(1
δ

))
,

for some dimensional constants C̃d, Cd. The second inequality gives us the precise,
polynomial, time complexity of the algorithm. The significance of the first inequality
is that the computational complexity of the algorithm is, up to dimensional constant,

1
η3δ2 times the computational complexity of the numerical algorithm which mixes
the distribution sufficiently well within the wells.

In order to use Algorithm 1 in practice, one has to time discretize (1.2) and
consider the bias induced by this discretization. Obtaining the precise errors
for numerical discretizations of LMC and other algorithms is an active area of
research, and we refer the reader to the notes by Chewi [Che23] for comprehensive
overview. Obtaining rigorous computational complexity of ASMC is a challenging
open problem, as the wells are not exactly log-concave and one would need to control
various terms in our proof up to discretization error. We remark, however, that in
our formulation the drift in (1.2) is independent of the temperature ε, and so for
our purposes, the number of iterations required to simulate (1.2) for a given length
of time T is proportional to time T and independent of the temperature ε. Let us
also remark that, assuming the scaling for smooth log-concave wells can be reached
the estimates of Chewi [Che23, Theorem 4.1.2] suggest that the total computational
complexity of the algorithm, in terms of the number of evaluations of ∇U , would be
cUd

1
δ2 times the time complexity, when applied to integrating bounded, Lipschitz

continuous functions. The restriction to a smaller class of test functions is needed
since the Wasserstein error controlled in Theorem [Che23, Theorem 4.1.2] needs to
control the integration error. We remark that better error bounds can be obtained
by using different discretizations of LMC and by using MALA (see [Che23]).

For comparison we note the cost of using rejection sampling to achieve a com-
parable error is Cd/ηd, which is huge when η is small and the dimension is large.
Also, the cost of using LMC requires simulating 1/δ2 realizations of (1.2) for a time
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that is comparable to the δ-mixing time. By the Arrhenius law [Arr89,BGK05] this
is eO(1/η), which is much larger than (2.10) when η is small.

2.4. Numerical experiments. In practice, one typically needs to sample from
the target distribution with density proportional to e−V , for some given energy
function V . In situations of interest the energy V has deep valleys and the associated
Gibbs measure has several components (modes). To apply ASMC, we choose a
temperature η > 0, which is small enough so that the Gibbs measure with energy
function

U
def= ηV,

is easy to sample from. Then we run Algorithm 1 with the energy function U , with
initial temperature η1 = 1, and final temperature η to deliver samples from the
Gibbs measure with density proportional to e−V . A reference implementation is
provided in [HIS25].

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

Figure 1. Contour plot of the anisotropic Gaussian mixture in R2,
defined in (2.11), and used in experiments for Figure 2.

For the first illustration, we consider a two-dimensional distribution. In this case
integrals with respect to the Gibbs distribution can also be effectively computed
using quadrature, and can be used as a reference for our numerical simulations. We
choose the Gibbs measure to be a mixture of two dimensional, anisotropic Gaussians
given by

(2.11) π =
2∑
i=1

aiGµi,Σi .

Here Gµ,Σ is the PDF of the two dimensional Gaussian with mean µ and covariance
matrix Σ. We choose parameters a1 = 0.7, a2 = 0.3, µ1 = −e1, µ2 = e1 and

Σ1 =
(

0.09 0
0 0.04

)
, Σ2 =

(
0.02 0

0 0.18

)
A contour plot of π is shown on the left of Figure 1. The left panel of Figure 2
shows the results of numerical simulations computing the Monte Carlo integral of
the indicator function of a separating hyperplane using samples from Algorithm 1.
For comparison, we also show the results of computing the same integral using direct
LMC, and using quadrature. To generate this plot we used N = 104, time step
0.0025, M = 5, T = 500. For confirmation, we verify the mean error and standard
deviation decrease like 1/

√
N , and show our results in Figure 2.
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Figure 2. Left: A Monte Carlo integral computed using ASMC, LMC,
and quadrature in 2D. Right: A Log-log plot of the mean error and
standard deviation using ASMC as the number of particles varies.

Our next experiment, illustrated in Figure 3, focuses on the trade-off between
increasing the number of levels and the number of time steps under a fixed com-
putational budget. We use samples obtained by Algorithm 1 to compute a Monte
Carlo integral in dimension 20. The target measure is a mixture of Gaussians given
by (2.11) with parameters a1 = 0.2, a2 = 0.8, µ1 = −e1, µ2 = e1 and

Σ1 = 1
16Id, Σ2 = 1

25Id, d = 20.

We vary the number of levels M and the level running time T , while keeping the
total number of iterations MT constant. To generate the plots we used a total
of 5000 iterations per run, sample size N = 104 and time step 0.001, and 100
independent Monte Carlo runs per choice of M and T . We observe that ASMC
produces good results for intermediate values of M , but performs poorly when M
is too large or too small when compared to d. We note that this is not surprising.
When M = 1 ASMC becomes the rejection sampler, and with M being small it
is closely approximating a rejection sampler with a few intermediate levels. Since
the jumps in temperature are large the resulting bias is large. When M is very
large and T is quite small the Markov transitions do not have a chance to mix even
within the wells. Thus the procedure basically only involves importance reweighting
and resampling, thus leading to most of the mass concentrated at few nodes, and
large error.

3. Error Estimates for the Local Mixing Model (Theorem 2.2)
3.1. Notation and convention. Before delving into the proof of Theorem 2.2 we
briefly list notational conventions that will be used throughout this paper.

(i) We will always assume C > 0 is a finite constant that can increase from line
to line, provided it does not depend on the temperature η.

(ii) We use the convention that the expectation operator E has lower prece-
dence than multiplication. That is EXY denotes the expectation of the
product E[XY ], and EX2, denotes the expectation of the square E[X2]

(iii) When taking expectations and probabilities, a subscript will denote the condi-
tional expectation / conditional probability. That is EXY = E(Y |X) denotes
the conditional expectation of Y given the σ-algebra generated by X.
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0 1000 2000 3000 4000 5000
number of iterations

0.2
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Mean Error
25% to 75% error

Figure 3. Mean error of an integral in dimension d = 20 computed
using ASMC as M, T vary, while holding MT constant. Shaded regions
indicate the 25%-75% quintile range. Left: A plot of the Monte Carlo
integral vs the number of iterations for a few values of M . Right: A plot
of the mean error vs log M .

(iv) When averaging functions of Markov processes, a superscript will denote the
initial distribution. That is Eµf(Yt) denotes Ef(Yt) given Y0 ∼ µ. When µ =
δy is the Dirac δ-measure supported at y, we will use Ey to denote Eδy .

(v) We interchangeably use πε to denote the measure and the density. That
is for x ∈ Td, πε(x) is given by (1.1), however for Borel sets A, πε(A) de-
notes

∫
A
πε(x) dx.

3.2. Description of the Constants in Theorem 2.2. As remarked earlier, the
constants CN and CT in Theorem 2.2 are explicit. Since these determine the
efficiency of Algorithm 1, we state them precisely before embarking on the proof of
Theorem 2.2. First we need auxiliary constant Cr = Cr(U/η1, ν) that will be used
to bound the ratio of the densities at each level. For k ∈ {1, . . . ,M}, by a slight
abuse of notation we define

πk
def= πηk

, π̃k
def= π̃ηk

and Zk
def= Zηk

where πηk
, π̃ηk

and Zηk
are defined by (1.1) with ε = ηk. Next we define

(3.1) rk
def= πk+1

πk

to be the ratio of normalized densities at levels k + 1 and k. In practice, we do
not have access to rk as we do not have access to the normalization constants Zk.
This is why Algorithm 1 is formulated using the ratio of unnormalized densities r̃k
defined in (2.1). The auxiliary constant Cr mentioned above is defined by

(3.2) Cr
def= max

1⩽k⩽M−1
∥rk∥L∞(X ).

Clearly Cr → 1 as ν → 0. However, choosing ν very small increases the number
of levels M and hence the computational cost of Algorithm 1. A bound for Cr,
which may be easier to check in practice, is

(3.3) Cr ⩽ inf
c>0

(1 + sc) exp(cν)
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where

(3.4) sc
def=

∫
{U0>c} e

−U0 dx∫
{U0⩽c} e

−U0 dx
< ∞ and U0

def= U − inf U
η1

.

We prove (3.3) in Lemma 9.2, below.
Now, the proof of Theorem 2.2 will show that constants CT and CN are given by

(3.5) CT
def= 4JCr(2Cβ + 1), CN

def= J2(2Cβ + 1)2(1 + Cr)2.

where

(3.6) Cβ
def= exp(2CrCLBV).

Dimensional dependence. Suppose now X = Rd. For a certain class of energy
functions, it is possible to make the constants CT , CN independent of d by choosing
a geometric annealing schedule with M linear in d. One such class of energies are
those which can be separated into a sum of two functions – one which depends on
the first d̃ coordinates and may have multiple local minima; and the other only
depends on the last d− d̃ coordinates and is convex.

Explicitly, suppose there exists an integer d̃ ⩽ d such that the function U is of
the form

(3.7) U0(x) = Ũ0(x1, . . . , xd̃) + V0(xd̃+1, . . . , xd).

Here Ũ0 is an any function for which e−Ũ0 is integrable, and may have several
local minima. The function V0 is assumed to be a convex function for which there
exist constants α0 > 0, k0 > 1, αu, αb ∈ R and a point x0 ∈ Rd−d̃ such that for all
x ∈ Rd−d̃, we have

(3.8) α0|x− x0|k0 + αb ⩽ V0(x) ⩽ α0|x− x0|k0 + αu.

One class of functions that have this structure are Gaussian mixtures of points
that are located on a d̃ dimensional hyperplane, and whose covariance matrices in
the perpendicular direction are all equal. For such energies we have the following
dimension independent bounds.

Proposition 3.1. Assume that U0 satisfies and (3.7) and (3.8). Choose

M ⩾

⌈
d

η

⌉
and ηk such that 1/η1, . . . , 1/ηM are linearly spaced. Then CT and CN in (3.5) can
be bounded above in terms of α0, αb, αu, k0, U0, but independent of d.

Proposition 3.1 can be proved using asymptotics for the incomplete gamma
function and is presented in Section 9, below.

3.3. Proof of Theorem 2.2. In order to prove Theorem 2.2, we note that Al-
gorithm 1 consists of repeating two steps: (local) exploration using using the
process Yε,· (Algorithm 1, step 2), and then resampling (Algorithm 1, step 3). We
now state lemmas for the errors accumulated in each of these steps.

To quantify the Monte Carlo error made by running the process Yε,· in the (local)
exploration step, we introduce the following notation. Given ε, t > 0 and a bounded
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test function h, define the Monte Carlo error Errε,t(h) by

Errε,t(h) def=
∥∥∥ 1
N

N∑
i=1

h(Y iε,t) −
∫
Td

hπε dx
∥∥∥
L2(P )

,

where Y iε,· are N independent realizations of a Markov process with transition
density (2.2).

Lemma 3.2. Given N (random) points y1, . . . , yN , let Y iε,· be N independent
realizations of the Markov process with transition density (2.2) and initial distribu-
tion Y iε,0 = yi. Then for any bounded test function h, and any T ∈ N we have

(3.9) Errε,T (h) ⩽ χTε

∥∥∥∥ J∑
j=1

(
1 − µ0(Ωj)

πε(Ωj)

)∫
Ωj

hπε dx

∥∥∥∥
L2(P )

+ ∥h∥osc

2
√
N
,

where µ0 is the empirical measure

(3.10) µ0 = 1
N

N∑
i=1

δyi .

Consequently,

(3.11) Errε,T (h) ⩽ ∥h∥osc

2

(
χTε

J∑
j=1

Errε,0(1Ωj
) + 1√

N

)
.

We clarify that µ0(Ωj) is random as the initial points yi are themselves random.
The second term on the right of (3.11) is the standard Monte Carlo error which
can be made small by making N large. To make the first term small, we have two
options: The first option is to wait for the mixing time of Yε,·, and obtain smallness
from the χTε factor. The second is to ensure

∑
j Errε,0(1Ωj

) is small. In our situation
the first option is undesirable as it requires T ≫ 1/| lnχε|, which is too large to
be practical. Instead we use the second option, and make

∑
j Errε,0(1Ωj

) small by
ensuring the fraction of initial points in each domain Ωj is close to πε(Ωj).

We now turn to the resampling step. Suppose we have N i.i.d. samples x1, . . . ,
xN from a distribution with an unnormalized probability density function p̃. Let q̃
be another unnormalized probability density function, such that {q̃ > 0} ⊆ {p >
0}. Choose (y1, . . . , yN ) to be a resampling of the points (x1, . . . , xN ) using the
multinomial distribution with probability

(3.12) P (yi = xj) = r̃(xj)∑N
i=1 r̃(xi)

, where r̃
def= q̃

p̃
.

Of course, some of the points xi may be chosen multiple times and the points y1,
. . . , yN may not be distinct. Nevertheless, a simple heuristic argument suggests
that when N is large the distribution of each of the points yi will have a density
proportional to q̃. Indeed, suppose X is finite, N ≫ |X | and p, q are the normalized
probability distributions corresponding to p, q respectively. Then each x ∈ X occurs
amongst the points {x1, . . . , xN} roughly Np(x) times, and so

P (yi = x) ≈ r̃(x)Np(x)∑
x′∈X r̃(x′)Np(x′) = q̃(x)∑

x′∈X q̃(x′) ≈ q(x) .
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To make the above quantitative, and usable in our context, some care has to be
taken. The points yi are only conditionally independent given x1, . . . , xN ; they are
not unconditionally independent, and it is hard to estimate the unconditional joint
distribution. We will instead obtain a Monte Carlo estimate which both quantifies
the error and is sufficient for our purposes.

Lemma 3.3. Suppose x1, . . . , xN are N (not necessarily i.i.d.) random points
in X . Let p̃, q̃ : X → [0,∞) be two unnormalized probability density functions, and
choose y1, . . . , yN independently from {x1, . . . , xN} according to (3.12). Then for
any test function h ∈ L∞(X ), we have∥∥∥ 1

N

N∑
i=1

h(yi) −
∫

X
hq dx

∥∥∥
L2(P )

⩽
1√
N

∥∥∥h−
∫

X
hq dx

∥∥∥
L∞

+
∥∥∥h−

∫
X
hq dx

∥∥∥
L∞

∥∥∥1 − 1
N

N∑
i=1

r(xi)
∥∥∥
L2(P )

+
∥∥∥ 1
N

N∑
i=1

r(xi)
(
h(xi) −

∫
X
hq dx

)∥∥∥
L2(P )

.(3.13)

Here r is the ratio

(3.14) r
def= q

p
, where p = p̃∫

X p̃ dx
and q = q̃∫

X q̃ dx
.

Note Lemma 3.3 does not assume x1, . . . , xN are independent, or even that they
have distribution p. If, however, the points x1, . . . , xN give good Monte Carlo
estimates for integrals with respect to p, then the right hand side of (3.13) will be
small. Explicitly, in the typical situation where xi ∼ p are i.i.d, we will have∥∥∥ 1

N

N∑
i=1

g(xi) −
∫

X
gp dx

∥∥∥2

L2(P )
⩽
C Var(g)

N
.

for any bounded test function g. Combined with the fact that∫
X
rp dx =

∫
X
q dx = 1 and

∫
X
hrp dx =

∫
X
hq dx,

this shows the right hand side of (3.13) is O(1/
√
N).

We now use Lemma 3.2 and Lemma 3.3 to derive a recurrence relation for the
Monte Carlo error between levels k and k + 1 in Algorithm 1.

Lemma 3.4. For each k = 1, . . . ,M − 1,

max
1⩽ℓ⩽J

Errk+1,0(1Ωℓ
) ⩽ 1 + ∥rk∥osc√

N

+
(

1 + 2
J∑
j=1

∣∣∣πk+1(Ωj)
πk(Ωj)

− 1
∣∣∣) · max

1⩽ℓ⩽J
Errk,0(1Ωℓ

).(3.15)

Here rk is the ratio of the normalized densities defined in (3.1), and by a slight
abuse of notation we use Errk,· to denote Errηk,·.

The proof of Theorem 2.2 now reduces to solving the recurrence relation (3.15) and
using Lemma 3.2. Notice that (3.15) involves a bound on ∥rk∥osc, and the maximum
of this as k varies is precisely the constant Cr defined in (3.2). A bound on Cr that



20 HAN, IYER, AND SLEPČEV

may be easier to obtain in practice is (3.3), which we prove in Lemma 9.2, below.
Momentarily postponing the proofs of the above lemmas, we prove Theorem 2.2.

Proof of Theorem 2.2. Applying (3.11) with ε = ηM gives that

(3.16) ErrM,T (h) ⩽ ∥h∥osc

2

(
J max
j=1,...,J

ErrM,0(1Ωj
) + 1√

N

)
.

We will show that the right hand side of (3.16) is bounded above by δ∥h∥osc. For
the first term, a direct calculation using (3.15) immediately shows that

max
j=1,...,J

ErrM,0(1Ωj
) ⩽

(M−1∏
ℓ=2

Θ(ℓ, ℓ+ 1)
)

max
j=1,...,J

Err2,0(1Ωj
)

+
M−1∑
k=2

1 + ∥rk∥osc√
N

M−1∏
ℓ=k+1

Θ(ℓ, ℓ+ 1)(3.17)

where

Θ(ℓ, ℓ+ 1) def= 1 + 2
J∑
j=1

∣∣∣πℓ+1(Ωj)
πℓ(Ωj)

− 1
∣∣∣.

To finish the proof, we now need to estimate the terms
∏M−1
ℓ=k Θ(ℓ, ℓ + 1) and

max1⩽j⩽J Err2,0(1Ωj ).

Step 1: Estimating
∏M−1
ℓ=k Θ(ℓ, ℓ + 1). Notice that for every j = 1, . . . , J , and

every k = 1, . . . ,M , we have

(3.18) 0 < πk+1(Ωj)
πk(Ωj)

⩽ ∥rk∥L∞

(3.2)
⩽ Cr.

Using the fact that

(3.19) |y − 1| ⩽ (1 ∨ y)|ln y|,

for any k = 1, . . . ,M − 1, we obtain
M−1∏
ℓ=k

Θ(ℓ, ℓ+ 1)
AM-GM

⩽

(
1 + 2

M − k

J∑
j=1

M−1∑
ℓ=k

∣∣∣πℓ+1(Ωj)
πℓ(Ωj)

− 1
∣∣∣)M−k

(3.20)

(3.18),(3.19)
⩽

(
1 + 2

M − k

J∑
j=1

M−1∑
ℓ=k

Cr

∣∣∣log
(πℓ+1(Ωj)
πℓ(Ωj)

)∣∣∣)M−k

=
(

1 + 2
M − k

J∑
j=1

M−1∑
ℓ=k

Cr

∣∣∣∫ ηℓ

ηℓ+1

∂ε ln πε(Ωj) dε
∣∣∣)M−k

(2.3)
⩽ exp(2CrCLBV) (3.6)= Cβ .

Step 2: Estimating Err2,0(1Ωj
). Applying Lemma 3.3 with p = π1, q = π2, h = 1Ωj

,
and xi = Y i1,T , to obtain

(3.21) Err2,0(1Ωj
) ⩽ 1√

N
+ Err1,T (r1) + Err1,T (r1(1Ωj

− π2(Ωj))).
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Now the processes Y 1
1,·, . . . , Y N1,· are all independent.2 Thus for any bounded test

function h,

(Err1,T (h))2 = E
( 1
N

N∑
1
h(Y i1,T ) −

∫
X
hπ1 dx

)2

= E

(
1
N

N∑
1

(
h(Y i1,T ) − Eh(Y i1,T )

)
+ 1
N

N∑
1

Eh(Y i1,T ) −
∫

X
hπ1 dx

)2

⩽
1
N

∥h∥2
L∞ +

( 1
N

N∑
i=1

Eh(Y i1,T ) −
∫

X
hπ1 dx

)2

⩽
1
N

∥h∥2
L∞ + ∥h∥2

L∞

( 1
N

N∑
i=1

∥p1
T (yi1, ·) − π1∥L1

)2
,

and hence

(3.22) Err1,T (h) ⩽ 1√
N

∥h∥L∞ + ∥h∥L∞
1
N

N∑
i=1

∥p1
T (yi1, ·) − π1∥L1 .

Notice that the choice of CT and CN in (3.5), implies

(3.23) T ⩾ tmix

(
Yη1,·,

δ̃

4Cr

)
, and 1√

N
⩽

1 + Cr√
N

(2.4)
⩽

δ̃

M

where

(3.24) δ̃ = δ

J(2Cβ + 1) .

Using (3.23) in (3.22) with h = r1 gives

(3.25) Err1,T (r1) ⩽ 1√
N

∥r1∥L∞ + δ̃

2Cr
∥r1∥L∞

(3.2),(3.23)
⩽

δ̃

M
+ δ̃

2 .

Similarly,

(3.26) Err1,T (r1(1Ωj − π2(Ωj))) ⩽
δ̃

M
+ δ̃

2 .

Plugging (3.25),(3.26) and (3.23) into (3.21) yields

(3.27) max
j=1,...,J

Err2,0(1Ωj
) ⩽ 3δ̃

M
+ δ̃.

Now using (3.17), we obtain

max
j=1,...,J

ErrM,0(1Ωj )
(3.20), (3.27)

⩽ Cβ

( 3δ̃
M

+ δ̃
)

+
M−2∑
k=2

Cβ
δ̃

M
+ δ̃

M

=
(

2Cβ + 1
M

)
δ̃

(3.24)
⩽

δ

J
.(3.28)

Using (3.23) and (3.28) in (3.16) implies

ErrM,T (h) ⩽ ∥h∥osc

2

(Jδ
J

+ δ̃

M

) (3.24)
< δ∥h∥osc.

2For k ⩾ 2 the processes Y 1
k,·, . . . , Y N

k,· are no longer independent as the initial distributions
are not independent.
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This proves (2.5), concluding the proof. □

4. Error Estimates for a double-well energy (Theorem 2.8).
The aim of this section is to prove Theorem 2.8 and obtain error estimates when

ASMC is used to sample from a double-well energy function on a d-dimensional
torus.

4.1. Assumptions and Notation. We begin by precisely stating the assumptions
that were used in Theorem 2.8. The first assumption requires U to be a regular,
double-well function with nondegenerate critical points.

Assumption 4.1. The function U ∈ C6(Td,R), has a nondegenerate Hessian at
all critical points, and has exactly two local minima located at xmin,1 and xmin,2. We
normalize U so that

0 = U(xmin,1) ⩽ U(xmin,2).

Our next assumption concerns the saddle between the local minima xmin,1
and xmin,2. Define the saddle height between xmin,1 and xmin,2 to be the mini-
mum amount of energy needed to go from the global minimum xmin,1 to xmin,2, and
is given by

(4.1) Û = Û(xmin,1, xmin,2) def= inf
ω

sup
t∈[0,1]

U(ω(t)).

Here the infimum above is taken over all continuous paths ω ∈ C([0, 1];Td) such
that ω(0) = xmin,1, ω(1) = xmin,2. To prove Theorem 2.8 we need to assume a
nondegeneracy condition on the saddle.

Assumption 4.2. The saddle height between xmin,1 and xmin,2 is attained at a
unique critical point s1,2 of index one. That is, the first eigenvalue of HessU(s1,2)
is negative and the others are positive.

We can now define the ratio γ̂r that appeared in (2.8), above. The energy barrier,
denoted by γ̂, is defined to be the minimum amount of energy needed to go from
the (possibly local) minimum xmin,2 to the global minimum xmin,1. In terms of s1,2,
the energy barrier γ̂ and the saddle height are given by

(4.2) γ̂
def= U(s1,2) − U(xmin,2), and Û = U(s1,2).

The ratio γ̂r is the ratio of the saddle height Û to the energy barrier γ̂, given by

(4.3) γ̂r
def= Û

γ̂
.

Finally, we require the distribution πη to be truly multimodal in the temperature
range of interest. That is, we require the mass in the basins of attraction around
each of the local minima xmin,1 and xmin,2 to be bounded away from 0. We recall
the basin of attraction around xmin,i, denoted by Ωi, is the set of all initial points
for which the gradient flow of U eventually reaches xmin,i. Precisely, Ωi is defined
by

Ωi
def=
{
y ∈ Td

∣∣∣ lim
t→∞

yt = xmin,i, where ẏt = −∇U(yt) with y0 = y
}
,

and our multimodality condition is as follows.
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Assumption 4.3. There exists 0 ⩽ ηmin < ηmax ⩽ ∞, a constant Cm such that

(4.4) inf
ε∈[ηmin,ηmax]

0<ε<∞

πε(Ωi) ⩾
1
C2
m

.

We will show (Lemma 4.4, below) that (4.4) is satisfied if the wells have nearly
equal depth. That is, if U(xmin,2) − U(xmin,1) ⩽ O(ηmin), then one can show (4.4)
holds for some constant Cm that is independent of ηmin. We state this precisely as
the following lemma.

Lemma 4.4. Suppose U satisfies Assumptions 4.1, 4.2, and there exists a tempera-
ture ηmin ⩾ 0 and constant Cℓ > 0 such that

(4.5) U(xmin,2) − U(xmin,1) ⩽ Cℓηmin.

Then for any finite ηmax > ηmin there exists a constant Cm = Cm(U, ηmax, Cℓ),
independent of ηmin such that (4.4) holds.

Remark 4.5. We note that the condition (4.5) implies the finiteness condition (2.3)
that was used in Theorem 2.2. This is shown in Corollary 9.1, below, and was
previously referred to in Remark 2.5.

4.2. Proof of Theorem 2.8. In this subsection, we explain the main idea behind
the proof of Theorem 2.8. For simplicity and without loss of generality we assume
η1 = 1. We begin by rewriting our algorithm in a manner that that is convenient
for the proof. Fix T > 0 and N ∈ N that will be chosen later.
Step 1: We start with N arbitrary points y1

1 , . . . , yN1 .
Step 2: Langevin step. For each k ∈ {1, . . . ,M}, and i ∈ {1, . . . N}, let Xi

k,· be the
solution to the overdamped Langevin equation (1.2) with initial data Xi

k,0 = yik,
driven by independent Brownian motions.
Step 3: Resampling step. Given the processes {Xi

k,· | i ⩽ N, k ⩽M − 1} we choose
the points {y1

k+1, . . . , y
N
k+1} independently from {X1

k,T , . . . , X
N
k,T } so that

P (yik+1 = Xj
k,T ) =

r̃k(Xj
k,T )∑N

i=1 r̃k(Xi
k,T )

.

Here r̃k is the ratio defined by (2.1).
We now briefly recall a few standard facts about the overdamped Langevin

dynamics (1.2) that will be used in the proof. Let Lε be the generator of (1.2),
whose action on smooth test functions is defined by

(4.6) Lεf
def= −ε∆f + ∇U · ∇f.

Let L∗
ε be the dual operator defined by

(4.7) L∗
εf = −∇ · (∇Uf) − ε∆f .

It is well known [Øks03, Chapter 8] that if Yε,· solves (1.2) then its density ft
def=

PDF(Yε,t) satisfies the Fokker-Planck equation, a.k.a. the Kolmogorov forward
equation

(4.8) ∂tf + L∗
εf = 0.
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One can readily check that the Gibbs distribution πε is a stationary solution of (4.8),
and hence must be the stationary distribution of (1.2). A direct calculation shows
that

(4.9) ∂t

( f
πε

)
+ Lε

( f
πε

)
= 0.

The mixing properties of Langevin dynamics can be deduced directly from the
spectral properties of the operator Lε, as we now explain. It is well known (see for
instance [Kol00, Chapter 8]) that on the weighted space L2(πε) the operator Lε is
self-adjoint and has a discrete spectrum with eigenvalues

0 = λ1,ε < λ2,ε ⩽ λ3,ε · · ·

with corresponding L2(πε) normalized eigenfunctions ψ1,ε, ψ2,ε, etc. The first eigen-
value λ1,ε = 0 corresponds to the constant eigenfunction ψ1,ε ≡ 1. In our situation,
because U has two wells, it is well known that (see for instance Propositions 2.1,
2.2 in Chapter 8 of [Kol00]) for every γ < γ̂ there exists constants Cγ and Λ
(independent of ε) such that

(4.10) λ2,ε ⩽ Cγ exp
(

−γ

ε

)
and λi,ε ⩾ Λ, ∀i ⩾ 3.

As a result, equation (4.9) implies∥∥∥ ft
πε

− 1
∥∥∥2

L2(πε)
=
∥∥∥e−Lεt

( f0

πε

)
− 1
∥∥∥2

L2(πε)

⩽ exp
(
−2tCγe−γ/ε)⟨f0, ψ2,ε⟩2

L2 + e−Λt
∥∥∥ f0

πε
− 1
∥∥∥2

L2(πε)
.

The second term on the right decays fast with t, and the metastability phenomenon
described above is due to the slow decay of the first term. While the first term
decays slowly with t, we can make it small by ensuring

⟨f0, ψ2,ε⟩2
L2 =

(∫
Td

f0 ψ2,ε dx
)2

is small. We note that ⟨f0, ψ2,ε⟩L2 measures the difference in the f0 and the πε-mass
distribution in each well. This confirms our previous statement that the Langevin
dynamics mixes quickly when the mass of the initial distribution in each well is
close to the πk-mass of the same well.

To use this quantitatively in our situation, we need an estimate on the Monte
Carlo error when using N independent realizations to compute the integral of a
test function. We recall the standard Langevin Monte Carlo algorithm (LMC)
approximates the integral of a test function h with respect to the Gibbs measure πε
by ∫

Td

hπε dx ≈ 1
N

N∑
i=1

h(Y iε,t),

where Y 1
ε,·, . . . , Y Nε,· are N independent solutions to (1.2). The right hand side

approaches the left hand side as N, t → ∞. Our first lemma controlling the error is
as follows.
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Lemma 4.6. Assume that for each i ∈ {1, . . . , N}, PDF(Y iε,0) = qiε,0. Then for
any bounded test function h,

(4.11) Errε,T (h) ⩽ e−λ2,εT
∣∣∣∫

Td

hψ2,επε dx
∣∣∣Errε,0(ψ2,ε) + 1

2
√
N

∥h∥osc + Eε,T (h)

where

(4.12) Eε,T (h) def= ∥h∥osce
−ΛT max

i=1,...,N

∥∥∥qiε,0
πε

∥∥∥ 1
2

L∞(πε)
.

We will now use Lemma 3.3 and Lemma 4.6 to derive Monte Carlo error estimates
between levels k and k + 1 in Algorithm 1. Recall in Algorithm 1, M is chosen
according to (2.8), η1 = 1, ηM = η, and the reciprocals 1/η1, . . . , 1/ηM are linearly
spaced. That is ηk is chosen according to

(4.13) ηk
def= (M − 1)η

(M − 1)η + (k − 1)(1 − η) .

For simplicity of notation, we use a subscript of k on the error, eigenvalue and
eigenfunction to denote the corresponding quantities at ε = ηk. Explicitly, we write

λ2,k
def= λ2,ηk

, ψ2,k
def= ψ2,ηk

, and Errk,0(ψ2,k) def= Errηk,0(ψ2,k).

The main idea behind the proof of Theorem 2.8 is to first estimate Errk+1,0(ψ2,k+1)
in terms of Errk,0(ψ2,k), and then use Lemma 4.6 to obtain (2.9). Obtaining this
recurrence relation, however, requires a fair amount of technical work. We state this
in the next lemma.

Lemma 4.7. Choose M as in (2.8) and ηk as in (4.13). For any α > 0, there exist
constants Cα = Cα(α,U) > 0 (depending on α) and C̃N = C̃N (U) > 1 (independent
of α) such that for any δ > 0, if

T ⩾ Cα

(
M (1+α)γ̂r + log

(1
δ

)
+ 1
η

)
, N ⩾

C̃NM
2

δ2 ,

then for each 2 ⩽ k ⩽M − 1, we have

(4.14) Errk+1,0(ψ2,k+1) ⩽ βk Errk,0(ψ2,k) + ck.

Here the constants βk, ck are such that for every k ∈ {2, . . . ,M − 1} we have

(4.15)
M−1∏
j=k

βj ⩽ Cβ and ck ⩽
δ

M
,

for some dimensional constant Cβ > 1 (independent of α, δ).

The proof of Theorem 2.8 now reduces to solving the recurrence relation (4.14)
and using Lemma 4.6. Notice that in order to use Lemma 4.6 and Lemma 4.9, we
need an estimate for ∥qk,0/πk∥L∞(πk). This is addressed in the following lemma.

Lemma 4.8. For every 2 ⩽ k ⩽M , 1 ⩽ i ⩽ N , let qik,0 be the probability density
function of Xi

k,0. For any T0 > 0, there exists a constant Cq = Cq(U, T0) such that
if T ⩾ T0, then

(4.16) max
i=1,...,N

∥∥∥qik,0
πk

∥∥∥
L∞(πk)

⩽ Cq exp
(

∥U∥osc

( 1
ηk

− 1
))
.



26 HAN, IYER, AND SLEPČEV

While the right hand side of (4.16) is exponentially large, it will only be used
in (4.12) which has an exponentially small e−ΛT factor. Choosing T ⩾ O(1/ηk) will
allow us to control it.

Finally, we will need an estimate for Err2,0(ψ2,2) which we obtain as the mixing
time when k = 1 is of order 1.

Lemma 4.9. There exists a constant C1 = C1(U) such that for any δ > 0, we have

(4.17) Err2,0(ψ2,2) ⩽ δ provided T ⩾ C1

(
log
(1
δ

)
+ 1
)
, N ⩾

C̃N
δ2 .

Here C̃N is the same constant as in Lemma 4.7.

We are now well-equipped to prove Theorem 2.8.

Proof of Theorem 2.8. Fix α, δ > 0, and define

(4.18) δ̃ = δ

4Cβ
,

where Cβ is the constant in Lemma 4.7. Choose M as in (2.8) and define

T
def= max

{
Cα

(
M (1+α)γ̂r + log

(1
δ̃

)
+ 1
η

)
, C1

(
log
(1
δ̃

)
+ 1
)
,(4.19)

1
Λ

(
log
(1
δ̃

)
+ ∥U∥osc

2η + 1
2 log(Cq)

)
, 1
}
,

N
def= C̃NM

2

δ̃2
.(4.20)

Here Cq = Cq(U, 1) is the constant in Lemma 4.8 with T0 = 1, and Cα, C1, Λ and
are the constants in Lemma 4.7, Lemma 4.9, and (4.10) respectively.

Notice that if T,N are chosen according to (4.19) and (4.20), then we can find
constants CT = CT (α,U) > 0 and CN = CN (U) so that this choice is consistent
with the choice in (2.8). We will now show that (2.9) holds for any bounded test
function h ∈ L∞(Td).

Using Lemma 4.6, we obtain

ErrM,T (h) ⩽
∣∣∣∫

Td

hψ2,kπk dx
∣∣∣e−λ2,kT ErrM,0(ψ2,M )

+ 1
2
√
N

∥h∥osc + Eη,T (h).(4.21)

We will now show that the right hand side of (4.21) is bounded above by δ∥h∥osc.
For the first term, a direct calculation using (4.14) immediately shows that for T,N
as in (4.19), (4.20) we have

ErrM,0(ψ2,M ) ⩽
(M−1∏
j=2

βj

)
Err2,0(ψ2,2) +

M−2∑
k=2

ck

( M−1∏
j=k+1

βj

)
+ cM−1(4.22)

(4.15), (4.17)
⩽ Cβ δ̃ +

M−2∑
k=2

Cβ
δ̃

M
+ δ̃

M
⩽ 2Cβ δ̃

(4.18)= δ

2 .

Next, we see

(4.23) 1√
N

(4.20)
⩽

δ̃

M

(4.18)
⩽

δ

4 .



POLYNOMIAL COMPLEXITY SAMPLING FROM MULTIMODAL DISTRIBUTIONS 27

Finally,

Eη,T (h) (4.12)= ∥h∥osce
−ΛT max

i=1,...,N

∥∥∥qiM,0

πM

∥∥∥ 1
2

L∞(πM )

(4.16)
⩽ C

1
2
q ∥h∥osc exp

(∥U∥osc

2η

)
e−ΛT

(4.19)
⩽ ∥h∥oscδ̃ < ∥h∥osc

δ

4 .(4.24)

Using (4.22), (4.23) and (4.24) in (4.21) implies

ErrM,T (h) ⩽ δ∥h∥osc.

This proves (2.9), concluding the proof. □

It remains to prove Lemmas 4.6, 4.7, 4.8 and 4.9, which will be done in subsequent
sections.

5. Proof of Lemmas for the Local Mixing Model.
In this section, we prove Lemmas 3.2, 3.3 and 3.4 that were used Section 3 to

prove Theorem 2.2. We also prove the bound for ∥rk∥L∞ stated in (3.3), that may
be easier to use in practice. Since the ideas used in Lemma 3.2 and 3.4 are related,
we prove Lemma 3.3 first.

5.1. The Resampling Error (Lemma 3.3). Notice that the points y1, . . . , yN
chosen according to (3.12) are identically distributed, but need not be independent.
However, given the points x1, . . . , xN , the points y1, . . . , yN are (conditionally)
independent. The main idea behind the proof of Lemma 3.3 is to split the error
into the sum of a conditional mean, and a conditional standard deviation, and use
conditional independence of y1, . . . , yN .

Proof of Lemma 3.3. For simplicity of notation, let

(5.1) x def= {x1, ..., xN}, and h̃
def= h−

∫
X
hq dx,

and let Ex denote the conditional expectation given the σ-algebra generated by x.
By the tower property,

E
( 1
N

N∑
1
h(yi) −

∫
X
hq dx

)2
= E

( 1
N

N∑
i=1

h̃(yi)
)2

= E
[
Ex

( 1
N

N∑
i=1

h̃(yi)
)2]

.(5.2)

We write

Ex

( 1
N

N∑
ℓ=1

h̃(yi)
)2

= J1 + J2,

where

J1
def=
( 1
N

N∑
ℓ=1

Exh̃(yi)
)2

and J2
def= Ex

( 1
N

N∑
ℓ=1

h̃(yi) − 1
N

N∑
ℓ=1

Exh̃(yi)
)2
.
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Notice that the points y1, . . . , yN are not independent; however, when conditioned
on x, the points yi are independent and identically distributed. Thus

(5.3) J2 ⩽
1
N2

N∑
ℓ=1

Varx(h̃(yi)) ⩽ 1
N

∥h̃∥2
L∞ .

To bound J1, we note

1
N

N∑
ℓ=1

Exh̃(yi) = Exh̃(y1) =
∑N
i=1 h̃(xi)r̃(xi)∑N

i=1 r̃(xi)
(3.14)=

∑N
i=1 h̃(xi)r(xi)∑N

i=1 r(xi)
= J3 + J4,(5.4)

where

J3 =
∑N
i=1 h̃(xi)r(xi)∑N

i=1 r(xi)

(
1 − 1

N

N∑
i=1

r(xi)
)
, and J4 = 1

N

N∑
i=1

h̃(xi)r(xi).

Clearly

|J3| ⩽ ∥h̃∥L∞

(
1 − 1

N

N∑
i=1

r(xi)
)
.

Thus∥∥∥ 1
N

N∑
1
h(yi) −

∫
X
hq dx

∥∥∥
L2(P )

(5.2)
⩽ (EJ1)1/2 + (EJ2)1/2

(5.4), (5.3)
⩽ (EJ2

3 )1/2 + (EJ2
4 )1/2 + ∥h̃∥L∞

√
N

.

Using the definition of h̃ in (5.1) we obtain (3.13) as desired. □

5.2. The Monte Carlo error (Lemma 3.2). In this section, we prove Lemma 3.2
which provides an estimate for the error when using independent realizations of the
process Yε,· to compute Monte Carlo integrals.

Proof of Lemma 3.2. Since
J∑
j=1

(
1 − µ0(Ωj)

πε(Ωj)

)
πε(Ωj) = 0,

both sides of (3.9) remain unchanged when a constant is added to the function h.
Thus without loss of generality we may replace h with h − inf h + 1

2 ∥h∥osc, and
assume ∥h∥L∞ = 1

2 ∥h∥osc. Next we write

(5.5) 1
N

N∑
1
h(Y iε,T ) −

∫
X
hπε dx = I1 + I2,

where

I1
def= 1
N

N∑
1

(
h(Y iε,T ) − E0h(Y iε,T )

)
, I2

def= 1
N

E0

N∑
1
h(Y iε,T ) −

∫
X
hπε dx,

and E0 denote the conditional expectation with respect to σ(y1, . . . , yN ).
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Now since Y iε,· are conditionally independent given y1, . . . , yN ,

(5.6) E0I
2
1 = 1

N

N∑
1

E0
(
h(Y iε,T ) − E0h(Y iε,T )

)2
⩽

1
N

∥h∥2
L∞ = 1

4N ∥h∥2
osc.

Next using (2.2) and (3.10) we compute

1
N

E0

N∑
1
h(Y iε,T ) = 1

N

N∑
i=1

∫
pεT (yi, z)h(z) dz

= (1 − χTε )
∫

X
hπε dx+ χTε

J∑
j=1

µ0(Ωj)
πε(Ωj)

∫
Ωj

hπε dx,

and hence

(5.7) I2 = χTε

J∑
j=1

(µ0(Ωj)
πε(Ωj)

− 1
)∫

Ωj

hπε dx.

Using (5.6) in (5.5) implies

Errε,T (h) = ∥I1 + I2∥L2(P ) ⩽ ∥I1∥L2(P ) + ∥I2∥L2(P ) ⩽
∥h∥osc

2
√
N

+ ∥I2∥L2(P ).

Using (5.7) in the above implies (3.9) as desired.

cε(j, T ) def= χTε
µ0(Ωj)
πε(Ωj)

+ (1 − χTε ).

Finally, (3.11) follows immediately from (3.9) and the fact that for every j ∈
{1, . . . , J} we have

□
∣∣∣∫

Ωj

hπε dx
∣∣∣ ⩽ ∥h∥∞

∫
Ωj

πε dx = ∥h∥osc

2 πε(Ωj).

5.3. A recurrence relation for the error (Lemma 3.4). We now prove
Lemma 3.4, which obtains a recurrence relation for the Monte Carlo error be-
tween levels k and k + 1 in Algorithm 1.

Proof of Lemma 3.4. Fix k ∈ {1, . . . ,M − 1}, and ℓ ∈ {1, . . . , J}. Applying
Lemma 3.3 with p = πk, q = πk+1, h = 1Ωℓ

, and xi = Y ik,T gives

(5.8) Errk+1,0(1Ωℓ
) ⩽ 1√

N
+ Errk,T (rk) + Errk,T

(
rk(1Ωℓ

− πk+1(Ωℓ))
)
.

We now bound the last two terms on the right hand side of (5.8). Applying
Lemma 3.2 with h = rk, ε = ηk and using (3.1) gives

Errk,T (rk) ⩽ ∥rk∥osc

2
√
N

+ χTk

∥∥∥∥ J∑
j=1

(
1 − µ0(Ωj)

πk(Ωj)

)
πk+1(Ωj)

∥∥∥∥
L2(P )

= ∥rk∥osc

2
√
N

+ χTk

∥∥∥∥ J∑
j=1

(
1 − µ0(Ωj)

πk(Ωj)

)
(πk+1(Ωj) − πk(Ωj)

∥∥∥∥
L2(P )

⩽
∥rk∥osc

2
√
N

+ χTk

( J∑
j=1

∣∣∣πk+1(Ωj)
πk(Ωj)

− 1
∣∣∣) max

1⩽j⩽J
Errk,0(1Ωj

).(5.9)
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Here µ0 is defined by (3.10) with yi = Y ik,0, and the second equality above is true
because

∑
j µ0(Ωj) = 1.

For the last term on the right of (5.8) again apply Lemma 3.2 with ε = ηk
and h = rk(1Ωℓ

− πk+1(Ωℓ)) to obtain

(5.10) Errk,T
(
rk(1Ωℓ

− πk+1(Ωℓ))
)
⩽

∥rk∥osc

2
√
N

+ χTε J1

where

J1
def=
∥∥∥ J∑
j=1

(
1 − µ0(Ωj)

πk(Ωj)

)
πk+1(Ωℓ)(δj,ℓ − πk+1(Ωj))

∥∥∥
L2(P )

.

Since
∑
j µ0(Ωj) = 1 we note

J1 =
∥∥∥ J∑
j=1

(
1 − µ0(Ωj)

πk(Ωj)

)
πk+1(Ωℓ)(δj,ℓ − πk+1(Ωj) + πk(Ωj))

∥∥∥
L2(P )

⩽ πk+1(Ωℓ)
J∑
j=1

∣∣∣ δj,ℓ
πk(Ωj)

+ 1 − πk+1(Ωj)
πk(Ωj)

∣∣∣ max
1⩽j⩽J

Errk,0(1Ωj )

⩽
(

1 + π(Ωℓ)
J∑
j=1

∣∣∣1 − πk+1(Ωj)
πk(Ωj)

∣∣∣) max
1⩽j⩽J

Errk,0(1Ωj ) .(5.11)

Using (5.9), (5.10) and (5.11) in (5.8) yields (3.15) as desired. □

6. Error estimates for the Langevin Dynamics (Lemma 4.6 and 4.8).
In this section we prove Lemmas 4.6 and 4.8. The proof of Lemma 4.6 is based

on a spectral decomposition, and is presented in Section 6.1, below. The proof of
Lemma 4.16 is based on the maximum principle and is presented in Section 6.2,
below.

6.1. The Monte Carlo error in the Langevin Step (Lemma 4.6). The proof
of Lemma 4.6 has three main steps. First, we separate the error into the sum of the
conditional mean and the conditional standard deviation. The conditional standard
deviation is O(1/

√
N) and is easily bounded. Then we decompose the conditional

mean as the sum of Errε,0(ψ2,ε) and a remainder using the spectral decomposition
of Lε, and bound the remainder terms.

Proof of Lemma 4.6. Since
∫
Td ψ2,επε dx = 0, both sides of (4.11) remain unchanged

when a constant is added to the function h. Thus without loss of generality we
may again replace h with h − inf h + 1

2 ∥h∥osc, and assume ∥h∥L∞ = 1
2 ∥h∥osc. As

before, let E0 denote the conditional expectation given the σ-algebra generated
by {Y 1

ε,0, ..., Y
N
ε,0}.

Step 1: By the tower property of conditional expectation, we have

(6.1) (Errε,T (h))2 = E
[
E0

( 1
N

N∑
i=1

h(Y iε,T ) −
∫
Td

hπε dx
)2]

.
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Observe that

1
N

N∑
i=1

h(Y iε,T ) −
∫
Td

hπε dx = I1 + I2,

where

I1
def= 1
N

N∑
i=1

h(Y iε,T ) − 1
N

N∑
i=1

E0h(Y iε,T ),

I2
def= 1
N

N∑
i=1

E0h(Y iε,T ) −
∫
Td

hπε dx.

Notice E0I1 = 0, and I2 is σ(Y 1
ε,0, ..., Y

N
ε,0)-measurable. Hence

(6.2) E0

( 1
N

N∑
i=1

h(Y iε,T ) −
∫
Td

hπε dx
)2

= E0I
2
1 + I2

2 .

Next, notice that after conditioning on {Y 1
ε,0, ..., Y

N
ε,0}, the random variables Y iε,T

are independent. Hence

(6.3) E0I
2
1 = 1

N2

N∑
i=1

Var0(h(Y iε,T )) ⩽ 1
N

∥h∥2
L∞ .

Thus, we conclude

(Errε,T (h))2 (6.1)= E
[
E0

( 1
N

N∑
i=1

h(Y iε,T ) −
∫
Td

hπε dx
)2]

(6.4)

(6.2)= EE0I
2
1 + EI2

2
(6.3)
⩽

1
N

∥h∥2
L∞ + EI2

2 .

Step 2: In this step, we use a spectral decomposition to rewrite I2. Notice that h
can be decomposed into components along the subspace spanned by {1, ψ2,ε} and
its orthogonal complement. This decomposition gives

h =
∫
Td

hπε dx+ f0 + f⊥
0 ,

where

f0(y) def=
(∫

Td

hψ2,επε dx
)
ψ2,ε(y)(6.5)

f⊥
0 (y) def= h(y) −

∫
Td

hπε dx−
(∫

Td

hψ2,επε dx
)
ψ2,ε(y).(6.6)

Therefore,

(6.7) I2 = 1
N

N∑
i=1

E0h(Y iε,T ) −
∫
Td

hπε dx = I3 + I4,

where

I3
def= 1
N

N∑
i=1

E0f0(Y iε,T ), and I4
def= 1
N

N∑
i=1

E0f
⊥
0 (Y iε,T ).
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Step 2.1: I3 bound. To bound bound I3, we first claim
(6.8) E0ψ2,ε(Y iε,T ) = e−λ2,εTψ2,ε(Y iε,0) .

To see this, recall that for any g0 ∈ L∞(Td) the function g defined by
gt(y) = Eyg0(Yε,t),

solves the Kolmogorov backward equation
(6.9) ∂tg + Lεg = 0,
with initial data g0. Here Yε,· is a solution to the Langevin equation (1.2). Since ψ2,ε
is the second eigenfunction of the operator Lε (defined in (4.6)), we see

Eyψ2,ε(Yε,t) = e−λ2,εtψ2,ε(y),
which immediately implies (6.8).

Now (6.5) and (6.8) imply

I3 = 1
N

N∑
i=1

E0

[(∫
Td

hψ2,επε dx
)
ψ2,ε(Y iε,T )

]
=
(∫

Td

hψ2,επε dx
) 1
N

N∑
i=1

e−λ2,εTψ2,ε(Y iε,0),

and hence

(EI2
3 ) 1

2 =
∣∣∣∫

Td

hψ2,επε dx
∣∣∣e−λ2,εT

∥∥∥ 1
N

N∑
i=1

ψ2,ε(Y iε,0)
∥∥∥
L2(P )

=
∣∣∣∫

Td

hψ2,επε dx
∣∣∣e−λ2,εT Errε,0(ψ2,ε).(6.10)

Step 2.2: I4 bound. To bound I4 we note

I4 = 1
N

N∑
i=1

E0f
⊥
0 (Y iε,T ) = 1

N

N∑
i=1

f⊥
T (Y iε,0),

where f⊥
t (y) = Eyf⊥

0 (Yε,t) and, as before, Yε,· is a solution of (1.2). Observe that,

EI2
4 = E

( 1
N

N∑
i=1

f⊥
T (Y iε,0)

)2
⩽

1
N

N∑
i=1

Ef⊥
T (Y iε,0)2 = 1

N

N∑
i=1

∫
Td

(f⊥
T )2qiε,0 dx

= 1
N

N∑
i=1

∫
Td

(f⊥
T )2 q

i
ε,0

πε
πε dx ⩽ ∥f⊥

T ∥2
L2(πε) max

i=1,...,N

∥∥∥qiε,0
πε

∥∥∥
L∞(πε)

.(6.11)

To bound ∥f⊥
T ∥2

L2(πε), we note that f⊥ solves the Kolmogorov backward equa-
tion (6.9), and hence we have the spectral decomposition

∥f⊥
T ∥2

L2(πε) =
∞∑
i=1

e−2λi,εT
∣∣∣∫ f⊥

0 ψi,ε πε dx
∣∣∣2

Using (6.5) and (6.6) the first two terms on the right vanish, and hence the spectral
decomposition gives

(6.12) ∥f⊥
T ∥2

L2(πε) =
∞∑
i=3

e−2λi,εT
∣∣∣∫ f⊥

0 ψi,ε πε dx
∣∣∣2 (4.10)

⩽ ∥f⊥
0 ∥2

L2(πε)e
−2ΛT .
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We will now bound ∥f⊥
0 ∥L2(πε). Notice

∥f⊥
0 ∥L2(πε) ⩽

∥∥∥h−
∫
Td

hπε

∥∥∥
L2(πε)

+
∥∥∥(∫

Td

hψ2,επε

)
ψ2,ε

∥∥∥
L2(πε)

⩽ ∥h∥L2(πε) +
∣∣∣ ∫

Td

hψ2,επε

∣∣∣ ⩽ 2∥h∥L2(πε) ⩽ 2∥h∥L∞ .

Together with (6.12) this gives

(6.13) ∥f⊥
T ∥L2(πε) ⩽ 2∥h∥L∞e−ΛT .

Therefore, plugging (6.13) into (6.11) yields

(6.14) (EI2
4 ) 1

2 ⩽ 2∥h∥L∞(πε)e
−ΛT max

i=1,...,N

∥∥∥qiε,0
πε

∥∥∥ 1
2

L∞(πε)
= Eε,T (h).

Step 3: Based on the previous steps,

(Errε,T (h))2
(6.4)
⩽

1
N

∥h∥2
L∞ + EI2

2
(6.7)
⩽

1
N

∥h∥2
L∞ +

(
(EI2

3 ) 1
2 + E(I2

4 ) 1
2

)2

(6.10),(6.14)
⩽

1
N

∥h∥2
L∞ +

(∣∣∣∫
Td

hψ2,επε dx
∣∣∣e−λ2,εT Errε,0(ψ2,ε) + Eε,T (h)

)2
.

Taking square root on both sides and using ∥h∥L∞ = 1
2 ∥h∥osc finish the proof. □

6.2. Growth of ∥qik,0/πk∥L∞ (Lemma 4.8). In this section, we prove Lemma 4.8
which will be used in the proof of Lemma 4.7, and was also used in the proof of
Theorem 2.8 to obtain (4.24). Let qik,t denote the probability density of Xi

k,t. The
proof Lemma 4.8 involves controlling the growth of ∥qik,t/πk∥L∞ in the Langevin
step, and in the resampling step. In the Langevin step, ∥qik,t/πk∥L∞ is nonincreasing
due to maximum principle. In the resampling step, the growth of ∥qk,0/πk∥L∞(πk)
between levels is tracked using duality.

Proof of Lemma 4.8. The proof contains three steps. Fix T0 > 0. In the first step,
there exists a constant Cq = Cq(U, T0) such that for any T > T0 we have

(6.15) max
i=1,...,N

∥∥∥qi1,T
π1

∥∥∥
L∞

⩽ Cq.

Next we will show that for every k ⩾ 2,

(6.16) max
i=1,...,N

∥∥∥qik,0
πk

∥∥∥
L∞

⩽
1∏k−1

ℓ=1 min rℓ
max

i=1,...,N

∥∥∥qi1,T
π1

∥∥∥
L∞

,

where rk is defined in (3.1).
Finally we show by direct computation that

(6.17)
k−1∏
ℓ=1

min rℓ ⩾ exp
((

1 − 1
η

)
∥U∥osc

)
.

Combining (6.15), (6.16) and (6.17) completes the proof. We will now each of the
above inequalities.
Step 1: Proof of (6.15). Since Xi

1,· solves (1.2) with ε = η1 = 1, it’s density, denoted
by qi1,t must solve (4.8) (with ε = η1). Since L∗

1 (defined by (4.7), with ε = 1) is
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nondegenerate, parabolic regularity implies there exists a constant C = C(U, T0)
such that

max
i=1,...,N

∥qi1,T0
∥L∞ ⩽ C∥qi1,T0/2∥L1 = C .

The last equality above followed because qi1,t is a probability density and so ∥qi1,t∥L1 =
1 for every t > 0. Thus

(6.18)
∥∥∥qi1,T0

π1

∥∥∥
L∞

⩽
∥qi1,T0

∥L∞

min π1
⩽

C

min π1

and we choose Cq = Cq(U, T0) to be the right hand side of the above.
Since qi1,t/π1 solves the backward equation (6.9) with ε = η1 = 1, the maximum

principle and (6.18) imply (6.15) for all T ⩾ T0.
Step 2: Proof of (6.16). We claim that for all k ∈ {1, . . . ,M − 1}, we have

(6.19) max
i=1,...,N

∥∥∥qik+1,0

πk+1

∥∥∥
L∞

⩽
1

min rk
max

i=1,...,N

∥∥∥qik,T
πk

∥∥∥
L∞

.

Next we note that qik,t/πk satisfies (6.9) with ε = ηk. Thus, by the maximum
principle we have

(6.20)
∥∥∥qik,T
πk

∥∥∥
L∞

⩽
∥∥∥qik,0
πk

∥∥∥
L∞

,

for every k ∈ {2, . . . ,M} and every i ∈ {1, . . . , N}. The bound (6.16) immediately
follows from (6.19) and (6.20). Thus it only remains to prove (6.19).

We note that if X1
k,T , . . . , XN

k,T were i.i.d. then one has an explicit formula
for qik+1,0, from which (6.19) follows immediately. In our situation these processes
are not independent, and so we prove (6.19) using duality, and without relying on
an explicit formula.

For any test function h ∈ L1(πk+1) be a test function we have∫
Td

h(x)qik+1,0(x) dx = Eh(Xi
k+1,0)

= EE
(
h(Xi

k+1,0)
∣∣Xk

1,T , ..., X
N
k,T

)
= E

(∑
j h(Xj

k,T )rk(Xj
k,T )∑

j rk(Xj
k,T )

)

⩽
1

N min rk

N∑
j=1

E
∣∣h(Xj

k,T )rk(Xj
k,T )

∣∣.(6.21)

Next, we note that for every j = 1, . . . , N ,

E
∣∣h(Xj

k,T )rk(Xj
k,T )

∣∣ =
∫
Td

|h|rkqjk,T dx
(3.1)=

∫
Td

|h|
rkq

j
k,T

rkπk
πk+1 dx

⩽ ∥h∥L1(πk+1)

∥∥∥qjk,T
πk

∥∥∥
L∞

.(6.22)

Thus (6.21) and (6.22) imply∣∣∣∫
Td

h(x)qik+1,0(x) dx
∣∣∣ ⩽ ∥h∥L1(πk+1)

min rk
max

j=1,...,N

∥∥∥qjk,T
πk

∥∥∥
L∞

,

from which (6.19) follows by duality.
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Step 3: Proof of (6.17). Observe that

(6.23) rk(x) = Zk
Zk+1

exp
(

−
( 1
ηk+1

− 1
ηk

)
U(x)

)
where Zk

def= Zηk
, and Zηk

is the normalization constant in (1.1). Hence, for
all k ∈ {1, . . . ,M − 1} the minimum of rk is attained at the same point, which we
denote by x∗. Thus,

(6.24)
k−1∏
ℓ=1

min rℓ =
k−1∏
ℓ=1

rℓ(x∗) = πk(x∗)
π1(x∗) = Z1

Zk
exp
((

1 − 1
ηk

)
U(x∗)

)
.

Since U ⩾ 0 by assumption, and ηk < η1 = 1, we must have Z1 ⩾ Zk. Using
this in (6.24) immediately implies (6.17) as desired. This completes the proof of
Lemma 4.8. □

7. Iterating error estimates (Lemmas 4.7 and 4.9)
Lemma 4.7 consists of two main parts: the derivation of recurrence relation (4.14),

and obtaining the estimate (4.15) for βk, ck. We do each of these steps in Sec-
tions 7.1, 7.2 and 7.3. We combine these and prove Lemma 4.7 in Section 7.4.

7.1. Recurrence relation. We will now prove (4.14) by combining the estimate
for the Monte Carlo error (Lemma 4.6) and the resampling error (Lemma 3.3). For
clarity, we state this as a new lemma and give explicit formulae for the constants βk
and ck appearing in (4.14).

Lemma 7.1. For each 2 ⩽ k ⩽M − 1, the inequality (4.14) holds with βk and ck
given by

βk
def= e−λ2,kT

(∣∣∣ ∫
Td

rkψ2,kπk dx
∣∣∣ · ∥ψ2,k+1∥L∞(7.1)

+
∣∣∣ ∫

Td

ψ2,k+1ψ2,kπk+1 dx
∣∣∣)

ck
def= 3∥ψ2,k+1∥L∞∥rk∥L∞

( 1
2
√
N

+ e−ΛT max
i=1,...,N

∥∥∥qik,0
πk

∥∥∥ 1
2

L∞(πk)

)
(7.2)

+ 1√
N

∥ψ2,k+1∥L∞ .

Proof of Lemma 7.1. Applying Lemma 3.3 with

p = πk, q = πk+1, h = ψ2,k+1, xi = Xi
k,T , yi = Xi

k+1,0

gives

Errk+1,0(ψ2,k+1) =
∥∥∥ 1
N

N∑
i=1

ψ2,k+1(Xi
k+1,0)

∥∥∥
L2(P )

(3.13)
⩽

1√
N

∥ψ2,k+1∥L∞ + ∥ψ2,k+1∥L∞

∥∥∥1 − 1
N

N∑
ℓ=1

rk(Xi
k,T )

∥∥∥
L2(P )

+
∥∥∥ 1
N

N∑
i=1

ψ2,k+1(Xi
k,T )rk(Xi

k,T )
∥∥∥
L2(P )
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= 1√
N

∥ψ2,k+1∥L∞ + ∥ψ2,k+1∥L∞ Errk,T (rk) + Errk,T (ψ2,k+1rk).(7.3)

We will now bound the last two terms on the right of (7.3). For the term
Errk,T (rk), we apply Lemma 4.6 with

ε = ηk, h = rk, qε,0 = qk,0,

to obtain

Errk,T (rk)
(4.11)
⩽

1
2
√
N

∥rk∥L∞ +
∣∣∣∫

Td

rkψ2,kπk dx
∣∣∣e−λ2,kT Errk,0(ψ2,k)

+ ∥rk∥L∞e−ΛT max
i=1,...,N

∥∥∥qik,0
πk

∥∥∥ 1
2

L∞(πk)
(7.4)

where we use the fact that ∥rk∥osc ⩽ ∥rk∥L∞ .
Similarly, for the term Errk,T (ψ2,k+1rk), we apply Lemma 4.6 with

ε = ηk, h = ψ2,k+1rk, qε,0 = qk,0

to obtain

Errk,T (ψ2,k+1rk)
(4.11)
⩽

∣∣∣∫
Td

ψ2,k+1ψ2,kπk+1 dx
∣∣∣e−λ2,kT Errk,0(ψ2,k)

+ 1√
N

∥rk∥L∞∥ψ2,k+1∥L∞

+ 2∥rk∥L∞∥ψ2,k+1∥L∞e−ΛT max
i=1,...,N

∥∥∥qik,0
πk

∥∥∥ 1
2

L∞(πk)
,(7.5)

where we use the fact that
∥rkψ2,k+1∥osc ⩽ 2∥rkψ2,k+1∥L∞ ⩽ 2∥rk∥L∞∥ψ2,k+1∥L∞ .

Plugging (7.4) and (7.5) into (7.3) and using (7.1), (7.2) yields (4.14), completing
the proof. □

7.2. Estimate of ck. Of the terms on the right hand side of (7.2), the term
∥qik,0/πk∥L∞(πk) has already been bounded in Lemma 4.8. We will now bound the
remaining terms. First, using a local maximum principle we will obtain an L∞

bound on the second L2-normalized eigenfunction of Lε that is uniform in ε. This
is our first lemma.

Lemma 7.2. There exists constant Cψ = Cψ(U, d, Cm) > 0 independent of ε such
that
(7.6) sup

0<ε⩽1
∥ψ2,ε∥L∞(Td) ⩽ Cψ.

Lemma 7.2 immediately gives a bound on ∥ψ2,k∥L∞ that is uniform k. Since the
proof of Lemma 7.2 is somewhat lengthy, we postpone it to Section 8.4.

We will now show how N and T can be chosen so that we obtain the bound
for ck in (4.15). Now we are equipped to prove Lemma 7.3.

Lemma 7.3 (Estimate of ck). Fix δ > 0, let Cq = Cq(U, 1) be the constant from
Lemma 4.8 with T0 = 1, and Cψ, Cr be the constants defined in (7.6) and (3.2)
respectively. Define C̃N by

(7.7) C̃N
def= 4

(
Cψ

(
1 + 3

2Cr
))2

.
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If N and T are chosen such that

N ⩾ C̃N
M2

δ2 ,(7.8)

T ⩾ max
{ 1

Λ

(
log
(1
δ

)
+ ∥U∥osc

2η + logM + log(6CψCrC
1
2
q )
)
, 1
}
,(7.9)

then
ck ⩽

δ

M
, for every 2 ⩽ k ⩽M − 1.

Proof of Lemma 7.3. We first rewrite (7.2) as

(7.10) ck = I1 + I2

where

I1 = 1√
N

∥ψ2,k+1∥L∞

(
1 + 3

2∥rk∥L∞

)
,

I2 = 3∥ψ2,k+1∥L∞∥rk∥L∞e−ΛT max
i=1,...,N

∥∥∥qik,0
πk

∥∥∥ 1
2

L∞(πk)
.

Notice that the choice of T and N gives that

(7.11) I1
(3.2),(7.6)

⩽
1√
N
Cψ

(
1 + 3

2Cr
) (7.7),(7.8)

⩽
δ

2M ,

and

(7.12) e−ΛT
(7.9)
⩽ δ exp

(
−∥U∥osc

2η

) 1
M

1

6CrCψC
1
2
q

.

Therefore,

(7.13) I2
(7.6),(3.2),(4.16)

⩽ 3CψCre−ΛTC
1
2
q exp

(
∥U∥osc

( 1
ηk

− 1
)) (7.12)

⩽
δ

2M .

Using (7.11) and (7.13) in (7.10) concludes the proof. □

7.3. Estimate of βk. Recall from (4.14) the error grows by a factor of βk at each
level, and so to prove Theorem 2.8 we need to ensure

∏
βk remains bounded. The

main result in this section (Lemma 7.9, below) obtains this bound and shows that
the first inequality in (4.15) holds. For simplicity of notation, let

(7.14) Θ(k, k + 1) def=
∣∣∣ ∫

Td

rkψ2,kπk dx
∣∣∣ · ∥ψ2,k+1∥L∞ +

∣∣∣ ∫
Td

ψ2,k+1ψ2,kπk+1 dx
∣∣∣,

and note
βk = e−λ2,kTΘ(k, k + 1).

We will bound
∏M−1
j=k βj differently when the temperature ηk is low, and when

it is high. First, when the temperature is low, the exponential factor e−λ2,kT is
very close to 1, and does not help much. In this case will show that the product∏M−1
j=k Θ(j, j + 1) stays bounded, by approximating Θ(k, k + 1) in terms of the

mass in each well and estimating the mass distribution using small temperature
asymptotics. When the temperature is high, the small temperature asymptotics are
not valid anymore. However, in this case λ2,k is not too small, and can be used to
ensure βk ⩽ 1 in a relatively short amount of time.
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We begin by stating the fact that when ε is small, the second eigenfunction ψ2,ε
is very close to a linear combination of 1Ω1 and 1Ω2 . To state a precise bound,
consider the subspaces Eε, Fε ⊆ L2(πε) defined by

(7.15) Fε
def= span{1, ψ2,ε}, Eε

def= span{1Ω1 ,1Ω2}.
We measure closeness of ψ2,ε to a linear combination of 1Ω1 and 1Ω2 , by measuring
the “distance” between the subspaces Eε and Fε defined by

d(Eε, Fε)
def= ∥PEε − PEεPFε∥ = ∥PEε − PFεPEε∥.

Here PEε
, PEε

are the L2(πε) orthonormal projectors onto Eε and Fε respectively.
The next result gives an estimate on d(Eε, Fε).

Proposition 7.4 (Chapter 8, Proposition 2.2 of [Kol00]). Let γ̂ be the energy
barrier defined in (4.2). For any γ < γ̂, there exists a constant C̃γ > 0 such that for
all ε ⩽ 1, we have

(7.16) d(Eε, Fε) ⩽ C̃γ exp
(−γ
ε

)
.

We will use Proposition 7.4 to estimate the two integration terms appearing in
Θ(k, k + 1). The bounds we need are stated in the next two lemmas, and their
proofs will be postponed to Section 8.1.

Lemma 7.5. Let ε′ < ε and define rε by

(7.17) rε
def= πε′

πε
.

Then,∣∣∣ ∫
Td

ψ2,εψ2,ε′rεπε dx
∣∣∣ ⩽ min

{
∥rε∥

1
2
L∞ , ∥rε∥

1
2
L∞d(Eε, Fε)

(1 + (πε(Ω2) − πε(Ω1))(πε′(Ω1) − πε(Ω1))) 1
2

}
.(7.18)

Lemma 7.6. Let ε′ < ε. Then∣∣∣ ∫
Td

ψ2,επε′ dx
∣∣∣ ⩽ min

{
∥rε∥L∞(πε),(√

πε(Ω2)√
πε(Ω1)

+
√
πε(Ω1)√
πε(Ω2)

)
· |πε′(Ω1) − πε(Ω1)| + d(Eε, Fε)∥rε∥L∞(πε)

}
.(7.19)

To apply the previous two results we need to ensure the masses in the two wells
stay away from 0 (Assumption 4.3), and do not oscillate too much. We will now
show that the required oscillation condition hold provided U satisfies Assumption 4.1
holds.

Lemma 7.7. If U satisfies Assumption 4.1 then there exists a constant CBV such
that such that for every η ∈ (0, 1), and every i ∈ {1, 2} we have

(7.20)
∫ 1

η

|∂επε(Ωi)| dε ⩽ CBV.

Notice that (7.20) combined with our assumption Assumption 4.3 implies (2.3)
holds. This was the condition required to obtain error estimates for ASMC applied
to the local mixing model (Theorem 2.2). We prove Lemma 7.7 in Section 8.2,
below.
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Finally, we require a lower bound on λ2,k to ensure that in high temperature
regime we can make βk ⩽ 1 in a relative short time.

Lemma 7.8. Suppose U satisfies assumptions 4.1 and 4.2, and recall Û is the
saddle height defined in (4.1). For every H > Û , there exists A def= A(H, d, U) > 0
independent of ε such that for every ε < 1,

(7.21) λ2,ε ⩾ A exp
(

−H

ε

)
.

Postponing the proof of Lemma 7.8 to Section 8.3, we now bound
∏
βj to obtain

the first inequality in (4.15).

Lemma 7.9 (Estimate of βj). For any α > 0, there exists constant C̃α = C̃α(α,U)
such that for 2 ⩽ j ⩽M , if at each step T ⩾ C̃αM

(1+α)γ̂r , then for 2 ⩽ k ⩽M − 1,
the first inequality inequality (4.15) holds with

(7.22) Cβ
def= exp

(
CBV

(
2CmCψ + 1

2

)
+ CψCr + C

1
2
r

)
.

Here Cr, Cm, Cψ and CBV are the constants defined in (3.2), (4.4), (7.6), and (7.20),
respectively.

Proof. Given a fixed α > 0, we choose

(7.23) H
def= (1 + α) 1

2 Û > Û, and γ
def= γ̂

(1 + α) 1
2
< γ̂,

which gives that

(7.24) H

γ
= (1 + α)γ̂r.

Given H and γ as (7.23), there exists AH , Cγ > 0 independent of ε such that

(7.25) AH exp(−H

ε
)

(7.21)
⩽ λ2,ε

(4.10)
⩽ Cγ exp

(
−γ

ε

)
, for all ε < 1.

We choose a critical temperature ηcr > 0 so that

(7.26) (Cγ ∨ C̃γ) exp
(

− γ

ηcr

)
= 1
M
.

Recall that C̃γ is the constant defined in (7.16). We will prove the first inequality
in (4.15) holds by splitting the analysis into two cases.
Case I: η ⩾ ηcr. In this case, for every k ⩾ 2 we have ηk ⩾ η ⩾ ηcr and so

(7.27) exp
(

− γ

ηk

)
⩾

1
(Cγ ∨ C̃γ)M

.

This implies

(7.28) λ2,k
(7.24),(7.25)

⩾ AH

(
exp

(
− γ

ηk

))(1+α)γ̂r (7.27)
⩾ AH

( 1
(Cγ ∨ C̃γ)M

)(1+α)γ̂r

.

Therefore, for

(7.29) T ⩾ C̃αM
(1+α)γ̂r , C̃α

def= 1
AH

(Cγ ∨ C̃γ)(1+α)γ̂r log(CψCr + C
1
2
r )

we have that for k ⩾ 2,

(7.30) λ2,kT
(7.28)
⩾ log(CψCr + C

1
2
r ).



40 HAN, IYER, AND SLEPČEV

Therefore, by Lemma 7.6 and Lemma 7.5,
e−λ2,kTΘ(k, k + 1)

(7.14)= e−λ2,kT
(∣∣∣ ∫

Td

rkψ2,kπk dx
∣∣∣∥ψ2,k+1∥L∞ +

∣∣∣ ∫
Td

ψ2,k+1ψ2,kπk+1 dx
∣∣∣)

(7.19),(7.18),(7.6)
⩽ e−λ2,kT

(
Cψ∥rk∥L∞ + ∥rk∥

1
2
L∞

)
(7.30)
⩽

1

CψCr + C
1
2
r

(
Cψ∥rk∥L∞ + ∥rk∥

1
2
L∞

) (3.2)
⩽ 1.(7.31)

We conclude that, if η ⩾ ηcr, and T satisfies (7.29), then for every k,

(7.32)
M−1∏
j=k

βj =
M−1∏
j=k

(
e−λ2,kTΘ(k, k + 1)

) (7.31)
⩽ 1.

Case II: η < ηcr. Define k0 by

k0
def= min{2 ⩽ k ⩽M − 1 | ηk ⩽ ηcr}.

We first consider k > k0, in which case we have ηk < ηcr. Observe that by
Proposition 7.4, we have

(7.33) d(Eηk
, Fηk

)
(7.16)
⩽ C̃γ exp

(
− γ

ηk

) (7.26)
⩽

1
M
.

To bound Θ(k, k + 1), we write
(7.34) Θ(k, k + 1) = J1∥ψ2,k+1∥L∞ + J2,

where

J1 =
∣∣∣ ∫

Td

rkψ2,kπk dx
∣∣∣, J2 =

∣∣∣ ∫
Td

ψ2,k+1ψ2,kπk+1 dx
∣∣∣.

Step 1: Estimating J1 and J2. We first estimate J1 and J2 using Lemma 7.5 and
7.6 respectively. For simplicity, by a slight abuse of notation we write

πk(Ωi)
def= πηk

(Ωi), i = 1, 2.
By Lemma 7.6,

J1
(7.19)
⩽ d(Eηk

, Fηk
)∥rk∥L∞ +

(√πk(Ω2)√
πk(Ω1)

+
√
πk(Ω1)√
πk(Ω2)

)
· |πk+1(Ω1) − πk(Ω1)|

(4.4)
⩽ d(Eηk

, Fηk
)∥rk∥L∞ + 2Cm ·

∣∣πk+1(Ω1) − πk(Ω1)
∣∣

(7.33)
⩽

Cr
M

+ 2Cm ·
∣∣πk+1(Ω1) − πk(Ω1)

∣∣.(7.35)

By Lemma 7.5, using the fact that (1 + y) 1
2 ⩽ 1 + 1

2y when y > 0, we have

J2
(7.18)
⩽ ∥rk∥

1
2
L∞d(Eηk

, Fηk
) +

(
1 + (πk(Ω2) − πk(Ω1))(πk+1(Ω1) − πk(Ω1))

) 1
2

(7.33),(3.2)
⩽

C
1
2
r

M
+
(

1 +
∣∣πk+1(Ω1) − πk(Ω1)

∣∣) 1
2

⩽
C

1
2
r

M
+ 1 + 1

2
∣∣πk+1(Ω1) − πk(Ω1)

∣∣.(7.36)
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Hence,

Θ(k, k + 1)(7.34)= J1∥ψ2,k+1∥L∞ + J2

(7.35),(7.36)
⩽ 1 + (2CmCψ + 1

2) ·
∣∣πk+1(Ω1) − πk(Ω1)

∣∣+ CψCr + C
1
2
r

M
.(7.37)

Step 2: Estimating
∏M−1
j=k Θ(j, j + 1). By direct computation, for k ⩾ k0,

M−1∏
j=k

βj ⩽
M−1∏
j=k

Θ(j, j + 1)

(7.37)
⩽

M−1∏
j=k

(
1 + (2CmCψ + 1

2) ·
∣∣πj+1(Ω1) − πj(Ω1)

∣∣+ CψCr + C
1
2
r

M

)
AM-GM

⩽

(
1 + CψCr + C

1
2
r

M

+ 1
M − k

M−1∑
j=k

(
2CmCψ + 1

2
)

·
∣∣πj+1(Ω1) − πj(Ω1)

∣∣)M−k

(7.20)
⩽

(
1 +

CBV(2CmCψ + 1
2 )

M − k
+ CψCr + C

1
2
r

M

)M−k
(7.22)
⩽ Cβ ,(7.38)

where the last inequality uses the fact that M − k ⩽M .
Next, for the case or k < k0, we observe that ηk ⩾ ηcr. Now using the same

argument as in the case η ⩾ ηcr we see,

(7.39)
k0∏
j=k

βj ⩽ 1,

provided T satisfies (7.29). This implies that

(7.40)
M−1∏
j=k

βj =
( k0∏
j=k

βj

)(M−1∏
j=k0

βj

) (7.39)
⩽

M−1∏
j=k0

βj
(7.38)
⩽ Cβ .

Combining (7.32), (7.38) and (7.40) completes the proof. □

7.4. Proof of Lemma 4.7. Now we prove Lemma 4.7. The proof follows immedi-
ately from Lemmas 7.1, 7.9 and 7.3.

Proof of Lemma 4.7. Choose α > 0. For any given δ > 0, we take

N = C̃N
M2

δ2

T = max
{ 1

Λ

(
log(1

δ
) + ∥U∥osc

2η + log(M) + log(6CrCψC
1
2
q )
)
,

1, C̃αM (1+α)γ̂r

}
.

Notice that if T,N are chosen as above, then we can find constants Cα = Cα(α,U) >
0 so that this choice is consistent with the choice in Lemma 4.7. Using Lemmas 7.1,
7.3 and 7.9 we obtain (4.14) and (4.15) as desired. □
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7.5. Mixing at the First Level (Lemma 4.9). In this section we prove Lemma
4.9 which bounds Err2,0(ψ2,2). We obtain this bound without relying on the initial
mass distribution, but instead using fast mixing at first level.

Proof of Lemma 4.9. The proof is analogous to that of Lemma 7.1 except when
applying Lemma 4.6, we choose qε,0 = q1,T0 with T0 = 1. For T ⩾ 1, using (6.15)
we obtain

Err2,0(ψ2,2) ⩽ β1 Err1,T0(ψ2,1) + c1,

where

β1 = e−λ2,1(T−1)
(∣∣∣ ∫

Td

r1ψ2,1π1 dx
∣∣∣ · ∥ψ2,2∥L∞ +

∣∣∣ ∫
Td

ψ2,2ψ2,1π2 dx
∣∣∣)(7.41)

(3.2),(7.6)
⩽ e−λ2,1(T−1)Cψ(Cr + 1).

and

c1 = 3∥ψ2,2∥L∞∥r1∥osc

( 1
2
√
N

+ e−Λ(T−1)C
1
2
q

)
+ 1√

N
∥ψ2,2∥L∞(7.42)

(3.2),(7.6)
⩽ Cψ(1 + 3

2Cr)
1√
N

+ 3CψCrC
1
2
q e

−Λ(T−1).

Here Cq = Cq(U, 1) is from Lemma 4.8 and Cψ, Cr are the constants defined in
(7.6) and (3.2) respectively.

Therefore, for a given δ, we take

N ⩾ C̃N
1
δ2 ,(7.43)

T ⩾ 1 + max
{ 1

Λ

(
log(1

δ
) + log(12CψCrC

1
2
q )
)
,(7.44)

1
λ2,1

(
log(1

δ
) + log(4C2

ψ(Cr + 1))
)}
.

Notice that (7.43) and (7.44) imply that there exists constant C1 = C1(U) such that

N ⩾ C̃N
1
δ2 , T ⩾ C1

(
log(1

δ
) + 1

)
.

It remains to check (4.17). Using the fact that

Err1,T0(ψ2,1) ⩽ ∥ψ2,1∥L∞

(7.6)
⩽ Cψ,

and (7.41), (7.42), (7.43) and (7.44) we obtain

Err2,0(ψ2,2) ⩽ β1 Err1,T0(ψ2,1) + c1

⩽ e−λ2,1(T−1)C2
ψ(Cr + 1) + Cψ(1 + 3

2Cr)
1√
N

+ 3CψCrC
1
2
q e

−Λ(T−1)

<
δ

4 + δ

2 + δ

4 = δ. □

8. Proof of Lemmas from Section 7.
In this section, we prove Lemmas 7.2, 7.5, 7.6, 7.7 and 7.8 that were used in

Section 7 to prove Lemma 7.9.
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8.1. Estimation of integrals in βk (Lemma 7.5 and 7.6). We first prove
Lemmas 7.5 and 7.6. Using Proposition 7.4, the proofs of both these lemmas is a
direct calculation.

Proof of Lemma 7.5. Step 1: Using the Cauchy-Schwarz inequality and recalling rε
is defined by (7.17) we obtain∣∣∣ ∫

Td

ψ2,εψ2,ε′rεπε dx
∣∣∣ =

∣∣∣ ∫
Td

ψ2,εψ2,ε′πε′ dx
∣∣∣

⩽ ∥ψ2,ε∥L2(πε′ )∥ψ2,ε′∥L2(πε′ ) = ∥ψ2,ε∥L2(πε′ ).(8.1)

It remains to compute ∥ψ2,ε∥L2(πε′ ). Clearly,

(8.2) ∥ψ2,ε∥L2(πε′ ) =
(∫

Td

(ψ2,ε)2rεπε dx
) 1

2
⩽ ∥rε∥

1
2
L∞(πε).

To prove (7.18), we need a better bound when ε is small.
Step 2: We decompose ψ2,ε into the sum of the projection into Eε and E⊥

ε , where
Eε is defined in (7.15). Explicitly,

ψ2,ε(x) = a1,ε1Ω1 + a2,ε1Ω2 + υε(x),
where υε ∈ E⊥

ε . Thus we can bound ∥ψ2,ε∥L2(πε′ ) by

(8.3) ∥ψ2,ε∥L2(πε′ ) ⩽
∥∥a1,ε1Ω1 + a2,ε1Ω2

∥∥
L2(πε′ ) + ∥υε∥L2(πε′ ).

Step 2.1: Solve a1,ε and a2,ε. Since
∫
Td ψ2,ε(x)πε(x) dx = 0, we have

(8.4) a1,επε(Ω1) + a2,επε(Ω2) = 0.
Moreover, since υε is orthogonal to 1Ω1 and 1Ω1 in L2(πε), we define

(8.5) bε
def=
√

(a1,ε)2πε(Ω1) + (a2,ε)2πε(Ω2) =
√

1 − ∥υε∥2
L2(πε).

Then we solve a1,ε and a2,ε using (8.5) and (8.4), whose solutions are

(8.6)


a1,ε = bε

√
πε(Ω2)√
πε(Ω1)

a2,ε = −bε
√
πε(Ω1)√
πε(Ω2)

or


a1,ε = −bε

√
πε(Ω2)√
πε(Ω1)

a2,ε = bε

√
πε(Ω1)√
πε(Ω2)

.

Step 2.2: Now we compute∥∥a1,ε1Ω1 + a2,ε1Ω2

∥∥2
L2(πε′ ) = b2

ε

(πε(Ω2)
πε(Ω1)πε

′(Ω1) + πε(Ω1)
πε(Ω2)πε

′(Ω2)
)

= b2
ε

(
1 + (πε(Ω2) − πε(Ω1))(πε′(Ω1) − πε(Ω1))

)
(8.5)
⩽ 1 + (πε(Ω2) − πε(Ω1))(πε′(Ω1) − πε(Ω1)).(8.7)

Here the second equality is obtained by substituting
πε′(Ωi) = πε(Ωi) + (πε′(Ωi) − πε(Ωi)), i = 1, 2,

and using the identity
∑2
i=1(πε′(Ωi) − πε(Ωi)) = 0.

On the other hand, using the fact that
∥υε∥L2(πε) = ∥P⊥

Eε
(ψ2,ε)∥L2(πε) = ∥(I − PEε)(ψ2,ε)∥L2(πε)
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= ∥(PFε − PEεPFε)(ψ2,ε)∥L2(πε) ⩽ ∥PFε − PEεPFε∥ = d(Eε, Fε),(8.8)
we obtain

(8.9) ∥υε∥L2(πε′ ) =
(∫

Td

(υε)2rεπε

) 1
2
⩽ ∥rε∥

1
2
L∞∥υε∥L2(πε)

(8.8)
⩽ ∥rε∥

1
2
L∞d(Eε, Fε).

Therefore,∣∣∣∫
Td

ψ2,εψ2,ε′rεπε dx
∣∣∣(8.1),(8.3)

⩽
∥∥a1,ε1Ω1 + a2,ε1Ω2

∥∥
L2(πε′ ) + ∥υε∥L2(πε′ )

(8.7),(8.9)
⩽ 1 + (πε(Ω2) − πε(Ω1))(πε′(Ω1) − πε(Ω1)) + ∥rε∥

1
2
L∞d(Eε, Fε).(8.10)

Combining (8.2) with (8.10) completes the proof of (7.18). □

The proof of Lemma 7.6 reuses the arguments in the proof of Lemma 7.5.

Proof of Lemma 7.6. An easy bound can be obatined by directly using Cauchy-
Schwarz as follows

(8.11)
∣∣∣∫

Td

ψ2,επε′ dx
∣∣∣ =

∣∣∣∫
Td

ψ2,εrεπε dx
∣∣∣ ⩽ ∥ψ2,ε∥L2(πε)∥rε∥L2(πε) ⩽ ∥rε∥L∞ .

To prove (7.19) we need a more careful bound when ε is small. Using the argument
in the proof of Lemma 7.5,∫

Td

ψ2,επε′ dx =
∫
Td

ψ2,ε(rε − 1)πε dx

(8.3),(8.6)=
∫
Td

(
bε

√
πε(Ω2)√
πε(Ω1)

1Ω1 − bε

√
πε(Ω1)√
πε(Ω2)

1Ω2 + υε

)
(rε − 1)πε dx

= bε

(√πε(Ω2)√
πε(Ω1)

+
√
πε(Ω1)√
πε(Ω2)

)
· (πε′(Ω1) − πε(Ω1)) +

∫
Td

υεrεπε dx

where the last equality we use the fact that υε ∈ E⊥
ε and

∑2
i=1(πε′(Ωi)−πε(Ωi)) = 0.

Therefore,∣∣∣∫
Td

ψ2,επε′ dx
∣∣∣(8.5),(8.8)

⩽
(√πε(Ω2)√

πε(Ω1)
+
√
πε(Ω1)√
πε(Ω2)

)
· |πε′(Ω1) − πε(Ω1)|

+ d(Eε, Fε)∥rε∥L∞(πε).(8.12)

Combining (8.11) with (8.12) yields (7.19), as desired. □

8.2. BV bounds on πε(Ωi) (Lemma 7.7). In this section we prove Lemma 7.7.
As we stated above, we prove Lemma 7.7 by calculating the derivative of πε(Ωi)
with respect to ε. It turns out that the derivative either has a sign or stay bounded
as ε → 0, which implies that πε(Ωi) is a BV function.

Proof of Lemma 7.7. We only prove (7.20) for i = 1. In fact, if (7.20) holds for i = 1,
then from the identity πε(Ω2) = 1 − πε(Ω1), we see that (7.20) holds for πε(Ω2) for
the same constant CBV.

Using the definition of πε(Ω1), and the fact that U ∈ C6, we see that πε(Ω1) is
differentiable in ε. We compute

∂επε(Ω1) = ∂ε

( ∫
Ω1

exp(−U
ε ) dx∫

Ω1
exp(−U

ε ) dx+
∫

Ω2
exp(−U

ε ) dx

)
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= 1
ε2

( ∫
Ω1

exp(−U
ε )U dx

)( ∫
Ω2

exp(−U
ε ) dx

)
( ∫

Ω1
exp(−U

ε ) dx+
∫

Ω2
exp(−U

ε ) dx
)2

− 1
ε2

( ∫
Ω2

exp(−U
ε )U dx

)( ∫
Ω1

exp(−U
ε ) dx

)
( ∫

Ω1
exp(−U

ε ) dx+
∫

Ω2
exp(−U

ε ) dx
)2 .(8.13)

We now split the analysis into two cases: U(xmin,1) = U(xmin,2) and U(xmin,1) <
U(xmin,2).
Case I: U(xmin,1) = U(xmin,2). We start by estimating the integrals involved in
(8.13). According to Proposition B4 and Remark under the proof of Proposition B4,
(page 289-290) in [Kol00],

(8.14)
∫

Ωi

exp
(

−U

ε

)
U dx = (2πε) d

2
ε

2

(
ci +O(ε)

)
,

where ci = ci(U) depends on derivatives of U up to order 3 evaluated at xmin,i, and
is independent of ε. The O(ε) involves constants that may depend on derivatives of
U up to order 6 evaluated at xmin,i. On the other hand, Proposition B2 in [Kol00]
guarantees

(8.15)
∫

Ωi

e− U
ε dx = (2πε) d

2
exp(−U(xmin,i)

ε )√
det ∇2U(xmin,i)

(1 +O(ε)), for i ∈ 1, 2.

Therefore, when ε is sufficiently small, combining (8.14) and (8.15),

∂επε(Ω1) = 1
ε2

(
ε
2 (c1 +O(ε))(det(∇2U(xmin,2)))− 1

2

)
(∑

i=1,2(det(∇2U(xmin,i)))− 1
2

)2

− 1
ε2

(
ε
2 (c2 +O(ε))(det(∇2U(xmin,1)))− 1

2

)
(∑

i=1,2(det(∇2U(xmin,i)))− 1
2

)2 .

We now discuss two different cases.
Case I.1: c1det(∇2U(xmin,2)))− 1

2 − c2det(∇2U(xmin,1)))− 1
2 = 0. In this case,

|∂επε(Ω1)| = O(1), ε → 0.

Since the function ε 7→ ∂επε(Ω1)) is a continuous function on (0, 1], it must be
bounded which implies (7.20).

Case I.2: c1det(∇2U(xmin,2)))− 1
2 − c2det(∇2U(xmin,1)))− 1

2 ̸= 0. Without loss of
generality we assume c1det(∇2U(xmin,2)))− 1

2 − c2det(∇2U(xmin,1)))− 1
2 < 0. In this

case there must exist some εcr > 0 such that ∂επε(Ω1)) < 0 for all ε ∈ (0, εcr]. Thus,
for any η ∈ (0, εcr),

(8.16)
∫ εcr

η

|∂επε(Ω1)| dε = −
∫ εcr

η

∂επε(Ω1) dε = πη(Ω1) − πεcr(Ω1) ⩽ 1.

For ε ∈ [εcr, 1], the function ε 7→ ∂επε(Ω1)) is continuous and hence bounded. This
immediately implies (7.20), concluding the proof of Case I.
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Case II: U(xmin,1) < U(xmin,2). Using (8.14) and (8.15) we see(∫
Ω1

e− U
ε U dx

)(∫
Ω2

e− U
ε dx

)
−
(∫

Ω2

e− U
ε U dx

)(∫
Ω1

e− U
ε dx

)
= (2πε)de−U(xmin,2)/ε

(
O(ε)√

det(∇2U(xmin,2))

− (U(xmin,2) +O(ε))√
det(∇2U(xmin,1))

(1 +O(ε))
)
,

which is negative when ε is small. Using this in (8.13) implies implies ∂επε(Ω1) < 0.
Using (8.16) and the same argument as in Case I.2 finishes the proof. □

8.3. Lower bound of the second eigenvalue (Lemma 7.8). In this section
we prove Lemma 7.8. We begin by introducing the notion of Poincare constants.
Let X be an Euclidean space, and µ be a probability measure on X . We say µ
satisfies PI(ϱ) if it satisfies the Poincaré inequality with constant ϱ. That is, for all
test functions f ∈ H1(µ) we have

Varµ(f) ⩽ 1
ϱ

∫
X

|∇f |2 dµ.

Here Varµ(f) is the variance of f with respect to the measure µ and is defined by

Varµ(f) def=
∫

X

(
f −

∫
X
f dµ

)2
dµ.

Corollary 2.15 from Menz and Schlichting [MS14] provides bounds on the Poincaré
constant for the Gibbs measure in our setting.

Proposition 8.1 (Corollary 2.15 in [MS14]). If U satisfies Assumption 4.1 and 4.2
then πε satisfies PI(ϱε) with

1
ϱε

≲
πε(Ω1)πε(Ω2)

(2πε) d
2 −1

√
| det(∇2(U(s1,2)))|

|λ−(s1,2)| exp
(U(s1,2)

ε

)∫
X
e−U/ε dx,

where λ−(s1,2) denotes the negative eigenvalue of the Hessian ∇2(U(s1,2)) at the
communicating saddle s1,2.

We note that in [MS14] their domain is the whole space Rd. The proof can
easily be modified to work in the setting of the compact torus. Proposition 8.1
immediately implies Lemma 7.8, as we now show.

Proof of Lemma 7.8. Since∫
X

|∇f |2πε dx =
∫

X
fLεf πε dx

we immediately see λ2,ε ⩾ ϱε. Thus, Proposition 8.1 implies

lim sup
ε→0

−(ε log(λ2,ε)) ⩽ lim sup
ε→0

−(ε log(ϱε)) ⩽ Û .

Thus, for every H > Û ⩾ lim supε→0 −(ε log(λ2,ε)), there exists εH such that
λ2,ε ⩾ exp(−H

ε ) for every ε < εH . Choosing

AH
def= min{ inf

εH⩽ε<1

(
λ2,ε exp(H

ε
)
)
, 1}.

immediately implies (7.21) as desired. □
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8.4. Uniform boundedness of eigenfunctions (Lemma 7.2). In this section we
prove Lemma 7.2. In the proof, the constant C = C(U, d, Cm) may change from line
to line. The main tools are local and global maximum principles. In particular, we
first find proper compact neighborhoods of the local minima and use local maximum
principle to show that ψ2,ε is uniformly bounded in ε in these neighborhoods. Then
we apply global maximum principle to show the uniform boundedness outside these
regions.

We start by a description of those compact neighborhoods. Define the Ri > 0,
i ∈ {1, 2} as

(8.17) Ri
def= sup

{
r
∣∣∣B(xmin,i, r) ⊆ Ωi, sup

x∈B(xmin,i,r)
U(x) − U(xmin,i) ⩽

γ̂

8

}
and then define

B̃i = B(xmin,i, Ri), Bi = B
(
xmin,i,

3Ri
4

)
.

We will show ψ2,ε is uniformly bounded in ε both on B1 ∪B2 and Td \ (B1 ∪B2).
We first bound ψ2,ε in the regions B1 and B2.

Lemma 8.2. There exists a constant Ca = Ca(d, U,Cm) and ε̃ = ε̃(d, U) such that
for every

(8.18) 0 < ε ⩽ min
{ 1

12 min{R1, R2}, ε̃
}

we have

(8.19) ∀x ∈ Bi, |ψ2,ε(x) − ai,ε| ⩽ Ca exp
(

−3γ̂
4ε

)
, i = 1, 2.

Here a1,ε and a2,ε are defined as in (8.6).

Proof of Lemma 8.2. Fix i = 1 or 2, for each x ∈ Bi, there exists y ∈ Bi such that
x ∈ B(y, ε). By the triangle inequality, it follows that B(y, 2ε) ⊆ B̃i. Thus,

(8.20) B(y, 2ε) ⊆ B̃i ⊂ Ωi.
First notice that the function ψ2,ε − ai,ε satisfies

(Lε − λ2,ε)(ψ2,ε − ai,ε) = λ2,εai,ε.

Thus using [GT01, Corollary 9.21], there exists dimensional constant C such that
for every y ∈ Bi for which B(y, 2ε) ⊆ B̃i, we have

sup
x∈B(y,ε)

|ψ2,ε(x) − ai,ε| ⩽ C

(( 1
|B(y, 2ε)|

∫
B(y,2ε)

|ψ2,ε(x) − ai,ε|2 dx
) 1

2

+ |λ2,εai,ε|
)
.(8.21)

Now we bound
∫
B(y,2ε) |ψ2,ε(x) − ai,ε|2 dx that appears on the right hand side

of (8.21). Using the fact that when (8.18) holds, for i = 1, 2,∫
Td

e− U
ε dx =

(∫
Ωi

e− U
ε dx

)
·
(

1 +

∫
Td\Ωi

e− U
ε dx∫

Ωi
e− U

ε dx

)
=
(∫

Ωi

e− U
ε dx

)
·
(

1 + 1 − πε(Ωi)
πε(Ωi)

) (4.4)
⩽
(∫

Ωi

e− U
ε dx

)
· (1 + C2

m)
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(8.15)
⩽ C(2πε) d

2 e−
U(xmin,i)

ε ,(8.22)

we have that∫
B(y,2ε)

|ψ2,ε − ai,ε|2 dx =
∫
B(y,2ε)

|ψ2,ε − ai,ε1Ωi
|2 dx

⩽
(

sup
z∈B(y,2ε)

e
U(z)

ε

)∫
B(y,2ε)

|ψ2,ε − ai,ε1Ωi
|2e− U

ε dx

(8.20)
⩽
(∫

Td

e− U
ε dx

)(
sup
z∈B̃i

e
U(z)

ε

)∫
Ωi

|ψ2,ε(x) − ai,ε1Ωi
|2 dπε(x)

(8.22)
⩽ C(2πε) d

2

(
sup
z∈B̃i

e
U(z)−U(xmin,i)

ε

)∥∥ψ2,ε − a1,ε1Ω1 − a2,ε1Ω2

∥∥2
L2(πε)

(8.8)
⩽ C(2πε) d

2

(
sup
z∈B̃i

e
U(z)−U(xmin,i)

ε

)
d(Eε, Fε)2

(7.16)
⩽ C(2πε) d

2

(
sup
z∈B̃i

e
U(z)−U(xmin,i)

ε

)
exp
(

−7γ̂
4ε

)
(8.17)
⩽ C(2πε) d

2 exp
(

−13γ̂
8ε

)
,(8.23)

where the second last inequality we use (7.16) with γ = 7
8 γ̂.

Notice that there exists constant ε̃ = ε̃(d, γ̂) that whenever ε < ε̃,

(8.24) exp
(

− γ̂

8ε

)
< (2πε) d

2 .

Thus, for ε < ε̃,

(8.25)
∫
B(y,2ε)

|ψ2,ε − ai,ε|2 dx
(8.23),(8.24)

⩽ C(2πε)d exp
(

−3γ̂
2ε

)
.

Therefore, plugging (8.25) into (8.21) gives

sup
x∈B(y,ε)

|ψ2,ε(x) − a1,ε|
(8.25)
⩽
( C(2πε)d

|B(y, 2ε)| exp
(

−3γ̂
2ε

)) 1
2 + C|λ2,εa1,ε|

(4.10),(8.6)
⩽

(C(2πε)d

(2ε)d exp
(

−3γ̂
2ε

)) 1
2 + CCm exp

(
−7γ̂

8ε

)
⩽ Ca exp

(
−3γ̂

4ε

)
,

which implies (8.19). □

We will now bound ψ2,ε on Td \ (B1 ∪ B2) by first bounding the Lε-harmonic
extensions of ψ2,ε and then bounding the eigenfunction of Lε in Td \ (B1 ∪B2) with
inhomogeneous Dirichlet boundary conditions specified by ψ2,ε. For simplicity of
notation, define

Ω̃ def= Td \ (B1 ∪B2).

Lemma 8.2 can be used to immediately bound the Lε-harmonic extensions of ψ2,ε.
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Lemma 8.3. For i = 1, 2, let f (i)
0,ε be the solution to

Lεf
(i)
0,ε(y) = 0, y ∈ Ω̃

f
(i)
0,ε(y) = ψ2,ε(y), y ∈ ∂Bi

f
(i)
0,ε(y) = 0, y ∈ (∂B1 ∪ ∂B2) \ ∂Bi.

For every ε satisfying (8.18) and every y ∈ Ω̃ we have

(8.26) |f (i)
0,ε(y)| ⩽ |ai,ε| + Ca exp

(
−3γ̂

4ε

)
.

Proof. Observe that f (i)
0,ε satisfies Lεf (i)

0,ε(y) = 0 on Ω̃. Thus, by weak maximum
principle [Eva10, Section 6.4.1, Theorem 1],

sup
Ω̃

|f (i)
0,ε| = sup

∂B1∪∂B2

|f (i)
0,ε| = sup

∂B1∪∂B2

|ψ2,ε|
(8.19)
⩽ |ai,ε| + Ca exp

(
−3γ̂

4ε

)
,

which implies the inequality (8.26). □

We now bound the eigenfunction of Lε in Ω̃ with inhomogeneous Dirichlet
boundary conditions specified by ψ2,ε.

Lemma 8.4. For i = 1, 2, let fλ solve
(Lε − λ2,ε)fλ(y) = 0, y ∈ Ω̃

fλ(y) = ψ2,ε, y ∈ ∂Bi

fλ(y) = 0, y ∈ (∂B1 ∪ ∂B2) \ ∂Bi.

There exist ε0 > 0, T ′
0 > 0 such that for

(8.27) ε ⩽ min
{
ε0,

7γ̂
8 log(2CγT ′

0) ,
min{R1, R2}

12 , ε̃
}

def= ε1,

we have

(8.28) |fλ(y)| ⩽ 2
(

|ai,ε| + Ca exp
(

−3γ̂
4ε

))
, ∀y ∈ Ω̃.

Here Ca is the constant in (8.19) and Cγ is a constant such that (4.10) holds
with γ = 7γ̂/8.

Proof of Lemma 8.4. We only prove when i = 1. The proof in the case i = 2 is
identical. Let f0 solve

Lεf0(y) = 0, y ∈ Ω̃
f0(y) = ψ2,ε, y ∈ ∂B1

f0(y) = 0, y ∈ ∂B2.

Let δfλ = fλ − f0. Then δfλ satisfies
Lεδfλ(y) = λ2,εfλ(y), y ∈ Ω̃
δfλ(y) = 0, y ∈ ∂B1 ∪ ∂B2.

Let τ be the first exit time of Xε from B1 ∪B2. We know g(y) def= Eyτ solves the
Poisson equation

Lεgε = 1, y ∈ Ω̃
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gε = 0, y ∈ ∂B1 ∪ ∂B2.

Thus if M ′ def= supz∈Ω̃ |fλ(z)| < ∞, the comparison principle immediately implies

sup
Ω̃

|δfλ| ⩽ λ2,εM
′ sup

Ω̃
gε.

Since fλ = δfλ + f0, we see
(8.29) M ′ ⩽ ∥f0∥L∞(Ω̃) + λ2,εM

′∥gε∥L∞(Ω̃).

According to [FW12, Corollary of Lemma 1.9, Chapter 6], for ε smaller than
some ε0, there exist constant T0 and c such that

(8.30) sup
y∈Ω̃

Eyτ ⩽ T0 + ε2

c
< T0 + ε2

0
c

def= T ′
0.

Notice that the choice (8.27) ensures that (8.18) and

(8.31) ε ⩽ ε0, λ2,εT
′
0 ⩽

1
2 ,

which implies that

M
(8.29)
⩽

∥f0∥L∞(Ω̃)

1 − λ2,ε∥gε∥L∞(Ω̃)

(8.30),(8.31)
⩽

∥f0∥L∞(Ω̃)

1 − λ2,εT ′
0

(8.26),(8.31)
⩽ 2

(
|ai,ε| + Ca exp

(
−3γ̂

4ε

))
. □

Proof of Lemma 7.2. We discuss two cases, ε ⩽ ε1 and ε > ε1, where ε1 is defined
in (8.18).
Case I: ε ⩽ ε1. For y ∈ B1 ∪B2, we apply Lemma 8.2, to obtain

(8.32) sup
y∈B1∪B2

|ψ2,ε(y)|
(8.25)
⩽ max{|a1,ε|, |a2,ε|} + Ca exp

(
−3γ̂

4ε

)
⩽ Cm + Ca.

To obtain the last inequality above we used the fact that

(8.33) max{|a1,ε|, |a2,ε|}
(8.5),(8.6)

⩽ max
{√

πε(Ω2)√
πε(Ω1)

,

√
πε(Ω1)√
πε(Ω2)

}
(4.4)
⩽ Cm.

For y ∈ Ω̃, we write
ψ2,ε = ψ

(1)
2,ε + ψ

(2)
2,ε ,

where ψ(i)
2,ε solves that

(Lε − λ2,ε)ψ(i)
2,ε(y) = 0, y ∈ Ω̃

ψ
(i)
2,ε(y) = ψ2,ε, y ∈ ∂Bi

ψ
(i)
2,ε(y) = 0, y ∈ (∂B1 ∪ ∂B2) \ ∂Bi.

Applying Lemma 8.4 to ψ(i)
2,ε gives

(8.34) sup
y∈Ω̃

|ψ2,ε(y)|
(8.28)
⩽ 2 max{|a1,ε|, |a2,ε|} + Ca exp

(
−3γ̂

4ε

) (8.33)
⩽ 2Cm + Ca.

Combining (8.34) and (8.32), we obtain that for 0 < ε ⩽ ε1, there exists C =
C(U, d, Cm) independent of ε such that ∥ψ2,ε∥L∞(Td) ⩽ C.
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Case II: ε > ε1. According to [GT01, Corollary 9.21], for y ∈ Td,

sup
x∈B(y,ε)

|ψ2,ε(x)| ⩽
( C

|B(y, 2ε)|

∫
B(y,2ε)

|ψ2,ε(x)|2 dx
) 1

2

⩽
( C

|B(y, 2ε)|

(
sup
z∈Td

e
U(z)−Umin

ε

)∫
Td

|ψ2,ε(x)|2 dπε(x)
) 1

2

= C(ε1)− d
2 exp

(∥U∥osc

2ε1

)
= C(U, d, Cm).

We conclude from the above two cases that (7.6) holds. □

9. Energy valley estimates
9.1. The Mass Ratio (Lemma 4.4). In this section we prove Lemma 4.4, whose
main idea is that when ε → 0, the value of integral

∫
Ωi

exp(−U/ε) dx is mainly
determined by landscape near the local minima.

Proof of Lemma 4.4. We will prove that there exists C > 0 independent of ηmin
such that

(9.1) sup
ε∈[ηmin,ηmax]

πε(Ω1)
πε(Ω2) ⩽ C, sup

ε∈[ηmin,ηmax]

πε(Ω2)
πε(Ω1) ⩽ C.

Combing this with the fact that

sup
ε∈[ηmin,ηmax]

1
πε(Ωi)

⩽ sup
ε∈[ηmin,ηmax]

πε(Ω1) + πε(Ω2)
πε(Ωi)

(4.4)
⩽ 1 + C

def= C2
m,

for i ∈ {1, 2}, we obtain (4.4) as desired.
To prove (9.1), we note that Assumption 4.1 implies, via Laplace method as in

(8.15), that there exists ε2 > 0 such that for all ε < ε2 we have

πε(Ω1)
πε(Ω2)

(8.15)= (det(∇2U(xmin,1)))− 1
2

(det(∇2U(xmin,2)))− 1
2 exp

( |U(xmin,1)−U(xmin,2)|
ε

) +O(ε),

The assumption (4.5) further shows that for all ε ∈ [ηmin, ε2], we have

πε(Ω1)
πε(Ω2) ⩽

(det(∇2U(xmin,1)))− 1
2

(det(∇2U(xmin,2)))− 1
2

+O(ε),

and πε(Ω1)
πε(Ω2) ⩾

(det(∇2U(xmin,1)))− 1
2

(det(∇2U(xmin,2)))− 1
2 exp(Cl)

+O(ε).

Thus, making ε2 smaller if necessary, for every ε ∈ [ηmin, ε2], we have

1
2

(det(∇2U(xmin,1)))− 1
2

(det(∇2U(xmin,2)))− 1
2 exp(Cl)

⩽
πε(Ω1)
πε(Ω2) ⩽

3
2

(det(∇2U(xmin,1)))− 1
2

(det(∇2U(xmin,2)))− 1
2
.

Since ε 7→ πε(Ω1)/πε(Ω2) is continuous and positive on the interval [ε2, ηmax], we
obtain (9.1) as desired. □

Lemmas 4.4 and 7.7 immediately shows the following corollary, showing the
finiteness condition (2.3) holds provided Assumptions 4.1, 4.2 hold and the wells
have nearly equal depth.
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Corollary 9.1. Assume the function U satisfies Assumption 4.1, Assumption 4.2
and there exists ηmin ⩾ 0 and Cℓ < ∞ such that (4.5) holds. Then for any finite
ηmax > ηmin the constant CLBV in (2.3) can be bounded above in terms of U , Cℓ
and ηmax, but independent of ηmin.

Proof of Corollary 9.1. Notice that the inequality (7.20) applied to U/ηmax gives
that there exists constant C̃BV independent of η such that for i = 1, 2,

(9.2)
∫ ηmax

η

|∂επε(Ωi)| dε ⩽ C̃BV.

Therefore,∫ ηmax

η

|∂ε ln πε(Ωi)| dε =
∫ ηmax

η

|∂επε(Ωi)|
πε(Ωi)

dε
(4.4),(9.2)

⩽ C2
mC̃BV.

Taking η → 0 on the left hand side finishes the proof. □

9.2. Uniform boundedness of rk. We recall that Cr defined by (3.2) is the
maximum of the ratio of the normalized densities. Since this may be hard to
estimate in practice, we now obtain a bound for Cr in a manner that may be easier
to use in practice.

Lemma 9.2. Suppose M is chosen by (2.4), and choose η2, . . . , ηM so that ηM = η
and 1/η1, . . . , 1/ηM are linearly spaced. If Cr = Cr(U/η1, ν) is defined by (3.2),
then Cr satisfies (3.3).

Proof of Lemma 9.2. Without loss of generality, we take U = U0 , where U0 is
defined in (3.4). Then we have η1 = 1 and U ⩾ 0.

Observe that for every k = 1, . . . ,M − 1, x ∈ X , since U ⩾ 0, we have

(9.3) rk(x)(6.23)= Zk
Zk+1

exp
(

−
( 1
ηk+1

− 1
ηk

)
U(x)

)
⩽

Zk
Zk+1

=
∫

X exp
(−U
ηk

)
dy∫

X exp
( −U
ηk+1

)
dy
.

Now we bound the ratio on the right hand side of (9.3). For c ⩾ 0, the constant
sc defined in (3.4) now becomes

sc
def=

∫
{U>c} e

−U dx∫
{U⩽c} e

−U dx
< ∞.

Then for ε < 1,

(9.4)

∫
{U>c} e

− U
ε dx∫

{U⩽c} e
− U

ε dx
⩽

exp
(
c
(
1 − 1

ε

)) ∫
{U>c} e

−U dx

exp
(
c
(
1 − 1

ε

)) ∫
{U⩽c} e

−U dx
=

∫
{U>c} e

−U dx∫
{U⩽c} e

−U dx
= sc.

Therefore, for ηk < η1,∫
X
e

− U
ηk dx =

∫
{U⩽c}

e
− U

ηk dx+
∫

{U>c}
e

− U
ηk dx

(9.4)
⩽ (1 + sc)

∫
{U⩽c}

e
− U

ηk dx

= (1 + sc)
∫

{U⩽c}
e

− U
ηk+1

+( U
ηk+1

− U
ηk

)
dx

⩽ (1 + sc) exp
(
c
( 1
ηk+1

− 1
ηk

))(∫
{U⩽c}

e
− U

ηk+1 dx
)

⩽ (1 + sc) exp(cν)
(∫

X
e

− U
ηk+1 dx

)
.(9.5)



POLYNOMIAL COMPLEXITY SAMPLING FROM MULTIMODAL DISTRIBUTIONS 53

Here the last inequality is true because the choice of M and ηk (in (2.8) and (4.13)
respectively) ensures

1
ηk+1

− 1
ηk

⩽ ν.

Since rk is always positive, using (9.5) in (9.3), we obtain that for every c > 0,
sup

1⩽k⩽M−1
∥rk∥L∞ ⩽ (1 + sc) exp(cν).

Taking infimum on the right hand side gives (3.2) with Cr defined as in (3.3). □

9.3. Dimensional dependence of constants for separated energies.

Proof of Proposition 3.1. We only need to consider the case where d ⩾ k0, where
we recall k0 is the constant in (3.8). According to (3.5) and (3.6), it suffices to show
that both Cr and CLBV are independent of d. For CLBV, we note that (3.7) implies
that we can take the domain Ωj , j = 1, . . . , J in the form

Ωj = Ω̃j × Rd−d̃,

where Ω̃j , j = 1, . . . , J are subsets in Rd̃, corresponding to the domain of measure
proportional to e−Ũ0 . Then, Fubini’s theorem shows that for any j = 1, . . . , J and
any ε > 0, we have

πε(Ωj) =

∫
Ω̃j
e−Ũ0/ε dx∫

Rd̃ e−Ũ0/ε dx
,

which is independent of d. Now using (2.3) shows CLBV is also independent of d.
Now it remains to find an upper bound of Cr which is independent of d. Since

U0 is positive, we note

∥rk∥L∞(X )
(3.1)
⩽ T1 · T2, where T1 =

∫
Rd̃ e

− Ũ0
ηk dx∫

Rd̃ e
− Ũ0

ηk+1 dx

, T2 =
∫
Rd−d̃ e

− V0
ηk dx∫

Rd−d̃ e
− V0

ηk+1 dx
.

Given our choice of ηk, we bound T1 by

T1
(9.5)
⩽ inf

c>0
(1 + sc(Ũ0)) exp

( c
d

)
⩽ inf
c>0

(1 + sc(Ũ0))ec,

where

sc(Ũ0) def=

∫
{Ũ0>c} e

−Ũ0 dx∫
{Ũ0⩽c} e

−Ũ0 dx
< ∞,

which implies that an upper bound of T1 only depends on Ũ0 and is independent
of d.

Similarly for T2, we compute

T2
(9.5)
⩽ inf

c>0
(1 + sc(V0)) exp

( c
d

)
, where sc(V0) def=

∫
{V0>c} e

−V0 dx∫
{V0⩽c} e

−V0 dx
.

Using (3.8) when c > αu, we compute

sc(V0)
(3.8)
⩽ eαu−αb

∫
{V0>c} e

−α0|x−x0|k0
dx∫

{V0⩽c} e
−α0|x−x0|k0 dx
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⩽ eαu−αb

∫
{α0|x−x0|k0 +αu>c} e

−α0|x−x0|k0
dx∫

{α0|x−x0|k0 +αu⩽c} e
−α0|x−x0|k0 dx

= eαu−αb

∫
{|x|>( c−αu

α0
)1/k0 } e

−α0|x|k0
dx∫

{|x|⩽( c−αu
α0

)1/k0 } e
−α0|x|k0 dx

=
eαu−αbΓ( dk0

, c− αu)
Γ( dk0

) − Γ( dk0
, c− αu)

⩽
eαu−αb

Γ( d
k0

)
Γ( d

k0
,c−αu) − 1

.(9.6)

By the estimate of incomplete gamma function [Gab79, Satz 4.4.3], when d
k0

⩾ 1
and c− αu ⩾ d

k0
, we have

Γ
( d
k0
, c− αu

)
⩽

d

k0
exp
(
−(c− αu)

)
(c− αu)

d
k0

−1.

On the other hand, Stirling’s formula gives

Γ
( d
k0

)
⩾ CΓ

( d
k0

) d
k0

− 1
2 exp

(
− d

k0

)
,

for a positive constant CΓ. We now choose c−αu = ν̃d/k0, where ν̃ > 1 is such that

(9.7) ν̃ − log(ν̃) ⩾ 3
2 + log

( 2
CΓ

)
.

This gives

Γ( dk0
)

Γ( dk0
, c− αu)

⩾
CΓ
(
d
k0

) d
k0

− 1
2 exp

(
− d
k0

)
d
k0

exp(−(c− αu))(c− αu)
d

k0
−1

z=d/k0= CΓ exp
(

(ν̃ − 1)z − 1
2 log(z) − (z − 1) log(ν̃)

)
⩾ CΓ exp

((
ν̃ − log(ν̃) − 3

2

)
z
) (9.7)

⩾ 2,(9.8)

where the last inequality we use the fact that z = d
k0

⩾ 1. Therefore, for this choice
of c,

sc(V0)
(9.6),(9.8)

⩽ eαu−αb ,

which implies that

T2 ⩽ (1 + sc(V0)) exp
( ν̃
k0

+ ν̃αu
d

)
⩽ (1 + eαu−αb) exp

( ν̃
k0

+ ν̃αu

)
,

which is independent of d. □
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