Assignment 4

Assigned 2025-09-17, due 2025-10-01

Unless stated otherwise, assume $(X_n)$ is a time homogeneous Markov chain on a finite state space $\mathcal X$ with transition matrix $P$.

Question 1

  1. Prove this lemma showing $\P^x(\tau^{+} > n)$ is summable.

  2. Prove this corollary relating $\pi(x)$ and $\E^x \tau^{+}$. (You should also prove the identity used in this remark, which is used in the proof outline.)

Question 2

Suppose $P$ is a transition matrix of a Markov chain on a finite state space. Let $v$ be a left eigenvector of $P$ with eigenvalue $\lambda \in \C$. This means $v P = \lambda v$; however $v$ need not be a probability distribution. The entries of $v$ may be complex, and need not sum to $1$.

  1. Show that $\abs{\lambda} \leq 1$.

  2. Suppose $P$ is irreducible, and $\pi$ is the unique stationary distribution. If $\lambda = 1$, show that there exists $\alpha \in \C$ such that $v = \alpha \pi$.

Question 3

Prove this lemma showing that for aperiodic chains there exists $\N \in \N$ such that for every $x \in \mathcal X$, and every $n \geq N$, we have $P^n(x, x) > 0$.

Question 4

Let $(X_n)$ be an irreducible Markov chain with transition matrix $P$. Let $(Y_n)$ be the lazy chain with transition matrix $Q$ as defined in this remark.

  1. Show that $Q$ is both irreducible and aperiodic, and has the same stationary distribution as $P$.

  2. Let $S \subseteq \mathcal X$, $\sigma = \min\set{n \in \N \st X_n \in S}$, $\tau = \min\set{ n \in \N \st Y_n \in S}$, $f \colon S \to \R$ and define the functions $u$, $v$ by \begin{equation} u(x) = \E^x f(X_\sigma)\,, \qquad v(x) = \E^x f(Y_\tau) \,. \end{equation} Find a relation between $u$ and $v$, and prove it.

  3. Let $u_n(x) = \P^x( \sigma \leq n )$ and $v_n(x) = \P^x( \tau \leq n )$. Find a relation between $u$ and $v$ and prove it.

Optional question 5

Let $X$ be an Markov chain with transition kernel $P$. For every $x \in \mathcal X$, define \begin{equation} \mathcal T(x) = \set{ n \in \N \st P^n(x, x) > 0 } \,. \end{equation} If $X$ is irreducible, then show that for every $x, y \in \mathcal X$, we must have $\gcd(T(x)) = \gcd(T(y))$. (The number $\gcd(T(x))$ is then called the period of the chain.)