Automated Equational Reasoning in Nondeterministic λ-Calculi Modulo Theories \mathcal{H}^*

by
Fritz H. Obermeyer

2009:03:13 – Draft for thesis defense

Department of Mathematics
Mellon College of Science
Carnegie Mellon University
Pittsburgh, PA

Thesis Committee
Rick Statman, Chair
Dana Scott
Kevin Kelly
James Cummings

Submitted for partial fulfillment of the requirements for the Degree of Doctor of Philosophy
Abstract

In this thesis I study four extensions of untyped λ-calculi all under the maximally coarse semantics of the theory \(H^* \) (observable equality), and implement a system for reasoning about and storing abstract knowledge expressible in languages with these extensions. The extensions are:

1. a semilattice operation \(J \), the join w.r.t the Scott ordering;
2. a random mixture \(R \) for stochastic λ-calculus;
3. a computational comonad \(\langle \text{code, apply, eval, quote, } \neg \rangle \) for Gödel codes modulo provable equality; and
4. a \(\Pi_1 \)-complete oracle \(O \).

I develop three languages from combinations of these extensions. The syntax of these languages is always simple: each is a finitely generated combinatory algebra. The semantics of these languages are various fragments of Dana Scott’s \(D_\infty \) models. Although the languages use ideas from the theory of computer programming languages, they have no operational semantics and do not describe programs.

The first language, SKJ, extends combinatory algebra with a join operation, with respect to the information ordering on terms. I show that an interpretation of types-as-closures reflects from \(D_\infty \) down to this definable fragment. The main theorem for SKJ is that simple types are definable as closures. The resulting type theory is very rich (\(\omega \)-order polymorphism, dependent types, a type-of-types, power-types, quotient types) but logically unsound (every type is inhabited). However I demonstrate that this type system provides an expressive interpretation of type-as-symmetry and join-as-ambiguity.

The second language, SKRJ, extends combinatory algebra with a random bit, then with join. I show that SKRJ provides semantics for a monadic λ-calculus for convex sets of probability distributions (CSPDs). This follows from our choice of join distributing over randomness—the opposite of what one would expect from the usual interpretation of join-as-concurrency. I conjecture that a weakened definable-types theorem also holds in SKRJ, and provide some evidence to this effect. I also show that, in case simple types are definable, the monadic CSPD types are polymorphic in the simple definable types.

The third language, SKJO, extends combinatory algebra with join, a comonadic type of codes, and a carefully defined \(\Pi_1 \)-complete oracle, so that exactly the \(\Delta_1 \) predicates about SKJ-terms are realized as total terms of type code \(\rightarrow \) bool. This language is sufficient to represent all of predicative mathematics, and can thus serve to represent virtually any kind of abstract knowledge. As an example, I formulate the statement and proof of termination in Gödel’s \(\top \) in the language SKJO, but do not formally verify the proof.

The final component of this thesis is a system, Johann, for automated reasoning about equality and order in the above languages. Johann was used to formally verify many of the theorems in this thesis (and even conjecture some simple theorems).

The general design focus is on efficient knowledge representation, rather than proof search strategies. Johann maintains a database of all facts about a set of (say 10k) objects, or terms-modulo-equivalence. The database evolves in time by randomly adding or removing objects. Each time an object is added, the database is saturated with facts using a forward chaining algorithm.

A specific design goal is to be able to run Johann for long periods of time (weeks) and accumulate useful knowledge, subject to limited memory. This requires statistical analysis of a corpus of interest (e.g. the set of problems to be verified in this thesis), statistical search for missing equations (from our \(\Sigma_1 \) approximation to a \(\Pi_2 \)-complete theory), and careful choice of sampling distributions from which to draw objects to add-to and remove-from the database. The (add,remove) pair of distributions is chosen to achieve a detailed balance theorem, so that, at steady state, Johann (provably) remembers simple facts relevant to the corpus.
Contents

1 Overview 7
 1.1 Motivation and Philosophy ... 7
 1.2 Summary ... 8
 1.3 Future directions ... 10
 1.4 Format ... 11
 1.5 Notation ... 12

2 Equational deduction in untyped \(\lambda \)-calculus (SK) 17
 2.1 Axioms for Scott’s information order relation (\(\sqsubseteq \) and \(\not\sqsubseteq \)) ... 17
 2.2 Axioms for basic combinators ... 18
 2.3 Theorems proved by \(\eta \)-conversion 22
 2.4 Axioms for divergent terms (approaching \(H \)) 23

3 Untyped \(\lambda \)-calculus with ambiguity-as-join (SKJ) 27
 3.1 Axioms for join-as-ambiguity (J) 29
 3.2 Axioms for a universal retract (U) 32
 3.3 Axioms for a universal closure (V) 34
 3.4 Axioms for a power closure (P) 39
 3.5 Axioms for the least strict closure (div) 41
 3.6 A simple type constructor (Simple) 42
 3.7 Types as closures .. 51
 3.8 Axioms for a few simple types 60
 3.9 Various-valued logics .. 61
 3.10 Tests for totality and correctness 66
 3.11 Axioms for a few simple tests 69
 3.12 Church numerals ... 69
 3.13 Coalgebraic numerals .. 72
 3.14 Dependent types for reduction proofs 73

4 Untyped \(\lambda \)-calculus for convex sets of probability distributions (SKRJ) 81
 4.1 Axioms for randomness .. 82
 4.2 A constructor for simple types of fuzzy terms 85
 4.3 Monadic types as closures .. 86

5 Untyped \(\lambda \)-calculus with logical reflection (SKJO) 95
 5.1 Related work .. 96
 5.2 Axioms for an extensional code type (code. A, E, Q, (−)) 97
 5.3 Injectable codes for reflection .. 103
 5.4 Provability and reflection ... 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 Axioms for a hyperarithmetic oracle (O)</td>
<td>113</td>
</tr>
<tr>
<td>5.6 The logic of SKJ terms</td>
<td>117</td>
</tr>
<tr>
<td>5.7 Types using reflection</td>
<td>122</td>
</tr>
<tr>
<td>6. Examples and Applications</td>
<td>123</td>
</tr>
<tr>
<td>6.1 Proving properties of reduction in SKJ</td>
<td>123</td>
</tr>
<tr>
<td>6.2 Type inference and termination in Gödel's T</td>
<td>128</td>
</tr>
<tr>
<td>7. Implementation of the Johann system</td>
<td>143</td>
</tr>
<tr>
<td>7.1 Background and related work</td>
<td>143</td>
</tr>
<tr>
<td>7.2 Saturating a database</td>
<td>145</td>
</tr>
<tr>
<td>7.3 Annealing a database of interest</td>
<td>147</td>
</tr>
<tr>
<td>7.4 Automated Conjecturing</td>
<td>151</td>
</tr>
<tr>
<td>7.5 Fitting a basis to a corpus of expressions</td>
<td>153</td>
</tr>
<tr>
<td>A Syntactic algorithms</td>
<td>157</td>
</tr>
<tr>
<td>A.1 Term syntax</td>
<td>157</td>
</tr>
<tr>
<td>A.2 Compiling to combinators</td>
<td>158</td>
</tr>
<tr>
<td>A.3 Decompiling</td>
<td>159</td>
</tr>
<tr>
<td>A.4 Reduction Strategies</td>
<td>161</td>
</tr>
<tr>
<td>A.5 Statements</td>
<td>161</td>
</tr>
<tr>
<td>B Reflected axiom schemata</td>
<td>163</td>
</tr>
<tr>
<td>Bibliography</td>
<td>173</td>
</tr>
</tbody>
</table>
Acknowledgements

The author is most indebted to Rick Statman and Matthew Szudzik, for years of help in gaining a perspective on λ-calculus and mathematical logic.

Thanks also to Kevin Kelly, Dana Scott, James Cummings, Frank Pfenning, Peter Lumsdaine, Moritz Hardt, Jeremy Avigad, Bob Harper, Steve Awodey, Henk Barendregt, Bob Liebler, and Alexander Hulpke for many fruitful discussions.

Thanks to Karl and Taya for putting up with obsessively bindboggled family. Thanks to Shaz for helping me through the last leg. Thanks to Matt Kahle for the random discussion back in, like, 1999 that led to the first koan below, and this thesis topic.

And thanks to PJ for help in obtaining the office chair, and thus the foundations of this mathematician.

Fritz Obermeyer,
2009:03:13
Chapter 1

Overview

Koan: If thoughts accumulated onto a structure, as atoms accumulate to form a crystal, what would that structure look like?

Koan: If we could store general results of mathematics in a table, as we remember arithmetic in a multiplication table, what would that table look like?

1.1 Motivation and Philosophy

Suppose we want to reason about the world by drawing analogies with mathematics, with some fixed universal mathematical structure. But we can only understand a finite approximation of this infinite universal formal structure, e.g. all sets definable with n symbols.

What is the best universal structure to work with? The structure should, like mathematics, be something whose properties are discoverable. It should serve as a repository of scientifically acquired formal knowledge. It should be an ontology of formal systems. There should be no place for uncertainty in the structure itself, only in our finite approximation to it.

An example of such a structure is Gödel’s universe of constructible sets L. We can locate within L any other formal system (theory, model, logic, etc.). We can translate questions about other formal systems to questions about L. More importantly, we can translate knowledge and intuition from various formal systems via L to other formal systems.

Suppose we built up a finite approximation to L, say an ontology with classes sets and relations between classes the constructive axioms of set theory. When two sets are proved equal, we ensure that they are represented by a single node in the ontology. We could in principle build all sets definable in $\leq n$ symbols, construct all formulae expressible in $\leq m$ symbols, and automatically decide all questions whose proofs use formulae bounded in size by m (narrow proofs rather than short proofs).

At any stage in growing such a structure, an approximation of L (imagine this process as crystal growth), we would have sets that are provably equal, but only using wider proofs than we currently admit. Thus as proof width increases, some of the ontology’s nodes are merged. We also have candidate expressions using fewer than n symbols, but that are not narrowly provably sets (e.g. when constructing a set using choice, we may not yet have proved the condition for existence). Thus as proof width increases, set candidates are accepted or rejected.

Since set equality in L (and let us even assume $V = L$) is undecidable, as set size grows, we find increasingly more pairs of sets whose equality is unprovable, and increasingly more set candidates whose existence is unprovable. Are there general reasoning principles whereby we can accumulate statistical evidence for equations and existence decisions? Is there a physical basis for L?

Perhaps counting symbols or the number of axioms employed in constructing a set is not the best measure of complexity. We ought really weigh frequently-used axioms less and seldom-used axioms more.
And what about variable names? Is a set definable with 2 variables simpler than a set definable only with at least 5?

How many symbols does it take to represent a typical mathematical entity, say the set of primes, or the real number π? How many sets must we enumerate (uniformly, i.e. all sets definable with ≤ n symbols for some n) before we come upon the number π? Could a machine automatically enumerate such sets, and accumulate for us mathematical knowledge?

In this thesis we design a universal structure that serve these goals better, and for which it is easier to answer these questions. The structure should have a simple grammar, so that its physical representation is simple, and so expression complexity is easy to analyze. The structure should be real in the sense that although we can’t finitely axiomatize it, we can look in the real world for statistical evidence partially answering questions about it. More practically, we should be able to gain knowledge about the structure using simple efficient reasoning principles, so that the acquisition of this knowledge can be automated. The structure should be universal in the sense that all real formal structures can be found in it. And the structure should be dense in the quantitative sense that common “natural” mathematical structures should be simple, so that we can practically construct the smallest n expressions and still see many useful objects.

1.2 Summary

Untyped λ-calculus is the backbone of many theoretical and real-world programming languages. One generally starts with pure untyped λ-calculus and adds things (like numbers, booleans, etc. with reduction rules) and takes things away (like ill-typed terms or non-convergent terms). The advantage of λ-calculus and functional programming over imperative programming languages is the ease of equational reasoning: we can reason about λ-terms —programs— as we reason about numbers: writing equations, solving equations, examining solution sets, etc.

This thesis follows the standard path of adding things to pure untyped λ-calculus, attempting to get as much as possible out of as little extension as possible. Our main theorem (in 3.6) demonstrates that Dana Scott’s λ-calculus of types-as-closures (from [Sco76]) can be interpreted in λ-calculus extended with a semilattice operation, the join w.r.t. Scott’s information ordering. In that theorem we show that there are λ-join-definable closures for each simple type, so that we can simulate the simply-typed λ calculus within the untyped λ-join-calculus, implementing types as λ-join-terms.

By developing a typed λ-calculus within an untyped system, we can leverage simple equational reasoning principles to address type-conscious verification problems, e.g., typechecking, type-restricted equality, and type-restricted convergence. In particular, we adapt the forward-chaining Todd-Coxeter algorithms from computational group theory to the problem of program verification. The first two chapters have been debugged and partially verified with our verification system Johann, described in Chapter 7.

All of our reasoning is done in H⁺ = the coarsest equational theory never identifying a divergent term with a normal form = the theory of Dana Scott’s D∞ and P(ω) models. The moderate success of our automated reasoning system provides evidence that H⁺ can be of practical significance, despite being logically complicated (Π₀¹-complete) and admitting no operational semantics (you can’t run two programs to see if they are the same, modulo H⁺).

The λ-join-calculus admits some convenient programming idioms in addition to definable types-as-closures. For example, we show in 5.9 that there are convenient-to-use closures corresponding to problems of various complexity classes, e.g., Π₀¹, Σ₀¹, Π₀², Σ₀², and differences of Π₀² sets. This is in contrast to pure untyped λ-calculus, where equational specifications are more difficult to construct. We also demonstrate a style of using closures to perform type-inference, in 3.7, 3.14, 6.1, and 6.2. Although the join operation admits no new Curry-Howard corresponding types, it does allow simpler proofs, whereby proofs can be “sketched”, and then raised to full proofs via a closure, as in type inference.

1Shapiro ([Sha2]) contrasts such theories, e.g. numbers, about specific real objects with “algebraic” theories about families of objects, e.g. group theory. In the former we have set down finitely much axiom information in the endless process of seeking the true theory of an object; in the latter we categorize all extensions of a particular finite theory, e.g. groups or topological spaces.

2Say a structure is real if it can be found in the real world, and is formal, if it can be found in many places, with computable transformations among these views.
After developing and verifying a small library of expressions in \(\lambda\)-join-calculus, we experiment with two further extensions of \(\lambda\)-join-calculus. (But we do not fully implement verifiers for these extensions.)

![Diagram](image)

Figure 1.1: From pure untyped \(\lambda\)-calculus \(SK\), we extend to a nondeterministic \(\lambda\)-calculus \(SKJ\), stochastic \(\lambda\)-calculus \(SKR\), a \(\lambda\)-calculus for convex sets of probability distributions \(SKRJ\), and a \(\lambda\)-calculus for hyperarithmetic functions \(SKJO\).

The second extension we study adds randomness to \(\lambda\)-calculus, and then adds join. We attempt but fail to prove that simple types are still definable in this system; however the attempt sheds light on the simpler proof in \(SKJ\), and the nature of join in general. We do prove that the system where randomness distributes over join (i.e., \(R \times (J \times y) = J(R \times y)/(R \times z)\)) provides a language for convex sets of probability distributions (CSPDs), the natural system arising from interval-valued probabilities. We also prove that there is a monadic type system for CSPDs, following Pfenning’s type system \(\lambda_O\) ([PPT05]). We show that, in case the simple-types theorem does hold in \(SKRJ\), the simple types and the CSPD monad combine gracefully.

Our third extension attempts to capture logically complex statements in the clean verification language of \(SKJ\), by adding a \(\Pi_1\)-complete oracle \(O\). By carefully limiting what kinds of questions \(O\) can answer, we are able to extend the problem classes of [3.9] to hyperarithmetic analogs in [5.6]. Our main innovation in this extension is a type of G"odel-coded \(SKJO\) -terms, modulo the theorem-prover’s notion of equality—a sort of provably extensional code type. This code type forms a computational comonad, as studied by Brookes and Geva ([BG92]), and satisfies much better categorical properties than other types of quoted or inert terms. More practically, these coded types allow a nearly 1-1 correspondence between terms and codes for those terms, thus conserving space in our very memory-intensive verification algorithm (though we have not implemented verifier for this fragment).

Finally, we describe in [7] algorithms for probabilistic proof search and statistical analysis, as part of the Johann reasoning system. The first of these algorithms is a randomized database annealing algorithm, based on the Metropolis-Hastings algorithm. This allows us to randomly acquire knowledge in service of a probabilistically specified motive, such as “simplify this term” or “answer this query” or “prove this assertion”. Our main theorem shows detailed balance: that we can achieve a desired steady state distribution over databases by using a pair of easily-computable sampling distributions, one for adding terms to- and one for removing terms from- the database.

A second algorithm searches for missing equations in our forward-chaining database. This “automated conjecturing” algorithm was instrumental in developing the axioms in the first chapter (see subsections entitled “Theorems conjectured by Johann”). It is tempting to use such an algorithm to automatically add equations to the theory. However, we prove that this is impossible: automated conjecturing can focus attention on interesting questions, but cannot provide probabilistic guesses as to the likelihood of truth.
The final algorithm tunes the probabilistic basis, or dually, the complexity norm with which we define “simplicity”. This nonlinear optimization algorithm allows the verifier to assess which λ-terms should be considered basic constants, and locally optimizes their weights. The goal of this optimizer is to decrease the complexity of an example corpus—in our case this thesis. Although the local optimization was crucial in identifying reasonable basis weights for successful proof search, global optimization is provably impossible.

1.3 Future directions

Operational semantics

Although λ-join-calculus modulo \mathcal{H}^* proves to be a succinct language for computable mathematics, it fails as a true programming language, as it lacks an operational semantics. By finding a reasonable operational semantics, we would be able to verify not only mathematics, but also programs.

Already the join operation can be interpreted as concurrency, but this proves difficult in the presence of infinite joins (as in proof search in 3.14). A possibility is fault-tolerant semantics, where joins of threads each compete to find the first total result, and additional results (e.g. error) are discarded thereafter. This would require hard-coding a few datatypes, and restricting joins to domains with totality tests. In this semantics we essentially take a minimal Σ_1^0 fragment from \mathcal{H}^* (exactly what is needed for type definability) and discard the rest.

Additional knowledge representations

The Johann reasoning system does not scale well, with the most expensive inference rules requiring quintic time in size of formula to be verified. Although the constant factor for these inference rules is extremely small, it necessarily limits the size of databases we can build. For example, we can currently build databases with $N = 8000$ obs overnight, but extending to $N = 10000$ obs takes two more days. Indeed it is typically time and not memory that limits the system.

There are two problems to be addressed here. The first is that, since Johann searches for narrow proofs only within the current database, it takes many annealing steps to acquire proof information. That is, to increase the database size by one ob, while maintaining a specified knowledge density (e.g. percent of order relations which are decided), Johann must add and remove many obs in the process of proof search.

The second problem is that about 90% of the theorem-proving time is taken spent enforcing about 8 axiom schemata instances. Of these, the associativity schema (for B, J, and P) is most expensive. In addition to time-cost, associativity is also very space-intensive; e.g. to prove $x \circ (y \circ z) = (x \circ y) \circ z$ requires 8 obs: $B \times x, B \times y, B \times z, B \times y, B(B \times y)$, and either $B \times (B \times y) \circ z$ or $B(B \times y) \circ z$.

One possible solution to both of these problems is to add new knowledge representations: tables for both composition and join. Since proofs in this augmented database would be narrower, Johann would not need as many annealing steps to achieve a given density. Moreover, the associativity schema for B and J could be re-implemented to use the more appropriate data structures. It is also likely that adding composition to the probabilistic basis (and randomly generating compositions of terms $x \circ y$) would be more optimal in simplifying the corpus. This is suggested by the empirical observation that the composition atom B has very high weight in the optimized basis found by Johann—B was used twice as often as any other atom.

An interface for problem-solving

The Johann system is better suited to statistical analyses and term search algorithms than verification tasks. Thus we would like to develop a natural interface to harness this computing power. On example such interface is that of hole filling in a language with partially defined terms.

Example 1.3.1. Say you’re defining/constructing a mathematical entity, say a function. You already know

- its input- and output- types;
- some facts about- and relating- its inputs and outputs, e.g.
– some of its symmetries (preserving transformations) and
– some example inputs and outputs; and
• a rough idea of how to build it.

You sketch out what you know

\[
gcd := (P \rightarrow (nat \rightarrow nat) \rightarrow (nat \rightarrow nat)) \]

\[
(\lambda g. x. y. g y x)
\]

\[
(\lambda x. y. is_zero x 0.
is_zero y 0.
then what?)
\]

\[
\ assert gcd 3 6 = 3.
\ assert x: nat \vdash gcd 0 x = 0.
\ assert x: nat \vdash gcd 1 x = x.
\ assert x: nat \vdash gcd x x = x.
\ assert gcd x (gcd y z) = gcd (gcd x y) z.
\]

But there’s still a hole (???) in your definition. How could you fill the hole? Could a computer create a short list of completions? Or break the hole into smaller parts? Or fill in some of the hole and ask for help?

Johann seems to have just the right information to solve such problems: a large database of terms to search through, basic equational theorem proving to cut down the search space, and very accurate complexity estimates to rank solution candidates.

If combined with a reasonable operational semantics as above, such a tool for programming-by-menu-selection would be very powerful.

Practical Solomonoff inference

Historically the first application of Kolmogorov-Solomonoff-Chaitin complexity (even preceding Kolmogorov’s publication [Kol65]) was Ray Solomonoff’s pseudo-algorithm for inferring the program generating a partially-observed infinite binary stream ([Sol64], [Sol78]). The pseudo-algorithm basically runs all possible programs at once, assigning to each a probability exponentially decreasing in its size. However, Solomonoff’s work was posed in terms of Turing machines, which, while easy to describe, are theoretically cumbersome to work with.

An original motivation of the Johann system was to determine how many of the programs in Solomonoff’s ensemble could be enumerated. Naturally, programs with similar behavior may be lumped into a single term in the probability distribution; thus the more equations we can enumerate, the smaller the space of programs becomes, and conversely the more *program behaviors* we can enumerate within given memory limitations. In fact this was our original motivation to study the theory \(\mathcal{H}^* \), as it is a maximally-coarse semantics of \(\lambda \)-calculus.

As future work, we would like to implement Solomonoff inference (namely the prediction/transduction problem) using Johann. The first research to be done is determine how to parametrize probability distributions over the entire space by the values they take on the finite database support, apply existing theory of extrapolation or kriging.

1.4 Format

Many of the theorems in this document are verified by the automated reasoning system Johann. Displayed formulas for casual readers are printed plainly like

\[
nat := (Simple \lambda a, a'. (a' \rightarrow a) \rightarrow a \rightarrow a').
\]
whereas formulas for Johann are displayed with a vertical bar on the left

\[
\begin{align*}
\text{zero} & := (\lambda f. x). & \text{more definitions} \\
\text{succ} & := (\lambda n, f, x. n (f x)). \\
! \text{check succ zero} & := (\lambda x. x). & \text{a Johann command, preceded by !}
\end{align*}
\]

Comments are italicized and, in color versions, displayed in blue. Some exercises for Johann are not printed in the latex’d version of this thesis; interested readers may consult the .jtext source or the html documentation at http://www.askjohann.org.

1.5 Notation

This section is a brief notational reference. Syntactic algorithms are detailed in Appendix A e.g., compilation from \(\lambda\)-calculi to combinator algebras, and interpretation of statements as sets of equations and order relations.

Constants

All structures will have least and greatest elements

\[
\begin{align*}
! \text{using } \bot & = T. \\
\text{Top} & := T. \\
\text{Bot} & := \bot.
\end{align*}
\]

We use an abundance of proper combinators: to keep proof length short.

\[
! \text{using } I \ K \ B \ C \ W \ S.
\]

To define a term and add it to the basis, we write

\[
! \text{define } F := K \ I. \quad \text{adds } F \text{ to basis}
\]

which abbreviates

\[
! \text{using } F.
\]

\[
! \text{assume } F = K \ I.
\]

To simply define syntax we use :=, e.g. in naming the standard booleans

\[
\begin{align*}
\text{true} & := K. \quad \text{define true as } K \\
\text{false} & := F. \quad \text{define false as } F
\end{align*}
\]

Fixedpoints and other combinators are quite useful (\(B’, \Phi, \Psi, \text{Jay}\) are defined by Curry in CurryFeys58).

\[
\begin{align*}
\text{B’} & := (\lambda x, y, z. \ y(x \ z)). \\
! \text{define } Y & := S \ B \ B’(W \ I). \\
\Theta & := (\lambda x, y. \ y(x \ x))(\lambda x, y. \ y(x \ x)). \\
\Phi & := (\lambda a, f, g, x. \ a(f x)(g x)). \\
\Psi & := (\lambda a, f, x, y. \ a(f x)(f y)). \\
\text{Jay} & := (\lambda a, x, y, z. \ a(x(a \ z \ y))). \\
\text{S’} & := (\lambda x, y, z. \ x \ y(x \ z)). \\
\exp & := (\lambda a, h, f. \ b \circ f \circ a). \\
\omega & := B \ Y \ B.
\end{align*}
\]
Convergence testing has three values

| fail := ⊥. |
| success := I. |
| error := ⊤. |

Other combinators common in literature are

| Δ := W I. (the doubling combinator) |
| Ω := Δ Δ. (the canonical unsolvable) |

We list equational definitions for reference

I x = x
K x y = x
F x y = y
W x y = x y y
B x y z = x(y z)
B′ x y z = y(x z)
C x y z = x z y
S x y z = x z(y z)
S′ x y z = x y(x z)
Φ f x y z = f(x z)(y z)
Ψ f x y z = f(x y)(x z)
Y f = f(f(f(...)))
U f = f | f o f | f o f o f | ...
V f = I | f | f o f | f o f o f | ...
P x y = V(x | y)

Remark. β- and η- reduction rules must be defined for all :=-defined atoms.

Operators

We use the following infix operators, ordered by precedence.

<table>
<thead>
<tr>
<th>name</th>
<th>associativity</th>
<th>syntax</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>composition</td>
<td>left (=right)</td>
<td>M ◦ M′</td>
<td>λx.M(M′ x) = B M M′</td>
</tr>
<tr>
<td>type exponential</td>
<td>right</td>
<td>M → M′</td>
<td>λf.M′ o f o M</td>
</tr>
<tr>
<td>application</td>
<td>left</td>
<td>M M′</td>
<td>M(M′)</td>
</tr>
<tr>
<td>randomness</td>
<td>none</td>
<td>M + M′</td>
<td>R M M′</td>
</tr>
<tr>
<td>join/ambiguity</td>
<td>right (=left)</td>
<td>M</td>
<td>M′</td>
</tr>
<tr>
<td>precomposition</td>
<td>right (=left)</td>
<td>M; M′</td>
<td>λx.M′(M x) = B M′ M</td>
</tr>
<tr>
<td>Church’s dot</td>
<td>right</td>
<td>(M,M′)</td>
<td>M M′</td>
</tr>
</tbody>
</table>

Note that where operators are semantically associative, their syntactic associativity is set to a default, e.g. left for composition and right for join and precomposition. Note that the comma has lowest precedence wherever it appears.

Tuples

We use the standard tuple notation

⟨M_1, ..., M_n⟩ := λf. M_1 ... M_n
⟨⟩ := λf. f = I
As observed by Corrado Böhm, in this notation, church numerals multiply tuples, e.g.,

\[3 \langle M \rangle = \langle M \rangle; \langle M \rangle; \langle M \rangle; \]

and the precomposition operator concatenates tuples

\[\langle M_1, \ldots, M_m \rangle; \langle N_1, \ldots, N_n \rangle = (\lambda f. M_1 \ldots M_m); (\lambda f. N_1 \ldots N_n) \]

We often use this to denote long argument lists as in

\[f a b c M \sim u v N x y z = \langle f, \langle a, b, c \rangle; \langle u, v \rangle; \langle x, y, z \rangle \rangle \]

Binders

We interpret typed abstraction (in 3.7), convergence-tested abstraction (in 3.10), and patterned abstraction into pure untyped \(\lambda \) calculus.

Definition 1.5.1. Typed, tested, and patterned abstraction.

\[
\begin{align*}
\lambda x : a. M & := (\lambda x. M) \circ (V a) \quad \text{pre-compose with the closure} \\
\lambda x :: t. M & := \lambda x. \text{semi}(t x) M \quad \text{test with} t \\
\lambda(x_1, \ldots, x_n). M & := (\lambda x_1, \ldots, x_n. M) \quad \text{sugar for currying}
\end{align*}
\]

This allows convenient repartitioning of vector functions as in

\[\text{split}_{mn} := \lambda f. (x_1, \ldots, x_m), (y_1, \ldots, y_n). f (x_1, \ldots, x_m, y_1, \ldots, y_n) \]

Remark. An alternative definition of patterned abstraction is as

\[\lambda(x_1, \ldots, x_n). M := \lambda X. (\lambda x_1, \ldots, x_n. M) \circ (X \cdot \text{sel } 1 \ n) \ldots (X \cdot \text{sel } n \ n) \]

This definition is “safer” in the sense that a poorly-typed \(M \) can’t “crash” a program not depending on the tuple’s components, but translates to more complicated combinators.

Definition 1.5.2. Quantification.

\[
\begin{align*}
\forall a. M & := \lambda a, x. M(x a) \quad \text{where} \ x \ \text{is not free in} \ M \\
\exists a. M & := \lambda \langle a, x : M \rangle, \langle a, x \rangle \quad \text{where} \ x \ \text{is not free in} \ M
\end{align*}
\]

or equivalently, letting \(f \) be a free variable,

\[
\begin{align*}
\forall a. f a & := \lambda a, x. f a(x a) \\
\exists a. f a & := \lambda \langle a, x : f a \rangle, \langle a, x \rangle \quad = \lambda \langle a, x \rangle, \langle a, V(f a)x \rangle
\end{align*}
\]

Both definitions are typically closed with \(V \), as described in 3.3 and employed in 3.7.
Relations and Statements

We use the following semantics for atomic relations:

\[

type relation \quad \iff \quad x = V y \\

\neg \text{fixed-point} \quad \iff \quad x \neq V y \\

\text{subtype} \quad \iff \quad V x : P y \\

\neg \text{subtype} \quad \iff \quad V x : P y \\

is a fixed-point \quad \iff \quad \operatorname{semi}(y x) = I \\

\neg \text{test} \quad \iff \quad \operatorname{semi}(y x) \neq I
\]

In proofs of typing we will often use the (meta-level) set of inhabitants of a type \(\operatorname{inhab}(a) := \{ x \mid x : a \}\), as a subset of whatever finitely generated algebra we are working in.

Universally quantified statements are interpreted by \(\lambda\) abstraction (where \(\sim\) is one of the basic relations \(=, \sqsubseteq, \text{or } \sqsupseteq\))

\[
\forall x. M \sim N \iff (\lambda x. M) \sim (\lambda x. N) \\
\forall x:a. M \sim N \iff (\lambda x:a. M) \sim (\lambda x:a. N) \\
\forall x::t. M \sim N \iff (\lambda x::t. M) \sim (\lambda x::t. N)
\]

See A for details of statements.

Naming Conventions

We will use the following naming conventions for common idioms, e.g. types as closures in 3.7, convergence tests and correctness checks in 3.10.

\[
\begin{align*}
\text{xxx} & : V \\
\operatorname{Xxx} & : \text{any} \to V \\
\operatorname{test}_{\text{xxx}} & : \text{xxx} \to \operatorname{semi} \\
\operatorname{check}_{\text{xxx}} & : \text{xxx} \to \operatorname{unit} \\
\operatorname{Join}_{\text{xxx}} & : \text{Sset} \text{xxx} \\
\operatorname{eq}_{\text{xxx}} & : \text{xxx} \to \text{xxx} \to \text{bool} \\
\text{ppp} & : \text{xxx} \to \text{bool} \\
\text{if}_{\text{ppp}} & : \text{xxx} \to \operatorname{semi} \\
\text{assert}_{\text{ppp}} & : \text{xxx} \to \text{unit}
\end{align*}
\]

a type of, say, xxx’s
a polymorphic version of xxx
a convergence test for xxx’s
a correctness check for xxx’s
joins over all total xxx’s
equality predicate for xxx’s
a predicate of xxx’s
a test for ppp
a check for ppp
Chapter 2

Equational deduction in untyped λ-calculus (SK)

This chapter introduces untyped λ-calculus and combinatory algebra (SK) and basic inference rules for reasoning about equality and Scott’s information ordering relation (\sqsubseteq).

A major component of this thesis is the Johann system, a piece of software to prove and verify statements about various untyped λ-calculi. We begin in this chapter by proving very simple statements, equations and order relations between untyped λ-terms. In later chapters $5, 4, 3$, and 6 we progressively extend to more expressive extended untyped λ-calculi. The extensions allow us to interpret progressively stronger logics into our present equational logic. For example in 3.3 and 3.7 we show how to interpret typed equations or equations with typing contexts into a λ calculus with join (and types-as-closures). Then in 3.10 do the same with a different notion of types (types-as-convergence-tests). Finally in 6.6 we show how to interpret first-order logic and even $L_{\omega, \omega}^{\mathbf{CK}}$ into the equational logic of a λ-calculus extended with an oracle.

One of the advances of this thesis is the demonstration that combinatory algebra / combinatory logic is not as prohibitively unreadable and combinatorially explosive as is commonly thought. Our demonstration consists of two components:

- a “decompilation” algorithm to translate combinators back to λ-let-terms, modulo an extensional theory; and
- an generalization of the Todd-Coxeter algorithm from finitely presented groups to finitely generated combinatory algebras.

The decompilation algorithm, detailed in $A.3$ is not used in this printed thesis, but is a main tool of the Johann system, translating the system’s internal representation to a human-readable form.

The generalized Todd-Coxeter algorithm (discussed in 7.2) is the main component of the Johann system (the remainder being syntactic algorithms, in A) and probability and statistics calculations in 7. The T-C algorithm is essentially a forward-chaining algorithm for proving equations in a finitely generated algebra, and is very similar to Robinson’s unification algorithm ([CD99], [BS01]).

Readers interested in verification and implementation aspects of this thesis should read 7.1 and 7.2 before continuing. Readers interested only in λ-calculus and denotational semantics may safely skip the verification related material in this chapter; chapters $5, 4, 3, 6$ make sense even without an understanding of the Johann system.

2.1 Axioms for Scott’s information order relation (\sqsubseteq and $\not\sqsubseteq$)

\begin{verbatim}
!using \bot \top.

We enforce the following partial order and monotonicity axiom schemata for the ordering relation.
\end{verbatim}
partial order

\[
\begin{align*}
\text{(refl)} & \quad \frac{x \sqsubseteq x}{x = y} \tag{refl} \\
\text{(antisym)} & \quad \frac{x \sqsubseteq y \quad y \sqsubseteq x}{x = y} \tag{antisym} \\
\text{(trans)} & \quad \frac{x \sqsubseteq y \quad y \sqsubseteq z}{x \sqsubseteq z} \tag{trans} \\
\text{(trans – R)} & \quad \frac{x \sqsubseteq y \quad y \not\sqsubseteq z}{y \not\sqsubseteq z} \tag{trans – R} \\
\text{(trans – L)} & \quad \frac{x \not\sqsubseteq z}{x \sqsubseteq y \quad y \not\sqsubseteq z} \tag{trans – L}
\end{align*}
\]

monotonicity

\[
\begin{align*}
\frac{f \sqsubseteq g \quad x \sqsubseteq y}{f \times \sqsubseteq g \times x \sqsubseteq y} (\mu) \\
\frac{f \times \not\sqsubseteq g \times x \sqsubseteq y}{f \times \not\sqsubseteq g \times f \sqsubseteq y} (\mu') \\
\frac{x \sqsubseteq y}{f \times \sqsubseteq f \times y} (\nu) \\
\frac{f \times \not\sqsubseteq f \times y}{x \times \not\sqsubseteq y} (\nu')
\end{align*}
\]

We had originally implemented the stronger monotonicity schema

\[
\frac{f \sqsubseteq g \quad x \sqsubseteq y}{f \times \sqsubseteq g \times x \sqsubseteq y} (\mu + \nu)
\]

whose enforcement takes quartic time (searching through four variables \(f, g, x, y\); see [McA99] for complexity analysis techniques). However this was very slow, taking far more time than all other schemata combined. Thus we split the rule \((\mu + \nu)\) into two cubic-time schemata, \((\mu)\) and \((\nu)\) above.

We also assume that the Scott ordering has least- and greatest elements

\[
\begin{align*}
!\text{assume } \bot \sqsubseteq x \sqsubseteq \top. \\
!\text{assume } \bot \not\sqsubseteq \top. \\
\text{for absolute consistency}
\end{align*}
\]

This latter is the only negative axiom we assume; two terms \(M, N\) are distinct modulo \(\mathcal{H}^*\) iff \(M \vdash \bot \sqsubseteq \top\).

Both ends are constant

\[
\begin{align*}
!\text{assume } \bot \times x = \bot. \\
!\text{assume } \top \times x = \top.
\end{align*}
\]

2.2 Axioms for basic combinators

Axiom Schemata

A few axiom schemata are hard-coded in Johann: \(\beta\)-reduction

\[
\begin{align*}
\text{I } x = x & \quad \text{Y } g = f(Y f) \\
K x y = x & \quad W x y = x y y \\
B x y z = x(y z) & \quad C x y z = x z y \\
S x y z = x z(y z)
\end{align*}
\]

and some \(\eta\) schemata, including two fixed-point schemata for \(Y\)

\[
\begin{align*}
\frac{x \circ (y \circ z) = (x \circ y) \circ z}{B \ - \ assoc} \quad \frac{y = S I y}{y = Y} (Y1) \\
\frac{f \times \sqsubseteq x \times y}{Y f \sqsubseteq x} (Y2)
\end{align*}
\]

where \((Y2)\) is just a pointwise version of \((Y1)\). (The \((Y1)\) rule was proved independently by Böhm and van der May; see [Bar84] Lemma 6.5.3)
Axioms for extensionality

First let us define all other atoms in terms of S and K.

\[
\begin{align*}
!&\text{assume } I = S K K. \\
!&\text{assume } F = K I. \\
!&\text{assume } B = S(K S)K. \\
!&\text{assume } C = S(S(K B)S)(K K) = S(B S)(K K). \\
!&\text{assume } W = C S I. \\
!&\text{assume } Y = S B B'(W I) = B(W I)(B' W I). \\
!&\text{assume } Y = S(B S I)(W I)(B S I). \\
!&\text{assume } Y = S S K(S S S)(S S S S K K). \\
\end{align*}
\]

For extensionality we need \(\beta\)-reduction to commute with Curry’s bracket abstraction algorithm, i.e., \(M \to N \implies \lambda x. M = \lambda x. N\). This entails

- \(\beta\)-reduction axioms, where each reduction leads to an \(\eta\) axiom, and
- (bracket) abstraction axioms, so that the abstraction algorithm commutes with \(\beta\)-reduction.

First, the \(\beta\)-reduction axioms ensure that \(M \to N \implies M = N\).

\[
\begin{align*}
!&\text{assume } 0 \times y = y. & i.e., F \times y = y. \\
!&\text{assume } 1 \times y = x \times y. & i.e., I x = x. \\
!&\text{assume } 2 \times y = x(\times y). & i.e., W B x = x \odot x. \\
!&\text{assume } K x y = x. \\
!&\text{assume } W I x = \times x. \\
!&\text{assume } B x y = \times y. \\
!&\text{assume } C I x y = y x. \\
!&\text{assume } C x y z = \times x y z. \\
!&\text{assume } S x y z = \times x (y z). \\
!&\text{assume } Y x = \times (Y x). \\
!&\text{assume } B' x y z = \times (y x). \\
!&\text{assume } S' x y = (x y) \odot x.
\end{align*}
\]

Second, the abstraction axioms ensure that \(M \to N \implies \lambda x. M = \lambda x. N\). We extend Hindley’s extensionality proof ([Hin67]) to the (bracket) abstraction algorithm \(S, K, I, B, C, W, \eta\) compiling \(\lambda x. M\) by the following rules

<table>
<thead>
<tr>
<th>rule</th>
<th>(\lambda x. M)</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.</td>
<td>(S K K)</td>
<td>if (x) not free in (M)</td>
</tr>
<tr>
<td>I.</td>
<td>(I)</td>
<td>if (M \equiv x)</td>
</tr>
<tr>
<td>(\eta)</td>
<td>(M')</td>
<td>if (M'' \equiv x)</td>
</tr>
<tr>
<td>B.</td>
<td>(B M'(\lambda x. M''))</td>
<td>if (x) free in (M'') but not (M')</td>
</tr>
<tr>
<td>C.</td>
<td>(C(\lambda x. M')M'')</td>
<td>if (x) free in (M') but not (M'')</td>
</tr>
<tr>
<td>W.</td>
<td>(W (\lambda x. M'))</td>
<td>if (x) free in (M') and (M'' \equiv x)</td>
</tr>
<tr>
<td>S.</td>
<td>(S(\lambda x. M')(\lambda x. M''))</td>
<td>if (x) free in (M') and (M'' \equiv x) but not (x)</td>
</tr>
</tbody>
</table>

each abstraction axiom identifies a pair of paths through this algorithm, which are not otherwise independent of \(\beta\) reduction. E.g., for \(M \to N\), certainly \(\text{FV}(N) \subseteq \text{FV}(M)\), but \(x\) may appear free in \(M\) but not
In addition to the “syntactic schemata” above, Hindley’s finite axiomatization of strong reduction requires a semantics of the closure operation on equations. The simplest such closure would be

\[
\text{closure}(M = N) = \{ \lambda x_1, \ldots, x_n. M = \lambda x_1, \ldots, x_n. N \}
\]

where \(\{x_1, \ldots, x_n\} = \text{FV}(M) + \text{FV}(N) \). For example from above,

\[
\text{closure}(K(a \ b) = B \ a(K \ b)) = \{ \lambda a, b. K(a \ b) = \lambda a, b. B(a(K \ b)) \}
\]

where as always \(\lambda x. M \) is the bracket abstraction of \(x \) out of \(M \).

Hindley’s closure operation produces a set of equations, each of which must be “assumed”. The set is constructed by allowing each free variable to also be “wrapped” in a fresh free variable, so, e.g.,

\[
\text{closure}(K(a \ b) = B \ a(K \ b)) = \{
\begin{align*}
\lambda a, b. K(a \ b) &= \lambda a, b. B(a(K \ b)), \\
\lambda f, a, b. K(f \ a \ b) &= \lambda f, a, b. B(f \ a)(K \ b), \\
\lambda f, a, b. K(a(f \ b)) &= \lambda f, a, b. B(a(K(f \ b))), \\
\lambda f, a, b. K(f(a(f \ b))) &= \lambda f, a, b. B(f(a)(K(f \ b)))
\end{align*}
\]

neither are wrapped
\[a \text{ is wrapped} \]
\[b \text{ is wrapped} \]
\[Sub \text{ are wrapped} \]

As the combinatory axioms form the core of Johann, and proof search capabilities are limited, we use a much stronger closure semantics. Our closure is in two parts: first a wrapping operation of order \(m = 2^{\text{FV}} \) and then a mapping operation of factorial order, where every permutation and combination of variables is
considered. Extending the example above, the first operation yields

\[
\text{wrap}(K(a \ b) = B \ a(K \ b)) = \{
\begin{align*}
K(a \ b) &= B \ a(K \ b), &\text{neither are wrapped} \\
K(f \ a \ b) &= B(f \ a)(K \ b), &\text{a is wrapped} \\
K(a(f \ b)) &= B \ a(K(f \ b)), &\text{b is wrapped} \\
K(f(a \ b)) &= B(f(a)(K(f \ b))), &\text{Sub are wrapped}
\end{align*}
\]
\]

simply the open versions of Hindley’s, and the second operation yields, say on the second in the list

\[
\text{closure}(K(f \ a \ b) = B(f \ a)(K \ b)) = \{
\begin{align*}
\lambda \ f, a, b. \ K(\ f \ a \ b) &= \lambda \ f, a, b. \ B(f \ a)(K \ b), &\text{6 permutations of } f, a, b \\
\lambda \ x, b. \ K(x \ x \ b) &= \lambda \ x, b. \ B(x \ x)(K \ b), &\text{2 permutations when } f = a = x \\
\lambda \ x, a, b. \ K(\ x \ a \ x) &= \lambda \ x, a, b. \ B(x \ a)(K \ x), &\text{2 permutations when } f = b = x \\
\lambda \ x, f. \ K(\ f \ x \ x) &= \lambda \ x, a. \ B(f \ x)(K \ x), &\text{2 permutations when } a = b = x \\
\lambda \ x. \ K(x \ x \ x) &= \lambda x. \ B(x \ x)(K \ x) &\text{the case when all coincide}
\end{align*}
\]
\]

This closure semantics is prohibitively expensive for large numbers of variables, say four or more (see Sloan’s A000670, [Slo]).

<table>
<thead>
<tr>
<th>number of free variables</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of closures</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>75</td>
<td>541</td>
<td>4683</td>
<td>47293</td>
<td>545835</td>
</tr>
</tbody>
</table>

so axioms involving a large number of variables should be partially abstracted by hand. This was done in the reduction axiom for \(S \)' above, where the variable \(z \) is abstracted from the schema \(S' \times y \ z = x \ y(x \ z) \) to yield the simpler \(S' \times y = (x \ y) \circ x \).

In this semantics, Johann’s most expensive axioms all involve three variables

- the \(S \) axiom \(S \times y \ z = x \ z(y \ z) \) costing 221 obs;
- the \(J \) linearity axioms \(J(x \ y)(x \ z) \subseteq x(J \ y \ z) \) and \(J \times y \ z = J(x \ z)(y \ z) \) costing 216 and 173 obs, respectively (see [3.1]);
- the associativity of composition axiom

\[
\lambda \ x. \ (x \circ y) \circ z.
\]

costing 131 obs; and

- the \(B \) axiom \(B \times y \ z = x(y \ z) \) costing 119 obs;
- the \(C \) axiom \(C \times y \ z = x \ z \ y \) costing 83 obs.

Relations to other axiomatizations of \(\eta \)

Barendregt’s axioms for extensionality are immediately satisfied (see [Bar84], pp. 158-161):

\[
\begin{align*}
\text{!check} & \quad S \ B(K \ I) = I. & SKIBC \eta = SKIBC \\
\text{!check} & \quad S(K \ x)(K \ y) = K(x \ y). & SKI(= \lambda^x) = \lambda_1 \\
\text{!check} & \quad S(K \ x)y = B \times y. & SKIB = SKI \\
\text{!check} & \quad S \times(K \ y)^C \times y. & SKIBC = SKIB
\end{align*}
\]

Hindley’s axioms for strong reduction are immediately satisfied (see [Hin67]):

\[
\begin{align*}
\text{!check} & \quad S \times y \ z = (x \ z)(y \ z). \\
\text{!check} & \quad K \times y = x. \\
\text{!check} & \quad I \times x = x. \\
\text{!check} & \quad S(K \ x)I = x. \\
\text{!check} & \quad S(K \ x)(K \ y) = K(x \ y). \\
\text{!check} & \quad S(K \ I) = I. \\
\text{!check} & \quad x = x.
\end{align*}
\]
The Meyer-Scott axiom is immediately satisfied (see [Bar84], pp. 95):

\[
\text{!check } S(K \ I) = I.
\]

Derived properties

Definitions of common combinators

\[
\begin{align*}
\text{!check } 2 &= W \ B. \\
\text{!check } B' &= C \ B. \\
\text{!check } \Delta &= W \ I. \\
\text{!check } \Phi &= (B \ S) \circ B. \\
\text{!check } \Psi &= W \circ (B \ C) \circ (B \ B) \circ B. \\
\text{!check } Jay &= S \ C \circ (W \ B \ B) \ C.
\end{align*}
\]

Alternate definitions

\[
\begin{align*}
\text{!check } 2 &= W \ B'. \\
\text{!check } S &= \Phi \ I. \\
\text{!check } S' &= \Psi \ I. \\
\text{!check } Y &= (\lambda x. f(x \ f))(\lambda x. f(x \ f)). \\
\text{!check } Y &= (\lambda f. (\lambda x. f(x \ x)))(\lambda x. f(x \ x)) \quad = S(B' \ W \ I)(B' \ W \ I) \\
\text{!check } Y &= W \ S(B' \ \Delta).
\end{align*}
\]

2.3 Theorems proved by \(\eta\)-conversion

Finite \(\eta\)-expansion

C commutes with Curry’s \(\Phi = \lambda f. x. y. z. f(x \ z)(y \ z)\)

\[
\text{!assume } C \circ \Phi = \Phi \circ C.
\]

Proof. (requiring four \(\eta\)-instances)

\[
\begin{align*}
C \circ \Phi \ f \ x \ y \ z &= C(\Phi \ f) \ x \ y \ z \\
&= \Phi \ f \ y \ z \\
&= f(y \ z)(x \ z) \\
&= C \ f(x \ z)(y \ z) \\
&= \Phi(C \ f) \ y \ z \\
&= \Phi \circ C \ f \ x \ y \ z
\end{align*}
\]

Theorems conjectured by Johann and proved by finite \(\eta\) expansion.\(^1\)

\[
\begin{align*}
\text{!assume } I &= C \circ C = B \ I = S(C \ I) \ \\
\text{!assume } W &= S(C \ I). \\
\text{!assume } C \ C &= B \ B(C \ I). \\
\text{!assume } W \ S &= B(W \ I). \\
\text{!assume } B(C \ I) &= C \circ B'. \\
\text{!assume } B \ B \ K &= B \ K \ K. \\
\text{!assume } \langle \bot \rangle &\subseteq W. \\
\text{!assume } C \ C &\subseteq \bot W.
\end{align*}
\]

\(^1\)The conjecturing algorithm is described in [74].
Infinite \(\eta \)-expansion

Lemma 2.3.1.
\(! \) assume \(Y B' = I \).

Proof. (by infinite \(\eta \)-expansion) This is like Wadsworth's \(J \) (Barst, remark 16.2.3, pp 420)

\[
\begin{align*}
Y B' \times y & \rightarrow B'(Y B')x y \\
& \rightarrow B \times (Y B')y \\
& \rightarrow (Y B') y \\
& \rightarrow x(Y B' y)
\end{align*}
\]

\[\square\]

Lemma 2.3.2.
\(! \) assume \(Y \circ B' = \perp \).

Proof. (by infinite precomposition)

\[
\begin{align*}
Y \circ B' x & = Y(B' x) \\
& = B' x(Y.B' x) \\
& = B(y.B' x) \\
& = (y.B' x) \circ x \\
& = (y.B' x) \circ \circ \circ \circ \circ \circ \circ \circ ... \text{ iterating the above argument} \\
& = \perp
\end{align*}
\]

and hence \(Y \circ B' = K \perp = \perp \). \(\square \)

The next theorem identifies two representations of the infinite extended church numeral \(\omega \)

Lemma 2.3.3.
\(! \) assume \(Y \circ B = K \circ Y \).

Proof. we take the directed limit of a sequence of church numerals

\[
\begin{align*}
Y \circ B f x & = Y(B f x) \\
& = f \circ (Y(B f)) x \\
& = (f \circ f \cdots) x \\
& = \perp
\end{align*}
\]

Theorems conjectured by Johann and proved by infinite \(\eta \) expansion:

\(! \) assume \(B Y = Y(S S) \).
\(! \) assume \(C(K Y) = Y \circ B \).

2.4 Axioms for divergent terms (approaching \(\sharp t \))

The fixed-point combinator diverges on many arguments

\[
\begin{align*}
! \text{assume } \perp & = Y K = Y S = Y W = Y B = Y C = Y I = Y Y. \\
! \text{assume } \perp & = Y(B K). \text{ (suggested by Johann)}
\end{align*}
\]

Lemma 2.4.1.
\(! \) assume \(\perp = W W W \).

Proof. by \(\perp \)-reduction: \(W W W \) head-reduces to itself.

23
Theorems conjectured by Johann

Lemma 2.4.2.

\[\text{!assume } \bot = Y K \circ W. \]

Proof. \[Y K \circ W \times y \rightarrow Y K \circ W y y \]

Lemma 2.4.3.

\[\text{!assume } \bot = Y (S C)(K I). \]

Proof. by \(\eta - \bot \)-reduction:

\[Y(S C)(K I) \times \rightarrow S C(Y(S C))(K I) \times \]
\[\rightarrow C (K I) (Y(S C)(K I)) \times \]
\[\rightarrow K I \times (Y(S C)(K I)) \]
\[\rightarrow Y(S C)(K I) \]

Lemma 2.4.4.

\[\text{!assume } \bot = W I(W W). \]

Proof. by reduction to super-term:

\[W I(W W) \rightarrow I(W W)(W W) \]
\[\rightarrow W W(W W) \]
\[\rightarrow W(W W)(W W) \]
\[\rightarrow \ldots \]

whose reduction sequence never terminates.

Lemma 2.4.5.

\[\text{!assume } \bot = Y(C I)(Y(C I)). \]

Proof. by reduction loop:

\[Y(C I)(Y(C I)) \rightarrow (Y(C I))(Y(C I)) \rightarrow Y(C I)(Y(C I)) \]

Lemma 2.4.6.

\[\text{!assume } \bot = W Y(C W). \]

Proof. by reduction to super-term:

\[W Y(C W) \rightarrow Y(C W)(C W) \rightarrow C W(Y(C W))(C W) \]
\[\rightarrow W(C W)(Y(C W)) \rightarrow C W(Y(C W))(Y(C W)) \]
\[\rightarrow W(Y(C W))(Y(C W)) \rightarrow Y(C W)(Y(C W))(Y(C W)) \]
\[\rightarrow Y(C W)(Y(C W))(Y(C W))(Y(C W)) \]
\[\rightarrow \ldots \]
Lemma 2.4.7.

\[\neg \ \text{assume } \bot = Y(S \ S \ S). \]

Proof. by reduction to everywhere-infinitely-deep tree

\[
Y(S \ S \ S) \rightarrow S \ S \ S(Y(S \ S \ S)) \\
\rightarrow S(Y(S \ S \ S))(S(Y(S \ S \ S))) \\
\rightarrow S(S(\ldots)(\ldots))(S(\ldots)(S(\ldots)))
\]

whence \(Y(S \ S \ S)x \rightarrow Y(S \ S \ S)x(Y(S \ S \ S)x)\)

Lemma 2.4.8.

\[\neg \ \text{assume } \bot = Y \circ (C \ I). \]

Proof. by reduction to sub-term

\[
Y \circ (C \ I) \times \rightarrow Y \langle x \rangle \rightarrow \langle x \rangle(Y \langle x \rangle) \\
\rightarrow Y \langle x \rangle \times \rightarrow \langle x \rangle(Y \langle x \rangle) \times \\
\rightarrow Y \langle x \rangle \times \times \rightarrow \langle x \rangle(Y \langle x \rangle) \times \times \\
\rightarrow Y \langle x \rangle \times \times \times \rightarrow \ldots
\]

Lemma 2.4.9.

\[\neg \ \text{assume } \bot = C(Y(C(K \ C)))B. \]

Proof. \(\ldots \ x \rightarrow \ldots\)

Theorems suggested by solutions to equations

These were suggested by the fixed point definition of \textit{nil}:

\[x \in \{\top, \bot\} \iff K \ x = x \]

\[\neg \ \text{assume } \bot = Y(W \ B \ K) = Y \ K \circ B. \]
Chapter 3

Untyped λ-calculus with ambiguity-as-join (SKJ)

This chapter introduces an untyped λ-calculus with a binary semilattice operation, the join with respect to Scott’s information ordering. We call this system SKJ, as it is the fragment of Scott’s D_{∞} model generated by S, K, and binary join. λ-calculus with join has long been studied as a model for concurrency / parallelism and ambiguity / multiplicity; nondeterminism also satisfies the semilattice axioms, but is better modelled by meet ([DCL02]).

The main discovery of this thesis is that, under the theory H^\ast, that there is an interpretation of typed λ-calculus SK into untyped λ-join-calculus SKJ, where types are interpreted as closure operations (SKJ -terms a satisfying $I \sqsubseteq a = a \circ a$). Specifically we show in 3.6 the following:

Theorem 3.0.10. Let τ be a simple type (with any number of free type variables). Then there is an SKJ-definable closure $[\tau]$ whose fixedpoints are exactly the terms of type τ. Moreover, the interpretation $[-]$ is effective.

For example, the boolean type $[a \to a \to a]$ has five inhabitants $\{\bot, \lambda x. y.x, \lambda x. y.y, \lambda x. y.(x \mid y), \top\}$. Dana Scott proved a similar definability theorem in [Sco76], showing that simple types are definable using step functions. The advantage of our approach is economy of language: we achieve the same rich type theory using only a finitely generated magma. Cardelli in [Car86] observes that Scott’s types-as-closures models ω-order polymorphism and dependent types, although the Curry-Howard corresponding logic is inconsistent. These results do not depend on step functions, and hence also apply to SKJ.

One already well-known motivation for adding a join operation is to achieve a more robust notion of recursively enumerable set, as discussed by Constable and Smith [CS88]. It is a basic theorem of computability theory that the recursively enumerable sets are exactly the recursively semidecidable sets, and that these sets are closed under intersection and union. More generally the equivalence and intersection theorem results extend from SK to arbitrary extensions of SK; however the proof of closure under union may fail in some extensions. The join operation can be seen as an internalization of the closure-under-unions theorem, allowing a proof of closure that generalizes to arbitrary extensions.

Another motivation for join comes from type theory. Under the Curry-Howard correspondence, the join operation does not prove any new theorems, but allows us to add ambiguity to existing proofs. The human proof idiom most closely corresponding to join is probably the without-loss-of-generality construct. But ambiguity and types-as-closures also allows for a much more powerful proof technique, a sort of semantic type inference that allows us to raise untyped proof sketches up to complete well-typed proofs using the theorem-as-closure-operator they are intended to prove. We illustrate the WLOG construct here, but delay discussion of semantic type inference until we build up some dependent type theory in 3.14. Then in 6 we present two case studies making extensive use of proof sketching and type inference.

To see how the WLOG construct works in SKJ, let us consider a simple theorem.

Theorem 3.0.11. In a list of three booleans (with values K, F), at least two items are the same.

1 The proof exploits details of β reduction to dovetail two computations in a virtual machine; general extensions may not allow the definition of such a virtual machine.
A purely sequential proof must case-analyze each item.

Proof. Let \((x, y, z)\) be given.

Case: if \(x = K\),

Subcase: if \(y = K\) then \(x = y\).

Subcase: if \(y = F\)

Subsubcase: if \(z = K\) then \(x = z\).

Subsubcase: if \(z = F\) then \(y = z\).

Case: if \(x = F\),

Subcase: if \(y = K\)

Subsubcase: if \(z = F\) then \(x = z\).

Subsubcase: if \(z = K\) then \(y = z\).

Subcase: if \(y = F\) then \(x = y\).

Since the two cases \(x = K\) and \(x = F\) are symmetric under a \(K \leftrightarrow F\) reversal, we can simplify the proof to

Proof. Let \((x, y, z)\) be given. Note that the theorem is symmetric under \(K \leftrightarrow F\) reversal. Thus assume WLOG that \(x = K\).

Case: if \(y = K\) then \(x = y\).

Case: if \(y = F\)

Subcase: if \(z = K\) then \(x = z\).

Subcase: if \(z = F\) then \(y = z\).

Now consider a Curry-Howard corresponding type.

\[
\text{thm} := \forall x : \text{bool}, y : \text{bool}, z : \text{bool}.
\begin{align*}
\text{Sum (iff } x y \text{ unit nil).} \\
\text{Sum (iff } y z \text{ unit nil).} \\
\text{iff } x z \text{ unit nil}
\end{align*}
\]

A purely sequential inhabitant is

\[
\text{pf} := \lambda x : \text{bool}, y : \text{bool}, z : \text{bool}.
\begin{align*}
x (y (\text{inl} ())) \\
(z (\text{inr(inr} ()))) \\
(\text{inr(inl} ())) \\
(\text{inr(inr} ())) \\
(\text{inl} ())
\end{align*}
\]

but a simpler proof could use a join operation.

\[
\text{pf} := (I \mid \lambda p, x, y, z. \ p(\text{not } x)(\text{not } y)(\text{not } z))
\begin{align*}
\lambda x : \text{bool}, y : \text{bool}, z : \text{bool}.
\begin{align*}
x (y (\text{inl} ())) \\
(z (\text{inr(inr} ()))) \\
(\text{inr(inl} ())) \\
(\text{inr(inr} ())) \\
(\text{inl} ())
\end{align*}
\]

express symmetry

WLOG \(x = K\)

ignore other cases
3.1 Axioms for join-as-ambiguity (J)

We write J \times y = x | y for the ambiguous join operation. This follows Dijkstra's notation for guarded commands, as we can write, e.g.

\[
\text{fun} := (\lambda x. \text{cond1} x \text{ action1} \mid \text{cond2} x \text{ action2} \mid \ldots \mid \text{condN} x \text{ actionN}).
\]

where the conditions either succeed (with value I) or fail (with value ⊥).

Axioms and axiom schemata

The following axiom schemata are enforced for the atom J:

\[
\begin{align*}
J x y &= J x | y \\
J x y &= y | J x y \\
J x y z &= (J x y) | z \\
J x y z &= z \sqsupseteq x | y \\
J x y z &= (J x y) z = x z | y z
\end{align*}
\]

We first assume the semilattice axioms and schemata (idem), comm, and (assoc).

Next we relate join to the partial order with schemata (join) and (subconvex) and axioms

Finally we assume that join is almost a combinatory algebra homomorphism, in that application right-distributes and almost left-distributes over joins.

Note that left-distributivity and left-composition are only one-sided:
Lemma 3.1.1. \(\top \) can be obtained by joining over all \(S, K \)-terms

\[\vdash \text{assume } \top = Y(\lambda t. S \mid K \mid t \ t). \quad \text{simpler is just } Y \ J, \text{ as below} \]

Proof. We need to show \(\forall x. Y(\lambda t. S \mid K \mid t \ t) \sqsubseteq x \) for each \(x \). First note that \(K, F, \) and hence \(J \) are in the join

\[\vdash \text{check} \ (F, K, J \sqsubseteq Y(\lambda t. S \mid K \mid t \ t)). \]

so that we’re really joining over \(SKJ \)-terms

\[\vdash \text{check } Y(\lambda t. S \mid K \mid t \ t) = Y(\lambda t. S \mid K \mid J \mid t \ t). \]

whence every \(SKJ \) term is below the join. \(\Box \)

Lemma 3.1.2.

\[\vdash \text{assume } \top = Y(J I) \circ K. \quad \text{the ambiguous Ogre} \]

Proof. This uses the representation of \(\top \) as the join of all its arguments

\[
\top = I \mid K I \mid K \circ K I \mid K \circ K \circ K I \mid \ldots
\]

Join is injective and has two simple left-inverses

\[\vdash \text{check } Y \circ J = I = (\bot) \circ J. \]

\[\vdash \text{check } Y(J x) = x = J x \bot. \]

The basic combinators distribute over \(J \).

\[\vdash \text{assume } K(x \mid y) = K x \mid K y. \]
\[\vdash \text{assume } F(x \mid y) = F x \mid F y. \]
\[\vdash \text{assume } C(x \mid y) = C x \mid C y. \]
\[\vdash \text{assume } B(x \mid y) = B x \mid B y. \]
\[\vdash \text{assume } W(x \mid y) = W x \mid W y. \]
\[\vdash \text{assume } S(x \mid y) = S x \mid S y. \]
\[\vdash \text{assume } J(x \mid y) = J x \mid J y. \]

(These are all easily provable, but we want them in the core theory, so we !assume rather than !check).

Theorems conjectured by Johann

Lemma 3.1.3.

\[\vdash \text{assume } Y \ J = \top. \]

Proof. Expanding, \(Y \ J = J(Y \ J) \sqsupseteq I, \) so \(Y \ J = J(Y \ J) \sqsupseteq J I \sqsupseteq I. \) Continuing this way,

\[Y \ J = I \mid J I \mid J \circ J I \mid \ldots \mid n J I \mid \ldots \]

Now observing \(Y \ J \) under any trace \(\langle x_1, \ldots, x_n \rangle \)

\[Y \ J \ x_1 \ldots x_n \sqsupseteq (n + 1) \ J I \ x_1 \ldots x_n \]

\[\sqsupseteq J I \]

\[\sqsupseteq I \]

whence \(Y \ J = \top. \) \(\Box \)
Böhm trees and Scott topology in the presence of join

Definition 3.1.4. A join is a J-term (closure under J), defined by the language

\[
\begin{align*}
 \text{m term} & \quad \text{(unary)} \\
 \text{m join} & \quad \text{n join} \quad \text{join} \quad \text{(binary)} \\
 \text{M set(terms)} & \quad \text{join} \quad \text{(infinitary)}
\end{align*}
\]

For example the nullary join is \(\perp = \bigcup \{\}\).}

Definition 3.1.5. A \(\lambda \)-term \(M \) is in head normal form (h.n.f.) if it is of the form

\[M = \lambda x_1, \ldots, x_m. h \ M_1 \ldots M_n \]

for \(m \geq 0 \) variables and \(n \geq 0 \) terms. The variable \(h \) is called the head variable of \(M \).

Requiring the \(M_1, \ldots, M_n \) to also be in head normal form gives rise to the notion of a Böhm tree.

Definition 3.1.6. A J-Böhm tree (J-BT or just BT) is the SKJ notion of Böhm tree, defined by limits in the language

\[
\begin{align*}
 \text{x var} & \quad \text{(var)} \\
 \frac{\text{x vars}}{\text{x BT}} & \quad \frac{\text{x var}}{\text{h var}} \quad \frac{\text{m join(BTs)}}{\text{(abs - app)}} \\
 \frac{\lambda x}{\text{h m BT}} & \quad \text{(abs - app)}
\end{align*}
\]

A finite BT consists of only finite joins and finitely many applications of rule abs-app.

Theorem 3.1.7. (Böhm Tree) Every SKJ term is \(H^* \)-equivalent to a join of J-BTs.

Proof. By straightforward extension of the BT-theorem of SK.

The Böhm tree theorem is crucial to our type-definability theorem below, but fails in Scott’s \(D_\infty \) and \(\mathbb{P}(\omega) \) models.

Corollary 3.1.8. If \(q \) converges then \(q \) extends a h.n.f.

Corollary 3.1.9. (interpolation) if \(q \nsubseteq q' \) then \(q \sqsupseteq m \nsubseteq q' \) for some h.n.f. \(m \).

Corollary 3.1.10. (approximation) Every SKJ term is equivalent to a directed join of some sequence of finite J-BTs (with finite joins).

SKJ is a much better-behaved algebra than SK, as evidenced by the following. First, SKJ avoids the range property ([Bar93], [Bar08]).

Theorem 3.1.11 (Myhill, Barendregt). (range property) In SK, every non-constant term has infinite range.

Theorem 3.1.12. (all ranges) In SKJ, every finite cardinality is achieved by the range of some closure.

Second, SKJ avoids the indefinability of compact points.

Definition 3.1.13. (compactness) An element \(x \) of a complete join-semilattice \(L \) is a compact point iff

\[\forall Y \subseteq L. x \sqsubseteq \bigcup Y \implies \exists \text{finite } Y' \subseteq Y. x \sqsubseteq \bigcup Y' \]

Theorem 3.1.14. (noncompactness) In SK, no term is a compact point.

Proof. By example: consider the infinite \(\eta \)-expansion of the identity.

\[I = \lambda x_0. \lambda x_1. x_0 \lambda x_2. x_1 \lambda x_3. x_2 \ldots \]

and its truncations at the \(n \)th level

\[I_n = \lambda x_0. \lambda x_1. x_0 \lambda x_2. x_1 \lambda x_3. x_2 \ldots \lambda x_n. \perp \]

Then \(I = \bigcup_n I_n \), but \(I \) is not below any finite join of the \(I_n \)s.
By contrast in SKJ, the Simple type constructor defined in 3.6 furnishes closures with definable compact points.

Theorem 3.1.15. (compactness) In SKJ, there is a closure whose range is a partial numeral system, and every of whose inhabitants is a definable compact point (except for a single limit point ω).

Proof. Consider nat defined in 3.12.

Definition 3.1.16. Let M be an SKJ-term. An SKJ-term q is M-solvable iff we can solve the equation $q M_1 \ldots M_n = M$ for some sequence of arguments M_1, \ldots, M_n. A term is solvable iff it is \top-solvable.

Contrasting solvability in SK, there are \top-solvable SKJ-terms terms that are not I-solvable.

Example 3.1.17. $\text{div} = V(\top)$ has range $\{\perp, \top\}$, and since $\perp x = \perp$ and $\top x = \top$, div cannot be solved for I.

3.2 Axioms for a universal retract (U)

Definition 3.2.1. Let (A, \sqsubseteq) be a poset, $f : A \rightarrow A$ be an endomorphism. Let us say that f is a retract iff $f \circ f \sqsubseteq f$.

We can construct a universal retract operator in SKJ as

\[
\begin{align*}
\text{define } U & := (\lambda f. \ Y \lambda y. f \ | \ y \circ f). \\
\text{check } U &= Y (K \ | \ B').
\end{align*}
\]

An infinitary representation of U is

\[
U f = Y \lambda y. f \ | \ y \circ f = f \ | (Y \lambda y. f \ | \ y \circ f) \circ f = f \ | (U f) \circ f = f \ | (f \ | (U f) \circ f) \circ f = f \ | f \circ f \ | (U f) \circ f \circ f = \ldots = \bigcup_{0 < n < \omega} f^n
\]

Theorem 3.2.2. U is a universal retract, i.e.

(a) U is idempotent: $U \circ U = U$;
(b) points in the range of U are retracts: $x = U y \Rightarrow x \circ x \sqsubseteq x$;
(c) all retracts are in the image of U: $x \circ x \sqsubseteq x \Rightarrow U x = x$.

Proof.

(a) Using the infinitary representation, and rearranging terms of $U \circ U$, we have

\[
\begin{align*}
U(U f) & = \bigcup_{n > 0} (U f)^n \\
& = \bigcup_{n > 0} \bigcup_{m > 0} f(n m) \\
& = \bigcup_{n > 0} f^n \\
& = U f
\end{align*}
\]

whence $U \circ U = U$.

(b) Suppose $x = U y$ for some y. Since U is idempotent,

\[x = U y = (U \circ U) y = U(U y) = U x = x \ | x \circ x \ | \ldots \ | x \circ x\]

(c) If $x \circ x \sqsubseteq x$ then all terms in the infinitary join collapse into the first term: $U x = x$, as required.
Axioms and axiom schemata

The following axiom schemata are enforced for the atom \(U \):

\[
\begin{align*}
\forall x \in U & \quad x = U x \quad \text{(retract)} \\
\forall x \in U & \quad x \circ x \sqsubseteq x \quad \text{(retracts)} \\
\forall x \in U & \quad f \times x = f x \quad \text{(fixed)}
\end{align*}
\]

Remark. Together the retract, retracts schemata imply that \(U \) fixes exactly the retracts.

Question 3.2.3. Is the fixed schema necessary?

\(U \) is a closure

\[
\begin{align*}
\forall I \subseteq U & \quad U = U \circ U. \\
\text{whose images are retracts}
\end{align*}
\]

\[
\begin{align*}
\forall f \circ (U f) \subseteq (U f). \\
\text{An algebraic characterization:}
\end{align*}
\]

Lemma 3.2.4.

\[
\begin{align*}
\forall f \in U & \quad f = f \mid (U f) \circ f. \\
\text{Proof. Using the infinitary representation}
\end{align*}
\]

\[
\begin{align*}
U f &= f \mid f \circ f \circ f \circ \ldots \\
&= f \mid (f \mid f \circ f \circ \ldots) \circ f \\
&= f \mid (U f) \circ f \\
\end{align*}
\]

Indeed \(U \) is the least solution to the above, by definition. However

\[
\begin{align*}
\forall f \in U & \quad f \neq f \mid f \circ (U f). \\
\end{align*}
\]

Derived properties

Regarding types-as-idempotents,

\[
\begin{align*}
\forall x \in U & \quad Y \circ B. \\
\forall x \in U & \quad U = U \circ U. \quad \text{a type of types} \\
\forall x \in U & \quad I = U \circ I. \quad \text{a maximum type—everything is fixed} \\
\forall x \in U & \quad K x = U(K x). \quad \text{minimal types/singletons—only } x \text{ is fixed}
\end{align*}
\]

Lemma 3.2.5. Exponentials of idempotents are idempotents

\[
\begin{align*}
\forall x \in U & \quad (U a \rightarrow U b) = U (U a \rightarrow U b). \\
\text{Proof. For any } a, b, f, \text{ by definition } (U a) \rightarrow (U b) & \quad f = (U b) \circ f \circ (U a). \text{ To show retraction,}
\end{align*}
\]

\[
\begin{align*}
2 (U a) & \rightarrow (U b) \quad f = (2. U b) \circ f \circ (2. U a) \quad \text{def of } \rightarrow \\
& \subseteq (U b) \circ f \circ (U a) \quad \text{since } (U a), (U b) : U \\
& = (U a) \rightarrow (U b) \quad f \quad \text{def of } \rightarrow
\end{align*}
\]

We can now represent \(J \) in terms of \(U \):

\[
\begin{align*}
\forall x \in U & \quad J = K \mid F = U C K = U C F.
\end{align*}
\]
3.3 Axioms for a universal closure (V)

Definition 3.3.1. Let \(\langle A, \geq \rangle \) be a poset, \(f : A \to A \) be an endomorphism. Let us say that \(f \) is a closure if \(f \circ f = f \supseteq I \), where \(I \) is the identity on \(A \).

We construct the universal closure from the universal idempotent

\[
\text{!define } V := (\lambda a. \ U(I \ | \ a)).
\]

\[
\text{!check } V = (\lambda a. \ U(a \ | \ I)).
\]

\[
\text{!check } V \ a = U(I \ | \ a).
\]

An infinitary representation of \(V \) follows from that of \(U \)

\[
V \ a = \left(a \mid I \right) \ | \ (a \mid I) \circ (a \mid I) \ | \ \ldots
\]

\[
= I \ | \ (a \mid I) \ | \ (a \mid I) \circ (a \mid I) \ | \ \ldots
\]

\[
= \bigcup_{n<\omega} (a \mid I)^n
\]

Theorem 3.3.2. \(V \) is a universal closure, i.e.

(a) \(V \) is a closure: \(V \supseteq I \), \(V \circ V = V \);

(b) points in the range of \(V \) are closures: \(x = V \ y \implies x \supseteq I \), \(x \circ x = x \);

(c) all closures are in the image of \(V \): \(x \supseteq I \), \(x \circ x = x \implies V \ x = x \);

Proof.

(a) Using the infinitary representation, \(V \supseteq I \) is immediate. Rearranging terms of \(V \circ V \), we have

\[
V(V \ a) = \bigcup_{n<\omega} (V \ a \mid I)^n
\]

\[
= \bigcup_{n<\omega} \bigcup_{m<\omega} (a \mid I)^n m
\]

\[
= \bigcup_{n<\omega} (a \mid I)^n
\]

\[
= V \ a
\]

whence \(V \circ V = V \).

(b) Suppose \(x = V \ a \) for some \(a \). By the infinitary representation \(x = V \ a = I \mid \ldots \supseteq I \). Since \(V \) is idempotent, and since \(x \supseteq I \)

\[
x = V \ a = V(V \ a) = V \ x \supseteq I \mid x \circ x \mid \ldots \supseteq x \circ x
\]

On the other hand, \(x = I \circ x \subseteq x \circ x \), whence \(x = x \circ x \).

(c) If \(x \supseteq I \) and \(x = x \circ x \) then also

\[
(x \mid I) \circ (x \mid I) = x \circ x = x = (I \mid x)
\]

so the infinitary representation of \(V \ x \) collapses to \((I \mid x) = x \).

We have in addition a variety of equivalent definitions, e.g. Scott’s ([Sco76]),

\[
\text{!check } V = (\lambda a, x. \ Y \ y. \ x \mid a \ y) \ = \ (B \ Y) \circ (C \ B \ o \ J)
\]

and as a least fixed-point,

\[
\text{!check } V = Y(\lambda y, a. \ I \mid a \circ (y \ a)).
\]
Types as closures

Closures allow an interpretation of various typed \(\lambda \) calculi in the untyped calculus SKJ. In particular, this provides convenient notation.

Definition 3.3.3. (types as closures)

\[
(\lambda x: a. M) = (\lambda x. M) \circ (V a)
\]

typed abstraction

\[
x : a \iff V a \cdot x = x
\]

type inhabitation

\[
\]

universal closure of equations

\[
a < : b \iff V a : P b
\]

subtyping

where the powertype \(P \) will be discussed in 3.4.

Lemma 3.3.4.

\[\forall x: a. x : a \iff \forall x: a. V a \cdot x = x \iff (\lambda x: a. V a \cdot x) = (\lambda x. V a \cdot x) \iff V a (V a \cdot x) = V a \cdot x\]

Proof.

Lemma 3.3.5. Subtyping is a bounded preorder, and a partial order on closures.

(a) \(\text{nil} < : a < : \text{any} \).

(b) If \(a < : b \) and \(b < : c \) then \(a < : c \).

(c) For \(a, b : V \), if \(a < : b \) and \(b < : a \) then \(a = b \).

We will prove this later in 3.4. We know more properties of \(V \) and \(P \).

A quirk of this system is that exponentials have unusual variance: they are covariant in both arguments (as discussed later in 3.7).

Later in 3.10 we will consider a similar interpretation of types-as-tests.

Axioms and axiom schemata

The following axiom schemata are enforced for the atom \(V \):

\[
\begin{align*}
x : V & \quad \text{idem} \\
x \circ x = x & \quad \text{incr} \\
x : V & \quad \text{closures} \\
x \cdot x = x & \quad \text{fixed}
\end{align*}
\]

Remark. Together the idem, incr, closures schemata imply that \(V \) fixes exactly the closures.

Question 3.3.6. Is the fixed schema necessary?

Now we assume \(V \) is a closure

\[\text{!assume } I \subseteq V = V \circ V.\]

whose images are closures

\[\text{!assume } I \subseteq V \cdot a = (V \cdot a) \circ (V \cdot a).\]

and hence \(V \) fixes itself.

\[\text{!check } V = V \circ V.\]
Lemma 3.3.7. The \(a \) in \(V \) is \(\omega \), l.o.g. increasing.

| !assume \(V \ a = V(I \ | \ a) \).

Proof. \(V(I \ | \ a) = U(I \ | \ I \ | \ a) = U(I \ | \ a) = V \ a \) \(\Box \)

Theorem 3.3.8. (algebraic characterization)

| !assume \(V \ a = I \ | \ a \circ (V \ a) \).

Proof.

\[
V \ a = \lambda x. \ Y \lambda y. \ x \ | \ a \ y \\
= \lambda x. \ x \ | \ a(\lambda y. \ x \ | \ a \ y) \\
= \lambda x. \ x \ | \ a(\lambda y. \ x) \\
= I \ | \ a \circ (V \ a)
\]

Indeed \(V \) is the least solution to the above, by definition. Note that

| !assume \(V = \lambda \omega \ a. \ Y \lambda y. \ x \ | \ a \ y \).

however the transpose fails

Theorem 3.3.9. \(V \neq V \circ \omega \)

First a lemma

Lemma 3.3.10.

| !assume \(V \ C = C \ | \ I \).

Proof. Since \(C \circ C = I \), also

\[
(C \ | \ I) \circ (C \ | \ I) = \lambda x. \ (C \ | \ I)(C \ x \ | \ x) \\
= \lambda x. \ C \circ C \ x \ | \ C \ x \ | \ x \\
= \lambda x. \ C \ x \ | \ x \\
= \lambda x. \ C \ x \ | \ I \\
= C \ | \ I
\]

whence \(C \ | \ I \) is a closure. Hence \(V \ C = V(C \ | \ I) = C \ | \ I \) \(\Box \)

We can now prove the theorem:

Proof.

| !check 2 \ C = I.
| !check \ I : V.
| !check \ C :: V. \hspace{1cm} i.e., \(C \) is not fixed by \(V \)
| !check \ V \neq V \circ \omega. \hspace{1cm} \Box

36
Derived properties

\begin{align*}
\text{!check } & V \sqsupseteq Y \circ B. \\
\text{!check } & V : V.
\end{align*}

Note that \(\top \) inhabits every closure

\begin{align*}
\text{!check } & (\forall a : V. \top : a).
\end{align*}

Lemma 3.3.11.

\begin{align*}
\text{!assme } & (V a) \rightarrow (V b) : V. \quad \text{exponential}
\end{align*}

Proof. for any \(a, b, f \), by definition \((V a) \rightarrow (V b) f = (V b) \circ f \circ (V a)\). To show idempotence,

\begin{align*}
2 (V a) \rightarrow (V b) f &= (2. V b) \circ f \circ (2. V a) \quad \text{def of } \\
&= (V b) \circ f \circ (V a) \quad \text{since } (V a), (V b): V \\
&= (V a) \rightarrow (V b) f \quad \text{def of } \rightarrow
\end{align*}

Now to show closure,

\begin{align*}
(V b) \circ f \circ (V a) &\sqsupseteq I \circ f \circ I = f \\
\text{whence } (V a) \rightarrow (V b) &\sqsubseteq I.
\end{align*}

We can now represent \(J \) in terms of \(V \):

\begin{align*}
\text{!check } & J = K | F. \\
\text{!check } & J = V \ C \ K. \\
\text{!check } & J = V \ C \ F.
\end{align*}

Note that

Lemma 3.3.12.

\begin{align*}
\text{!assume } & V \ J = \top.
\end{align*}

Proof. Suppose \(q : V \ J \). Then \(q \top = J q \top = \top \), so \(q \) is solvable. But \(q \bot = J q \bot = q \), so \(q \) is undiver-

gable. Hence \(q \) is \(\top \).

Miscellaneous closures

The Maximal type.

\begin{align*}
\text{any } & := I. \\
\text{!check } & \text{any} : V. \\
\text{!check } & \text{any} = V \bot. \\
\text{!check } & V : \text{any} \rightarrow V. \\
\text{!check } & \text{any} = \text{any} \rightarrow \text{any}. \\
\text{!check } & (\forall a : V. (a \rightarrow \text{any}, \text{any} \rightarrow a, a \rightarrow a : V)). \\
\text{!check } & (\forall a : V, b : V. a \rightarrow b : V).
\end{align*}

whence a reflexive object

Theorem 3.3.13. \(\text{inhab(any)} = \text{“everything”} \).

Proof. \(\text{any } x = I \ x = x. \)

37
The Minimal type nil has no consistent inhabitants

\[
\begin{align*}
\text{nil} & := \mathbb{T}. \\
\text{!check} \text{ nil} & : \text{V}. \\
\text{!check} \bot & : \text{nil}.
\end{align*}
\]

Theorem 3.3.14. $\text{inhab}(\text{nil}) = \{\mathbb{T}\}$.

Proof.

\[
\begin{align*}
\text{!check} \ (\forall x. \text{nil} \ x = \mathbb{T} \ x = \mathbb{T}).
\end{align*}
\]

We use the following lemma often.

Lemma 3.3.15. $x : \text{V} \ t \iff t \sqsubseteq x$.

Proof.

\[
\begin{align*}
\bullet \ (\Rightarrow)
\quad x & = V \ t \ x \\
\quad &= x \ | \ t \ x \ | \ 2 \ t \ x \ | \ldots \\
\quad &= x \ | \ t \ x
\end{align*}
\]

whence $t \ x \sqsubseteq x$.

\[
\begin{align*}
\bullet \ (\Leftarrow)
\quad (I \ | \ t)\ x & = x \ | \ t \ x, \\
\quad V \ t \ x & = V \ (I \ | \ t) \ x \\
\quad &= x \ | \ (I \ | \ t)\ x \ | \ 2(I \ | \ t)\ x \ | \ldots \\
\quad &= x \ | \ x \ | \ t \ x \ | \ (I \ | \ t)(x \ | \ t \ x) \ | \ldots \\
\quad &= x \ | \ x \ | \ x \ | \ldots \\
\quad &= x
\end{align*}
\]

The type of symmetric binary functions.

Lemma 3.3.16.

\[
\begin{align*}
\text{!} & \text{assume} \ V \ C = C \ | \ I. \\
\text{Proof.} C \circ C & = I, \text{so expanding,} \ V \ C = I \ | \ C \ | \ C \circ C (V \ C) = I \ | \ C \ | \ V \ C = I \ | \ C.
\end{align*}
\]

Closure for upper sets are also definable as

\[
\begin{align*}
\text{Above} & := J. \\
\text{!} & \text{assume} \ \text{Above} : \ \text{any} \to \text{V}. \quad \text{upper-sets are types}
\end{align*}
\]

Proof. Idempotence and closure are inherited from J:

\[
\begin{align*}
J \ a \ x & \sqsupseteq x \quad \text{whence} \ J \ a \ \sqsupseteq I \\
J \ a(J \ a \ x) & = J(J \ a \ a) \ x \quad \text{by associativity of} J \\
& = J \ a \ x \quad \text{by idempotence of} J
\end{align*}
\]

Lemma 3.3.17.

\[
\begin{align*}
\text{!} & \text{check} \ V \ \Delta : V \ W.
\end{align*}
\]

Proof. Suppose $\Delta \ x \sqsubseteq x$. Then

\[
\begin{align*}
W(V \ \Delta) x & = V \ \Delta \ x \ x = x \ x \ \sqsubseteq \ x \ \sqsubseteq \ V \ \Delta \ x
\end{align*}
\]
3.4 Axioms for a power closure (P)

The space of closures has structure beyond that of the retracts in general: it is a complete meet-semilattice with bottom \(\text{nil} = \top \) and top \(\text{any} = I \). We use symbols \(P \times y \) for the meet operation (type intersection) and \(x <: y \) for the partial ordering (subtyping). The subtype relation is defined generally as

\[
\forall x:V, y:V. \\
x <: y \iff \text{inhabs}(x) \subseteq \text{inhabs}(y) \quad \text{containment of inhabitants} \\
\iff (\forall z. z = x \implies z = y) \\
\iff x:y \rightarrow y \\
\iff y \circ x = x = x \circ y \quad \text{explicitly}
\]

Remark. Although idempotents are also a bounded poset with universal object (with top \(\text{any} = I \), bottoms \(K \times \) for any \(x \), and universe \(\text{idem} \)), no meet operation is definable for idempotents.

The type intersection operator can thus be defined as

\[
\text{!define } P := (\lambda x, y. V(x | y)).
\]

so that more generally, \(x <: y \iff V \times P y \), i.e., \(x \) is a subtype of \(y \).

Among types ordered by information content, \(P \times y \) is the least upper bound of types \(\sqsubseteq x, y \), i.e., the join \(J \) restricted to the lattice of types. However, the usual ordering \(<: \) on types is dual to the information ordering, and thus we regard \(P \) as an intersection operator.

Axioms and axiom schemata

The following axiom shemata are enforced for the atom \(P \):

\[
\frac{}{P \times x = V x} \quad \text{(idem)} \quad \frac{}{P \times y = P y \times x} \quad \text{(comm)} \quad \frac{}{P \times(P y z) = P(P x \times y)z} \quad \text{(assoc)}
\]

Algebraic properties

\[
\frac{!\text{assume } P \times x = V x.}{\text{idempotence}} \\
\frac{!\text{assume } P \times(P x y) = P y.}{\text{idempotence+associativity}} \\
\frac{!\text{assume } Y(P x) = V x.}{\text{idempotence+fixedpoint}} \\
\frac{!\text{assume } P \times y = P y x.}{\text{commutativity}} \\
\frac{!\text{assume } P \times(P y z) = P(P x \times y)z.}{\text{associativity}}
\]

Idempotence and commutativity are clear, but associativity is nontrivial.

Lemma 3.4.1.

\[
!\text{assume } P \times y = P x(V y) = P(V x)y = P(V x)(V y).
\]

Proof.

\[
P \times y = V(x | y) \\
= V \circ V(x | y) \\
\sqsubseteq V(V x | V y) \quad \text{since } f(x | y) \sqsubseteq f \times f y \\
\sqsubseteq V(x | y) \quad \text{since } V \sqsubseteq I \\
= P \times y
\]
Theorem 3.4.2. \(P \) defines a type intersection operator.

\[
\begin{align*}
! & \text{assume } P \times y : V. \\
! & \text{check } (\forall a : V, b : V. P a b <: a). \\
! & \text{check } (\forall a : V, b : V. P a b <: b). \\
! & \text{check } P \text{ any } x = V x. \\
! & \text{check } P \text{ nil } x = \text{ nil.}
\end{align*}
\]

Theorem 3.4.3. \(P \) defines a power-type operator.

\[
\begin{align*}
! & \text{assume } P \times : V. \\
! & \text{check } (\forall a : V, b : V. P a b <: a). \\
\end{align*}
\]

Proof. (associativity)

\[
P \times (P y x) = V \times (V (y | z)) \\
= V (V \times (V (y | V z)) \\
= V (V (V x | V y | V z)) \\
= V (V (V x | V y) | V z) \\
= V (V (x | y) | z) \\
= P (P x y) z
\]

We also assume the order axioms

\[
\begin{align*}
! & \text{assume } P \times \sqsupseteq V. \\
! & \text{check } P \bot x = P I x = V x. \\
! & \text{check } P \top x = \top.
\end{align*}
\]

Derived properties

We can now prove the subtyping lemma from 3.3.

Lemma 3.4.4. Subtyping is a bounded preorder, and a partial order on closures.

(a) \(\text{nil} <: a <: a <: \text{any.} \)
(b) If \(a <: b \) and \(b <: c \) then \(a <: c. \)
(c) For \(a, b : V, \text{if } a <: b \) and \(b <: a \) then \(a = b. \)

Proof. (a) Deferring to Johann,

(b) Assume \(a <: b \) and \(b <: c. \) Then

\[
\begin{align*}
V a & = P a b \quad \text{since } a <: b \\
& = P a (V b) \\
& = P a (P b c) \quad \text{since } b <: c \\
& = P (P a b)c \\
& = P a c \quad \text{since } a <: b
\end{align*}
\]

whence \(a <: c. \)
(c) Assume \(a, b : V \), \(a <: b \), and \(b <: a \). Then
\[
a = V a = P a b = V b = b
\]

\[\begin{aligned}
&\text{check } Y \circ P = V. \\
&\text{check } P \perp = V. \\
&\text{check } P : I \rightarrow I \rightarrow V.
\end{aligned}\]

intersections are types

Lemma 3.4.5.
\[\begin{aligned}
&\text{check } P \supseteq J. \\
&\text{check } P \supseteq K \circ V.
\end{aligned}\]

Proof.
\[\begin{aligned}
&\text{• } P = \lambda x, y. V(x \mid y) \supseteq \lambda x, y. x \mid y = J. \\
&\text{• } P = \lambda x, y. P x y \supseteq \lambda x, y. V y = K \circ V.
\end{aligned}\]

Theorems conjectured by Johann

Lemma 3.4.6.
\[\begin{aligned}
&\text{check } T = Y P = V P = P J = P P.
\end{aligned}\]

Proof. \(P \supseteq J \), and \(Y J = V J = T \).

Lemma 3.4.7.
\[\begin{aligned}
&\text{!assume } B \sqsubseteq P.
\end{aligned}\]

Proof.
\[\begin{aligned}
P x y &= V (V x \mid V y) \\
\sqsubseteq V (x \mid y) \\
\sqsubseteq 2 (x \mid y) \\
&= (x \mid y) \circ (x \mid y) \\
\sqsubseteq x \circ y \\
&= B x y
\end{aligned}\]

3.5 Axioms for the least strict closure (div)

The type div of divergent computations is the minimal strict type, inhabited by only \(\{ \perp, T \} \).

\[\begin{aligned}
&\text{!define } div := V (T). \\
&\text{check } \perp : div. \\
&\text{check } I !: div.
\end{aligned}\]

Theorem 3.5.1. inhab(div) = \(\{ \perp, T \} \)

Proof. By definition of solvability in \(\mathcal{H}^* \).
Corollary 3.5.2. \(M \text{ converges iff } M \neq \bot \text{ iff } \text{div } M \neq \top \).

The following axiom schemata are enforced for the atom \text{div}:

\[
\begin{align*}
x \not\subseteq \bot & \quad \rightarrow \quad \text{div } x = \top \\
\bot \subseteq x & \quad \rightarrow \quad \text{div } x = \bot
\end{align*}
\]

The latter holds since \text{div} is the largest strict function.

Remark. This is the first appearance of a disjunctive axiom, i.e., \(x \not\subseteq \bot \text{ or } \bot \subseteq x \), and thus the first axiom sensitive to language extension. Indeed this axiom fails in \text{SKRJ} (see 4.2).

Corollary 3.5.3. Every inhabitant of \text{div} is constant.

Thus we can assume

\[
! \text{assume } \text{div } x \equiv \bot = \text{div } x.
\]

Lemma 3.5.4.

\[
! \text{assume } \text{div} = V K.
\]

Proof. \(\bot \) is fixed by \(K \), so let \(q: \text{div} \) be any convergent term, say solvable by \(q M = \top \).

Then \(q \not\subseteq K \) \(q \equiv \bot = q \), so \(q \) can’t be crashed. \(\square \)

Lemma 3.5.5. The closures of the following combinators are strict, i.e., are supertypes of \text{div}.

\[
! \text{check } \{ B, C, W, S, S', \Phi, \Psi : \Rightarrow \text{div} \}.
\]

Proof. \text{div} has inhabitants \(\bot, \top \), each of which is fixed by each of \(B, C, W, S, S', \Phi, \Psi \). \(\square \)

3.6 A simple type constructor (Simple)

In this section we construct for each simple type \(\tau \) an \text{SKJ} -definable closure \([\tau] \) whose fixedpoints (mod \(\mathcal{H}' \)) are exactly the \text{SKJ} -terms typable by \(\tau \) (for a suitable generalization of Curry-style typability from \text{SK} to \text{SKJ}, mod \(\mathcal{H}' \)). The construction takes the form of (1) a translation from simple types to \text{SK} -definable type codes, and (2) an \text{SKJ} -definable term \text{Simple} that binds each free variable in the simple type. For example

\[
[(a \to a) \to (a \to b) \to a \to b] = \text{Simple} \lambda a, a'. \text{Simple} \lambda b, b'. (a' \to a) \to (a' \to b) \to a \to b'
\]

We conclude this section by showing that the same \text{Simple} type construction also works for simple recursive types, and types involving type constants for arbitrary closures \(a:V \).

As a corollary to definability of simple types, we would like an interpretation of typed \(\lambda \)-calculus (typed \text{SK}) into untyped \(\lambda \)-calculus with join (\text{SKJ}). However, \text{Simple}-definable types are inhabited not only by well-typed \text{SK} terms, but also \text{SKJ} -terms. We achieve the embedding theorem in \text{3.7} by “disambiguating” the \text{Simple}-definable closures to contain only the original \text{SK} -terms we would expect. Thus we can interpret a richly typed \(\lambda \)-calculus (\text{SK}) in the untyped \text{SKJ}.

Then in \text{3.8} we show how to narrow down the types to still allow fuzziness, but in a well-behaved way. By forcing fuzziness to the top of Böhm trees, we can define monadic types whose inhabitants are joins of random \text{SK} -terms. Thus we can interpret a typed \(\lambda \)-calculus (\text{SK}) with a monadic type of imprecise probabilities in the untyped \text{SKRJ}.

Warning: In this section only, \(x::\tau \) denotes a syntactic typing relation.
Interpreting simple types as closures

We begin with a language of untyped terms \(m \), a language of simple types \(\tau \), and rules for judging a term well-typed \(m :: \tau \), as in Figure 3.1. We treat infinitary joins as basic, and finitary joins as derived: nullary \(\bot := \mathbb{1} \{ \} \), and binary \(J := \lambda x.y.\mathbb{1} \{ x,y \} \). This way, our correctness proof extends unaltered to the join-completion of SKJ, and its subalgebras, e.g. SKJO.

Example 3.6.1. The inhabitants of the type \((a \rightarrow a)
ightarrow a \rightarrow a\) of Church numerals are (up to equality) arbitrary joins of the terms \(\bot, \top \), zero \(z = \lambda \cdots .x.x \), and successors \(s(n) = M.x.f(n \ f \ x) \) of other inhabitants \(n \). So for example \(s(s(z)) | s(z | s(\bot)) | s(s(s(\top))) : (a \rightarrow a) \rightarrow a \rightarrow a \) is an inhabitant that cannot be further simplified.
We interpret types as functors bivariate in each atomic type. The functors are implemented as SKJ-terms, where constants-as-closures appear as themselves, and exponentials are conjugation $a \rightarrow b = \lambda f. b \circ f a$ covariant in b and contravariant in a (as in the Karoubi envelope; see [Bar84]). For example keeping track of variance, we interpret $[\cdot]$:

$$[a] = \text{Simple}\lambda a, a'. \ a'$$
$$[a \rightarrow a] = \text{Simple}\lambda a, a'. \ a \rightarrow a'$$
$$[(a \rightarrow a) \rightarrow (a \rightarrow a)] = \text{Simple}\lambda a, a'. \ (a' \rightarrow a) \rightarrow (a \rightarrow a')$$
$$[a \rightarrow b] = \text{Simple}\lambda a, a'. \ \text{Simple}\lambda b, b'. \ a \rightarrow b'$$

Closures (as type constants) are interpreted as themselves. Figure 3.1 formalizes this interpretation algorithm.

The interpretation algorithm (begin)s by looking at variables, traversing through the context and noting the (vari)ance of each variable, (skip)ping irrelevant variables, and ignoring the variance of type constants for closures: V. Since the exponential reverses variance in the domain type, we build two type interpretations, one for covariant and one for contravariant uses, written as contravariant/covariant pairs.

Having interpreted the all the leaves on a type derivation tree, we next combine subtrees on each side of (exp)onents, preserving the variance of codomain types and reversing the variance of domain types.

When we reach the (root) of the typing derivation tree, we (bind) each contravariant/covariant pair of type variables with a type constructor Simple, implemented as an SKJ term. Simple inputs a type code $f = \lambda a, a'. \ t$ bivariate in a type variable, and produces a closure

$$\text{Simple} \ f = V (f \ s_1 \ r_1 \ | \ f \ s_2 \ r_2 \ | \ \ldots)$$

by substituting for the contra- and co-variant occurrences of the variable various section-retract pairs s, r satisfying $s \circ s = I$ and $s \circ r \not\subseteq I$. We can generate all the section-retract pairs from just two pairs

1. $\text{raise} := (\lambda x, - \ x)$.
2. $\text{lower} := (\lambda x, x \ ↓)$.
3. $\text{check} \ \text{raise} = K \ \text{AND} \ \text{lower} = (\top)$.
4. $\text{check} \ \text{lower} \circ \text{raise} = I \not\subseteq \text{raise} \circ \text{lower}$.
5. $\text{pull} := (\lambda x, y, x | \text{div} \ y)$.
6. $\text{push} := (\lambda x, x \ ↓)$.
7. $\text{check} \ \text{pull} = K | K \ \text{div} \ \text{AND} \ \text{push} = (\bot)$.
8. $\text{check} \ \text{push} \circ \text{pull} = I \not\subseteq \text{pull} \circ \text{push}$.

and using the facts that if s, r and s', r' are section-retract pairs, then so also are their composition $s \circ s', r \circ r'$ and their conjugation $r \rightarrow s', s \rightarrow r'$. Joining over all compositions (via $V(\ldots)$ and $f \ I \ I$) and conjugations (via $\text{Simple}\lambda a, a'. \ \text{Simple}\lambda b, b'. \ f \ (a' \rightarrow b) \ (a \rightarrow b')$) gives the type interpreter for a single atomic type

$\text{Simple} \ f := (\text{any} \rightarrow V) \ (\ldots)$

It will also be convenient to write $\text{Simple} \ f$ as an infinitary join over a set S of section-retract pairs, which is by definition the smallest set such that

$$(I, I) \in S \quad (\text{raise}, \text{lower}) \in S \quad (\text{pull}, \text{push}) \in S \quad (a, a') \in S \quad (b, b') \in S \quad (a' \rightarrow b, a \rightarrow b') \in S$$
We can then write
\[\text{Simple} = \lambda f. V (\bigcup_{(a,r) \in S} f \ s \ r) \]

Now we can show that it doesn’t matter how we order the variables in the noncommutative context \(\Gamma \) of a type derivation.

Lemma 3.6.2. (commutativity) \((\text{Simple} \lambda a, a'. \ \text{Simple} \lambda b, b'. \ M) = (\text{Simple} \lambda b, b'. \ \text{Simple} \lambda a, a'. \ M)\).

Proof. By associativity and commutativity of join. \(\square\)

Lemma 3.6.3. (weakening) If \(b, b' \) are not free in \(M \), then \((\text{Simple} \lambda a, a'. \ \text{Simple} \lambda b, b'. \ M) = (\text{Simple} \lambda a, a'. \ M)\).

Proof. Generalizing the property
\[\begin{array}{l}
!\text{check } V(V \ x \ | \ V \ y) = V(x \ | \ y).
\end{array} \]
to infinitary joins \(V \bigcup V = V \bigcup \) we show
\[\begin{array}{l}
\text{Simple} \lambda a, a'. \ \text{Simple} \lambda b, b'. \ M = \text{Simple} \lambda a, a'. \ V \ M = \\
V (\bigcup_{(a,a') \in S} V \ M) = \\
V (\bigcup_{(a,a') \in S} M) = \\
\text{Simple} \lambda a, a'. \ M
\end{array} \]

We can also show that interpretation respects exponentials. First a

Lemma 3.6.4. (conjugation) \((\text{Simple} \lambda a, a'. \ \text{Simple} \lambda b, b'. \ f \ a \ a' \rightarrow g \ b \ b') \subseteq \text{Simple} \ f \rightarrow \text{Simple} \ g\).

Proof. Using infinitary versions of the following properties of conjugation
\[\begin{array}{l}
!\text{check } x \rightarrow (y \ | \ z) = x \rightarrow y \ | \ x \rightarrow z.
\end{array} \]
\[\]![\begin{array}{l}
!\text{check } (x \ | \ y) \rightarrow z \quad \nexists \quad x \rightarrow z | y \rightarrow z.
\end{array} \]
\[!\text{check } V(a \rightarrow b) \not\subseteq V a \rightarrow V b. \]
we show
\[\begin{array}{l}
\text{Simple} \lambda a, a'. \ \text{Simple} \lambda b, b'. \ f \ a \ a' \rightarrow g \ b \ b' = \\
V \bigcup_{(a,a') \in S} V \bigcup_{(b,b') \in S} f \ a \ a' \rightarrow g \ b \ b' = \\
V \bigcup_{(a,a') \in S} \bigcup_{(b,b') \in S} f \ a \ a' \rightarrow g \ b \ b' = \\
V \bigcup_{(a,a') \in S} \bigcup_{(b,b') \in S} (f \ a \ a' \rightarrow g \ b \ b') \subseteq \\
V (\bigcup_{(a,a') \in S} f \ a \ a') \rightarrow (\bigcup_{(b,b') \in S} g \ b \ b') \subseteq \\
(V \bigcup_{(a,a') \in S} f \ a \ a') \rightarrow (V \bigcup_{(b,b') \in S} g \ b \ b') = \\
\text{Simple} \ f \rightarrow \text{Simple} \ g
\end{array} \]

Question 3.6.5. Does the converse hold?

Now to express respect for exponentials, we need a notion of equality at a type.

Definition 3.6.6. Let \(x, y \) be arbitrary terms, and \(a : V \) be a closure. We say \(x = y \mod a \) iff \(a \ x = a \ y \), i.e. iff \(x \) and \(y \) are identical when seen as terms of type \(a \).
Corollary 3.6.7. ([\sigma \rightarrow \tau] respects exponentials) For \sigma, \tau simple types with disjoint sets of variables,
\[\sigma \rightarrow \tau \subseteq [\sigma] \rightarrow [\tau], \] and hence if \(x = y \mod [\sigma] \rightarrow [\tau] \) then \(x = y \mod [\sigma] \rightarrow [\tau] \).

Consider the action of Simple on a few functions

Lemma 3.6.8.

\[
\begin{align*}
\text{!check } (\text{Simple} \lambda a, a') &= I. \\
\text{!check } (\text{Simple} \lambda a, a', \bot) &= I. \\
\text{!check } (\text{Simple} \lambda a, a'. T) &= T. \\
\text{!check } (\text{Simple} \lambda a, a'. a') &= \text{div}. & \text{inhabited by } \{\bot, T\}
\end{align*}
\]

Proof. Left as exercise for Johann.

Correctness of the simple type constructor

We need to show soundness \(q : \tau \Rightarrow q : [\tau] \) and completeness \(q : [\tau] \Rightarrow q : \tau \). Soundness of our Simple type interpretation is provable by an easy induction on derivations.

Theorem 3.6.9. (soundness) If \(q : \tau \) then \(q : [\tau] \).

Proof. We consider the action of each generator of Simple on each term. So letting \(a/a', b/b', \) and \(c/c' \) be section/retract pairs so that \(a' \circ a = b' \circ b = c' \circ c = I \), we show that each term is fixed under the generators of simple. By induction on typing derivations (ignoring for now intersection types),

Case: \(S : (\rho \rightarrow \sigma \rightarrow \tau) \rightarrow (\rho \rightarrow \sigma) \rightarrow \rho \rightarrow \tau \)

\[
\begin{align*}
((a' \rightarrow b' \rightarrow c) \rightarrow (a' \rightarrow b) \rightarrow a \rightarrow c') \ S \\
= (a' \rightarrow b' \rightarrow c) \rightarrow (a' \rightarrow b) \rightarrow a \rightarrow c' \lambda x, y, z. x (y z) \\
= \lambda x, y, z. c'. (a' \rightarrow b' \rightarrow c x) (a z) ((a' \rightarrow b y) a z) \\
= \lambda x, y, z. c' \circ c. x ((a \circ a z) (b' \circ b. y, a' \circ a z)) \\
= \lambda x, y, z. x (z(y z)) \\
= S
\end{align*}
\]

Case: \(K : \sigma \rightarrow \tau \rightarrow \sigma \)

\[
\begin{align*}
(a \rightarrow b \rightarrow a') \ K = (a \rightarrow b \rightarrow a') \lambda x, y. x \\
= \lambda x, y. a' \ a x \\
= \lambda x, y. a \circ a' \ x \\
= \lambda x, y. x \\
= K
\end{align*}
\]

Case: \(T : \tau \) by induction on the structure of the type \(\tau \):

Subcase: For \(\tau = a \) a variable, consider the atomic retracts \(a' \ T \)

\[
\begin{align*}
\text{lower } T &= T \quad T = T \\
\text{push } T &= \lambda y. T \mid \text{div } y = \lambda y. T = T
\end{align*}
\]

Subcase: For \(\tau = \rho \rightarrow \sigma \) for types \(\rho, \sigma \), consider the action of any retract \(b' \) and any section \(a \).

\[
\begin{align*}
(a \rightarrow b') \ T &= \lambda x. b' (T (a x)) \\
= \lambda x. b' \ T \\
= \lambda x. T & \text{ by hypothesis on } b'
\end{align*}
\]

Subcase: For \(\tau = \text{any } I \) \(T = T \).
Case: \(m \vdash \tau \), assuming \(m \vdash \sigma \rightarrow \tau \) and \(n \vdash \sigma \). By hypothesis, \(m \vdash [\sigma \rightarrow \tau] \) and \(n : [\sigma] \), so

\[
\begin{align*}
\vdash [\tau] (m n) & \quad \text{since } [\tau] \text{ is a closure} \\
\vdash (any \rightarrow [\tau]) (m n) & \quad \text{by commutativity} \\
\vdash ([\sigma] \rightarrow [\tau]) (m n) & \quad \text{by respect for exponentials} \\
\vdash [\sigma \rightarrow [\tau]] (m n) & \quad \text{by hypothesis on } m \\
\vdash [\sigma] (m n) & \quad \text{by hypothesis on } m \\
\end{align*}
\]

Case: \(\sqcup M : \tau \). Observe that each operation of Simple acts pointwise on joins (say by induction over type structure), i.e. \(\sqcup \) and Simple commute. Hence,

\[
\begin{align*}
[\tau] \sqcup M & = \bigcup_{m \in M} [\tau] m \quad \text{by commutativity} \\
& = \bigcup_{m \in M} m \quad \text{by hypothesis} \\
& = \sqcup M
\end{align*}
\]

Case: \(m : \text{any} \). Since \([\text{any}] = I \), anything is fixed by \([\text{any}]\).

Completeness is much more difficult, and makes crucial use of the Böhm Tree theorem of 3.1. In particular, Simple does not work in full \(D_\infty \) models, where the BT theorem fails. The proof than any fixedpoint \(q : [\tau] \) is typable \(q : \tau \) considers by way of contradiction any \(q' : \tau \) not typable by \(\tau \), showing that \([\tau] \) raises \(q \) to something strictly larger. The idea is to
(1) consider WLOG any badly-typed finite SK-definable BT \(q' \sqsubseteq q \) extending \(q \), so also \(q' : \tau \).
(2) adapt the term \(q' \) to the type \(\tau \) by specializing the type (via moves \(a : b \rightarrow c \)) to the term, and putting the term in \(\beta \)-long form down to the point of typing error.
(3) consider the BT node where the typing error occurs, a head normal form; the error is one of: too few arguments, too many arguments, or an atomic type clash.
(4) show that various sequences of \(\rightarrow \) retract operations raise each error to \(T \).
(5) bubble-up the error to the top of \(q' \) BT and generalize the type (via moves \(b \rightarrow c \) \(\vdash a \)) back to its original form.

So let us consider a badly-typed finite sequential BT \(q' : \tau \). There are two problems we face in finding a type error: ill-typed terms might look like terms of lower type, or they might look like terms of higher type. To deal with higher-type-looking terms, we adapt their types by specializing moves \(a : b \rightarrow c \). For example when checking

\[
M, x.f \ (\lambda y. x f) : \ a \rightarrow a
\]

we specialize \(a : a \vdash (b \rightarrow c) \rightarrow (b \rightarrow c) \vdash ((d \rightarrow e) \rightarrow c) \rightarrow (d \rightarrow e) \rightarrow c \) where we can annotate

\[
M : (d \rightarrow e) \rightarrow c, x : d \rightarrow c, f : (\lambda y : d. x f : e) : c
\]

and observe a problem typing \(f : (d \rightarrow e) \rightarrow c, x : d \rightarrow c \vdash x : f : e \). Specialization is built into the Simple type constructor via conjugation

\[
\text{Simple } f = V \ (\ldots | \text{ Simple } \lambda a, a'. \text{ Simple } \lambda b, b'. f (a' : b) (a : b'))
\]

Lemma 3.6.10. \(\text{specialization} \) Let \(\sigma, \tau \) be pure simple types, i.e., free of type constants and intersection operations. If \(\sigma \vdash \tau \) then \([\sigma] \sqsubseteq [\tau] \).

Proof. Suppose \(\sigma \vdash \tau \). Then there is a sequence of types \(\sigma_0 \vdash \sigma_1 \vdash \cdots \vdash \sigma_n \) such that each \(\sigma_i \vdash \sigma_{i+1} \) is the result of an elementary specializing substitution \(a_i \vdash b_i \rightarrow c_i \) of type variables (pf: by induction on structure of subtyping derivations). At each substitution, the conjugation operation in Simple shows that \(\sigma_i \sqsubseteq \sigma_{i+1} \).
To deal with lower-type looking terms, we next adapt the term by putting it in long β-η form ([Hin97]) with respect to the adapted type. For example when checking

$$\lambda x, y. x : a \rightarrow a \rightarrow a \rightarrow a$$

we lengthen the term by η-expanding and annotate to

$$\lambda x : a, y : a, z : a. x z : a$$

to find a problem typing $x : a, z : a \vdash x : a$.

After specializing a term, there are three possible kinds of typing problem: variable-arrow, arrow-variable, and variable-variable type clashes. When we find such a typing problem we create an error by raising the conflicting subterm to \top, using one of the following section \rightarrow retract operations. Below we formally verify unary forms of each lemma, and informally prove the general n-ary forms.

Lemma 3.6.11. (one too few args) $\top = [a \rightarrow a] \lambda f, -.f$.

Proof. (pull \rightarrow push); (raise \rightarrow lower) raises $\lambda f, -.f$ as

```
!check (pull $\rightarrow$ push) (\lambda f, -.f)
    = (\lambda f, ((\lambda x.f |\ div x) \bot)
    = (\lambda f, x.f |\ div x).
!check (raise $\rightarrow$ lower) (\lambda f, x.f |\ div x)
    = (\lambda f, T)
    = T.
```

Lemma 3.6.12. (too few args) $\top = [a \rightarrow a] \lambda f, -^{n}.f$.

Proof. (pull \rightarrow push); n(raise \rightarrow lower) raises $\lambda f, -^{n}.f$ as

```
\lambda f, -^{n}.f \mapsto \lambda f, ((\lambda x.f |\ div x) \bot) \quad via \ pull \rightarrow \ push
    = \lambda f, -^{n-1}.f \quad via \ pull \rightarrow \ push
\mapsto \lambda f, x.(\lambda x.f |\ div x) \quad via \ (n-1)(raise \rightarrow lower)
\mapsto \lambda f, (\lambda -^{n}.f) |\ div T \quad via \ raise \rightarrow lower
    = \lambda f, div T
    = T.
```

Lemma 3.6.13. (one too many args) $\top = [a \rightarrow a] \lambda f. \bot$.

Proof. (raise \rightarrow lower); (pull \rightarrow push) raises $\lambda f. \bot$ as

```
!check (raise $\rightarrow$ lower) (\lambda f. \bot)
    = (\lambda f, (\bot) \bot T)
    = (\lambda f, T).
!check (pull $\rightarrow$ push) (\lambda f. T)
    = (\lambda f, (\lambda x.f |\ div x) T)
    = (\lambda f, f |\ div T)
    = T.
```

Lemma 3.6.14. (too many args) $\top = [a \rightarrow a] \lambda f. \bot^{n}$.

48
Proof. \(n(\text{raise} \rightarrow \text{lower}): (\text{pull} \rightarrow \text{push}) \) raises
\[
\lambda f. \bot \sim n \mapsto \lambda f. (\lambda x. f \mid \text{div } x) \sim n \text{ via } n(\text{raise} \rightarrow \text{lower})
\]
\[
\lambda f. (f | \text{div } T) \sim n \text{ via pull } \rightarrow \text{push}
\]
\[
\lambda f. \top \sim n \text{ via pull } \rightarrow \text{push}
\]
\[
\top \sim n-1
\]

Lemma 3.6.15. (clashing) If \(a, b \) are distinct type variables then in the interpreted type,
\[
\top = \text{Simple} \lambda a, a'. \text{Simple} \lambda b, b'. b' \circ a
\]

Proof. We can simply mismatch two section-retract pairs
\[
\begin{aligned}
\&\text{!check (Simple} \lambda a, a'. \text{Simple} \lambda b, b'. b' \circ a) \\
\&\text{lower} \circ \text{pull}
\&\text{=} \langle \top \rangle \circ (\lambda x, y. \text{div } y \mid x)
\&\text{=} (\lambda y. \text{div } y \mid \top)
\&\text{=} \top
\end{aligned}
\]

Now after finding a type error at a specialized type, we want to be able to “bubble up” the error to the most general type.

Lemma 3.6.16. (close bubbling) \(\top = [a \rightarrow a] \lambda f, - . f \top \).

Proof. pull \rightarrow push raises \(\lambda f, - . f \top \) as
\[
\begin{aligned}
\&\text{!check (pull } \rightarrow \text{push} (\lambda f, - . f \top) \\
\&\text{=} (\lambda f. (\lambda - . (\lambda x. f \mid \text{div } x) \top) \bot)
\&\text{=} (\lambda f. (\lambda x. f \mid \text{div } x) \top)
\&\text{=} (\lambda f. f \mid \text{div } T)
\&\text{=} \top
\end{aligned}
\]

Lemma 3.6.17. (bubbling) \(\top = [a \rightarrow a] \lambda f, - \sim n, - . f \sim n \top \).

Proof. \(n(\text{raise} \rightarrow \text{lower}): (\text{pull} \rightarrow \text{push}) \) raises
\[
\begin{aligned}
\lambda f, - \sim n, - . f \sim n \top \mapsto \lambda f, - . f \top & \text{ via } n(\text{raise} \rightarrow \text{lower})
\mapsto \top & \text{ via pull } \rightarrow \text{push}
\end{aligned}
\]

Example 3.6.18. We can show that \(\top = [a \rightarrow a] \lambda f, x. f f \) by
- first specializing to \(a \rightarrow a \mapsto (b \rightarrow c) \rightarrow b \rightarrow c \);
- then finding an error with the too-few-args lemma, raising \([(b \rightarrow c) \rightarrow b \rightarrow c] \lambda f, x. f \sqsupset \lambda f, x. f \top \);
- and finally bubbling the error up to the more general type, raising \([a \rightarrow a] \lambda f, x. f \top = \top \).

Next we need to show that any kind of typing error can be detected with our tools for \(a \rightarrow a \). For more complex types, we might have typing errors deep in a B"ohm tree. We can use \(a \rightarrow a \) arguments to detect any single type error in a B"ohm tree, since we just need top-down and bottom-up types to agree. But we also need to be able to simultaneously raise errors in different branches of a B"ohm Tree.
Example 3.6.19. Consider the type
\[(a \to a) \to (a \to a) \to b \to b\]
of pairs of semibooleans, and the non-inhabitant
\[\lambda f. \, f (\lambda x. \, . \, x) (\lambda y. \, x \, \bot),\]
where the first component has too few arguments, and the second too many. The too-few-args lemma raises the first component, and the too-many-args raises the second comonent, but can we raise both?

We generalize this with a sort of simultaneous raising lemma.

Lemma 3.6.20. (coherence): If Simple raises each of a set of errors in a Böhm tree, then it simultaneously raises them all.

Proof. By compactness we need only argue about finite sets of errors. Suppose thus we are given a finite number of arguments, each detecting a particular type error in a Böhm tree. It is sufficient to weave them together into a single argument detecting all errors.

Note that each sequence of operations in the detection of the errors is one of: (too-few), (too-many), (clashing), and (bubbling). These are composed of elementary operations raise → lower, pull → push, and their specializations \[a > b \to c\].

In any of these cases, we can safely apply the specialized cases first, then the pull → push moves, then the raise → lower cases. Hence there is a sequence of moves containing all each of the given raising sequences as a subsequence.

Finally we start back at step (1) and assemble the type checking lemmas.

Theorem 3.6.21. (completeness): If \[q : [\tau]\] then \[q :: \tau\].

Proof. Suppose \(q\) extends a finite Böhm tree with typing errors, i.e. for various subterms the top-down and bottom-up typings disagree, or some subterms cannot even be typed. Each of the typing errors is raised to \(\top\) by one of the (too-few), (too-many) or (clashing) lemmas. The coherence lemma allows us to raise all the errors simultaneously. The resulting raised \(q\) then has proper type.

Corollary 3.6.22. (Simple works) \[q :: \tau\] iff \(q : [\tau]\).

Proof. The soundness and completeness theorems each prove one direction.

Extending to recursive types, intersection types, and type constants

Using intersection types we can construct infinite (e.g. recursive) types by intersecting over infinite chains of approximations. Then using the subtyping partial order, we can prove equations among recursive types.

Example 3.6.23. We can construct a type \(\mu a \cdot b \to (a \to b) \to b\) of ambiguous numerals by intersecting all the types

\[
\begin{align*}
\text{any} & \to (\text{any} \to b) \to b \\
b & \to (b \to (\text{any} \to b) \to b) \to b \\
\end{align*}
\]

This can be defined as a least fixed point, either outside or inside the type interpretation

```plaintext
!check
| pre_num := (\lambda a. \text{Simple}\lambda b, b'. b \to (a \to b) \to b'). 
| pre_num = (\text{Simple}\lambda b, b'. \forall (\lambda a. b \to (a \to b) \to b')) \text{ any} 
|
```

We can also extend our simple type interpretation by arbitrary closures without much work. Consider extending the type language and interpretation by...
Lemma 3.6.24. For any $a, b : V$ closures, $a \to b = P(a \to \text{any}) (\text{any} \to b)$.

Proof. Simple reduction.

Lemma 3.6.25. Let τ be a simple type with both type variables and type constants (closures) as leaves, and let ρ be τ with all variables replaced by any and σ be τ with all constants replaced by any, so that $[\sigma] = \sigma$. Then $[\tau] = P[\rho][\sigma] = P[\rho]\sigma$.

Example 3.6.26. (semisets) Semisets of $a : V$ are joins of terms $\lambda f : a \to \text{any}. f \, x$. We will discuss them more at the end of 3.7.

3.7 Types as closures

In this section we define a variety of types and type constructors, whose inhabitants are exactly the partial SK-*terms we would expect –ambiguous SKJ inhabitants are eliminated. We construct these types from Simple-definable types by raising ambiguous terms to \top, or “disambiguating”.

However, this eschewing of ambiguous terms comes at the cost of a clean categorical characterization of our type constructors: our products and sums are not categorical products and sums. The situation becomes clearer later when we add randomness in 4 and our present disambiguation tricks fail. Forced to work with ambiguous terms, we will develop a monadic type system where type constructors satisfy categorical properties, and simple types are likely definable (this is future work). For now we accept the loss of nice categorical properties.

Atomic types for truth-values

We first construct four atomic types div, semi, unit, bool that will be used for various logics in 3.9.

We can now give a Simple definition of the type of divergent computations, introduced in section 3.8.

This two-point closure will be used as the space of truth values for probing logic.

Theorem 3.7.1. $\text{inhab(div)} = \{ \bot, \top \}$.
Proof. We already know that

![check ⊥ : div.](\text{\textcolor{red}{check \ ⊥ : \ div.}})

Any other \(q : \text{div} \) converges and hence is sent to \(\top \) by sufficiently many arguments of \(\top \). So \(q = \top \). □

Semibooleans, or Sierpinski space will be used as the space of truth values for testing logic.

\[
\text{!define } \text{semi} := (\text{Simple}\lambda a', a \to a').
\]

\[
\text{!check } (I, \bot : I \to I).
\]
\[
\text{!check } (I, \bot : \text{raise} \to \text{lower}).
\]
\[
\text{!check } (I, \bot : \text{pull} \to \text{push}).
\]
\[
\text{!check } (I, \bot : \text{semi}).
\]
\[
\text{!check div <: semi}.
\]

Theorem 3.7.2. \(\inhab(\text{semi}) = \{\bot, I, \top\} \).

Proof. By the Simple theorem, since these are exactly the inhabitants of the simple type \(a \to a \), they are the fixedpoints of the type’s interpretation \(\text{Simple}\lambda a', a \to a' \). □

The canonical unit type will have inhabitants \(\{I, \top\} \), with \(I \) the unique consistent inhabitant. This space will be used as the space of truth values for checking logic.

\[
\text{!define } \text{unit} := P \text{ semi(Above } I)\).
\]

\[
\text{!check } \text{unit} = P \text{ semi(K I)}.
\]
\[
\text{!check } I : \text{unit}.
\]
\[
\text{!check unit } \bot = I \text{ AND } \bot ! : \text{unit}.
\]
\[
\text{!check unit <: semi}.
\]

Theorem 3.7.3. \(\inhab(\text{unit}) = \{I, \top\} \).

Proof. \(\inhab(\text{unit}) \subseteq \inhab(\text{semi}) \); individual containment was just checked. □

Remark. We now know the entire semilattice of subtypes of semi:

\[
\begin{array}{c}
\{\bot, I, \top\} \quad \text{semi} \\
\{\bot, \top\} & \{I, \top\} : \text{div} \quad \text{unit} \\
\{\top\} & \text{nil}
\end{array}
\]

Finally we need boolean values for predicate logic. The boolean type is like a widened semi, inhabited by \(\{\bot, K, F, \top\} \). Such a bool is not Simple-definable, but we can Simple-define a wider type \text{bool} inhabited by \(\{\bot, K, F, J, \top\} \)

\[
\text{bool} := (\text{Simple } \lambda a, a' : a \to a').
\]

\[
\text{!check } (\bot, K, F, J : I \to I \to I).
\]
\[
\text{!check } (\bot, K, F, J : \text{raise} \to \text{raise} \to \text{lower}).
\]
\[
\text{!check } (\bot, K, F, J : \text{pull} \to \text{pull} \to \text{push}).
\]
\[
\text{!check } (\bot, K, F, J : \text{boool} \to \text{push}).
\]

52
We will often employ join-eschewing terms like $(\lambda q \cdot q \perp (q \top \perp))$. Because we regard join as ambiguity, we call these disambiguating terms.

Theorem 3.7.4. $\text{inhab} \text{bool} = \{\perp, K, F, \top\}$.

Proof. By the simple theorem, we may restrict attention to the inhabitants of $a \to a \to a$, namely $\perp, \top, K = \lambda x. x, F = \lambda y. y$, and $J = K \mid F$. All of \perp, \top, K, F are fixed by the term disambiguate $=: \lambda q \cdot q \perp (q \top \perp)$, and hence inhabit bool, but disambiguate $J = \top$. Hence \perp, \top, K, F are the only inhabitants.

Polymorphic type constructors

Various exponential types

$\text{Exp} := (V \to V \to V) (\lambda a, b. a \to b)$	or written $a \to b$
$\text{Endo} := (V \to V) (\lambda a. a \to a)$	endomorphisms
$\text{Bin}_{\text{op}} := (V \to V) (\lambda a. a \to a \to a)$	binary operations
From $:= (V \to V) (\lambda a. a \to \text{any})$	
To $:= (V \to V) (\lambda a. \text{any} \to a)$	

We have $\text{check Exp } a = \text{check } \text{Endo } a = \text{check } \text{Bin}_{\text{op}} a = \text{check From } a = \text{check To } a = \text{check Exp } a \perp$.

Recall that $x = y \mod a$ iff $a \mid (x - y)$.

Theorem 3.7.5. Let $a, b : V$. Then $f : a \to b$ iff both
(a) f is constant on a equivalence classes, and
(b) $\text{rng}(f) \subseteq \text{inhab}(b)$.

Proof. If $f : a \to b$, then $f = b \circ f \circ a$, so $f = f \circ a$ is constant on a equivalence classes, and

$$\text{rng}(f) = \text{rng}(b \circ f) \subseteq \text{rng}(b) = \text{inhab}(b)$$

Conversely, if (a) and (b) hold,

$$f = f \circ a \quad \text{by (a)}$$
$$= b \circ f \circ a \quad \text{by (b)}$$
$$= (a \to b) f \quad \text{since } a, b : V$$
$$= V(a \to b) f$$

whence $f : a \to b$.

53
A special type of endomorphisms are the idempotents

\[
\text{Idem} := (V \to V) (\lambda a. P U. \text{Endo } a).
\]

\|
\check U = \text{Idem } \perp.
\]

For products, we want something like system F’s \(\forall c. (a \to b \to c) \to c\), but need to disambiguate to prevent e.g. \((K, F) | (F, K)\).

\[
\text{Prod} := (V \to V \to V) (\lambda a, b. P (\text{Simple}\lambda c, c'. \langle a \to b \to c \to c' \rangle) (\lambda q. (q K, q F))).
\]

\|
\text{prod} := (\forall a : V, b : V. \langle a, b \rangle) : \text{Prod } a b.
\]

Products are actually dropped products, since \((\top, \top) \neq \top = \prod_{\text{prod}}\). (Note however that the least pair is indeed \(\langle \perp, \perp \rangle\)).

\|
\check \text{prod } \perp = \langle \perp, \perp \rangle.
\]

Remark. We will often use this style a polymorphic type \(\text{Prod}\) by a simpler type \(\text{prod} = \text{Prod } \perp \perp\). This denotational equivalent of type inference allows us, under the Curry-Howard correspondence, to insert untyped proof \(\text{sketches}\) into larger well-typed contexts. See \(\text{3.1}\) for some simple examples, and \(\text{6.1}\) for extended example of how this works.

The intro and elim forms are

\[
\text{Pair} := (\forall a : V. b : V. a \to a \to \text{Prod } a b) (\lambda -, -, x, y, f. f x y).
\]

\|
\check \text{Pair } \perp = \langle \perp, \perp \rangle.
\]

\|
\check \text{Pair } (\lambda a : V, b : V, x : a, y : b. (x, y)).
\]

\|
\text{Pi1} := (\forall a : V. \text{Prod } a \text{ nil } \to a) (\lambda (x, -). x).
\]

\|
\text{Pi2} := (\forall b : V. \text{Prod nil } b \to b) (\lambda (_, y). y).
\]

\|
\check \text{Pi1} = \text{Pi1 } \perp.
\]

\|
\check \text{Pi2} = \text{Pi2 } \perp.
\]

\|
\check (\lambda p : \text{prod}. (\pi_1 p, \pi_2 p)) \in \text{prod}.
\]

\color{red}{\text{verifying notation}}

\color{red}{\text{typing error prevents equality}}

Theorem 3.7.6. \(\text{inhab(Prod } a b) = \{ \top \} \cup \{(x, y) \mid x : a, y : b\}\).

\[
\text{Proof.} \ \text{Any h.n.f. below } q : \text{Prod } a b \text{ must be } (a \times b) \text{ or } \top. \text{ We construct the maximum such approximation: Its first component is } q K. \text{ Its second component is } q F. \text{ So disambiguate } := \lambda q. (q K, q F) \text{ ensures sequentiality.}
\]

\[
\square
\]

\color{red}{\text{Remark.}} \text{Tuples with nil elements needn’t be nil (but this can be checked):}

\[
\check (\top, \top) : \text{prod}.
\]

\|
\check (\top, \top) \notin \top.
\]

\[
\text{thus this is really a “dropped” product. The usual inhabitation relation does not hold:}
\]

\[
\check \text{Prod nil nil } \notin \text{nil}.
\]

\[
\text{however, we will see in Section } \text{3.10} \text{ that the theorem does hold for types as checkable closures.}
\]
For sums, we want something like System F’s \(\forall a, b. \ (a \to c) \to (b \to c) \to c \) but need to disambiguate to prevent e.g. inl \(K \) | inr \(F \).

\[
\text{Sum} := (V \to V \to V) (\lambda a, b. \ (\text{Simple} \lambda c, c'. \ (a \to c) \to (b \to c) \to c')) \\
| \lambda q. \ q \bot (q \ T \bot) \\
| q \ (q \bot T) \bot \\
| \lambda f, g. \ q \ (K \ I) \bot (q \ f \bot) \\
| q \bot (K \ I) (q \ T \bot)
\]

| !define sum := Sum \bot \bot.

The intro forms are

\[
\text{Inl} := (\forall a:V. \ a \to \text{Sum} a \bot) (\lambda \bot, x, f, f \ x).
\text{Inr} := (\forall b:V. \ b \to \text{Sum} \bot b) (\lambda \bot, y, -g, g \ y).
\text{Inl} := (\lambda x, f, -f \ x).
\text{Inr} := (\lambda y, -g, g \ y).
!\check (\text{inl, inr : any } \to \text{sum}).
!\check \text{inl} = \text{Inl} \bot.
!\check \text{inr} = \text{Inr} \bot.
!\check (\text{inl, inr}) : \text{sum} = \text{sum}.
!\check (\forall b:V, s: \text{sum}, f: any \to b, f': any \to b. \ s \ f \ f:b).
\]

Sums are actually dropped, lifted coproducts since inl \(T \neq T \neq T \) and inl \(\bot \neq \bot \neq \bot \) modulo sum.

\[
!\check (T, \text{inl} T, \text{inr} T : \text{sum}).
!\check (\bot, \text{inl} \bot, \text{inr} \bot : \text{sum}).
\]

Theorem 3.7.7. inhab(Sum \ a \ b) = \{T, \bot\} U \{inl \ x \mid x:a\} U \{inr \ y \mid y:b\}.

Proof. Combine the proofs of bool and Prod.

For the successor type \(1 + a \) we define an operation like System F’s \(\forall a. \ b \to (a \to b) \to b \), disambiguating as with sums.

\[
\text{Maybe} := (V \to V) (\lambda a. \ (\text{Simple} \lambda b, b'. \ b \to (a \to b) \to b')) \\
| (\lambda n, \bot, \ n, \ \lambda x, -s, \ s \ x) \quad \text{descend,} = (\text{none, some}) \\
| \lambda q. \ q \bot (q \ T \bot) \\
| q \ (q \bot T) \bot
\]

| !define maybe := Maybe \bot.

The intro forms are

\[
\text{none} := \text{maybe} (\lambda n, -n).
\text{Some} := (\forall a:V. \text{Maybe} a) (\lambda a, x, -s, \ s \ x).
\text{some} := \text{maybe} (\lambda x, -s, \ s \ x).
!\check \text{some} = \text{Some} \bot.
!\check \text{none} : \text{Maybe} \ a.
\]

Theorem 3.7.8. inhab(Maybe \ a) = \{T, \bot, \text{none}\} U \{some \ x \mid x:a\}.

Proof. Similar to proof of Sum.
The Maybe together with its mapping functions form a functor.

\[
\text{map}
\text{Maybe} := (\forall a : V, b : V. (a \rightarrow b) \rightarrow \text{Maybe } a \rightarrow \text{Maybe } b) (\lambda f. (\text{none}, \text{some} \circ f)).
\]

\[
\text{map}
\text{maybe} := (\text{any} \rightarrow \text{maybe} \rightarrow \text{maybe}) (\lambda f. (\text{none}, \text{some} \circ f)).
\]

\[\text{check map}
\text{maybe} = \text{map}
\text{Maybe } \perp.\]

The naming of Maybe already hints at the Curry-Howard correspondence, whereby we interpret type constructors as logical connectives. When defining types of logical statements, we will often use the additional terminology

\[\text{And} := \text{Prod}.\]
\[\text{Or} := \text{Sum}.\]
\[\text{If} := \text{Exp}.\]

Recursive types

We can define recursive types as fixedpoints of type constructors, e.g. the dual types num and Stream a of algebraic numerals and streams. Numerals have introduction forms none and some

\[
\text{num} := V (Y a. \text{Maybe } a).
\]

\[\text{check none} : \text{num}.\]

\[\text{check } (\forall n : \text{num}. \text{some } n) : \text{num}.\]

To avoid streams that typecheck for a while but eventually err, we disambiguate with \(\lambda q. q \lambda −, q'. q' \lambda −, −. \perp,\) pulling errors to the head.

\[
\text{Stream} := (V \rightarrow V) (\lambda a. Y \lambda b. \text{Prod } a b \mid \lambda q. q \lambda −, q'. q' \lambda −, −. \perp).
\]

\[\text{stream} := V (Y \lambda a. \text{Prod } \text{any } a \mid \lambda q. q \lambda −, q'. q' \lambda −, −. \perp).\]

\[\text{check stream} = \text{Stream } \perp.\]

\[\text{check T} = \text{stream } (\perp, \top) = \text{stream } (\perp, \perp, \top) = \text{stream } (\perp, \perp, \perp, \top).\]

Now duality Stream a <: num → a is expressed as

\[\text{check } (\forall a : V, s : \text{Stream } a, n : \text{num}. s n : a).\]

Intersection types

Intersection types are definable for closures (but not general idempotents). Recall that

\[\text{check } P = (V \rightarrow V \rightarrow V) (\lambda a, b. a \mid b).\]

Theorem 3.7.9. \(\text{inhab}(P a b) = \text{inhab}(a) \cap \text{inhab}(b).\)

Proof. Let a, b : V be types.

- \(\subseteq:\) If \(x : P a b\) then \(x = P a b x \sqsupseteq a x \sqsupseteq x\) and similarly \(x : b.\)
- \(\supseteq:\) If \(x : a\) and \(x : b\) then \((a \mid b)x = a x \mid b x = x,\) so \(P a b x = V(a \mid b)x = x.\)
Intersection are also defined over enumerably-many types, say in a Stream as defined below:

\[
P_{\text{stream}} := (\text{Stream } V \rightarrow V) (Y \lambda a: \text{Stream } V \rightarrow V, (h, t). P~h(a t)).
\]

Lower-powerdomains support singletons, unions, mapping, and restriction by a semipredicate; so we call them semisets. We represent semisets as ambiguous terms of simple type \((\text{any } \rightarrow a) \rightarrow a\), e.g.

\[
\{\} = \bot
\]
\[
\{0\} = (0)
\]
\[
\{0, 1, 2\} = (0) \mid (1) \mid (2)
\]
\[
\{0, 1, 2, \ldots\} = (Y \lambda n. \langle n \rangle \mid y(\text{succ } n)) 0
\]

\[
\text{Sset} := (V \rightarrow P (\text{Above } (\bot))) \ (\lambda a. \text{Simple} \lambda b, b'. (a \rightarrow b) \rightarrow b').
\]

\[
\text{!define sset} := P (\text{Above } (\bot)) \ (\text{Simple} \lambda a, a'. (\text{any } \rightarrow a) \rightarrow a').
\]

\[
\text{!check sset} = \text{Sset } \bot.
\]
\[
\text{!check sset } \bot = (\bot).
\]
\[
\text{!check } \langle T, (T): \text{sset } \rangle.
\]

\[
\text{map}_{\text{Sset}} := (\forall a: V, b: V. (a \rightarrow b) \rightarrow \text{Sset } a \rightarrow \text{Sset } b) (\lambda -, -, f, \langle x \rangle. (f x)).
\]

\[
\text{map}_{\text{sset}} := (\text{any } \rightarrow \text{sset } \rightarrow \text{sset }) (\lambda, \langle x \rangle. (f x)).
\]

\[
\text{!check } \text{map}_{\text{sset}} = \text{map}_{\text{Sset } \bot}.
\]

Theorem 3.7.10. \(\text{inhab}(\text{Sset}) = \{\top\} \cup \{ \bigcup_{x \in M} \langle x \rangle \mid M \subseteq \text{inhab}(a)\}\).

Proof. By the Simple type theorem, where \(\bot\) is the only term raised by \(\langle \bot \rangle\) \(\square\)

Note that \(\text{Sset, map}_{\text{Sset}}\) are the components of the functor of a monad\(^2\) for ambiguity, with components

\[
(\forall a: V, b: V. (a \rightarrow b) \rightarrow \text{Sset } a \rightarrow \text{Sset } b) \text{ map}_{\text{Sset}} \quad \text{action on objects}
\]

\[
(\forall a: V. \lambda a: \text{Sset } a) (\lambda, \langle x \rangle) \text{ unit}
\]

\[
(\forall a: V. 2 \text{ Sset } a \rightarrow \text{Sset } a) (\lambda, \langle x \rangle. x) \quad \text{join}
\]

Dependent types

We have already been using quantified types in the notation

\[
\forall a: V. M := \lambda a: V. M(x \ a)
\]

Now we build concrete universal and existential type constructors, defined by the typing rules for indexed products and sums

\[
\frac{x : \Pi a \ f \quad i : a}{x \ i : f \ i} \quad (\Pi)
\]

\[
\frac{(i, x) : \Sigma a \ f \quad i : a}{(i, x) : \Sigma a \ f \quad x \ i : f \ i} \quad (\Sigma 1)
\]

\[
\frac{(i, x) : \Sigma a \ f \quad x : f \ i}{(i, x) : \Sigma a \ f \quad x : f \ i} \quad (\Sigma 2)
\]

We represent the universally quantified type \(\Pi a \ f = \forall i: a. f \ i\) by

\[
\Pi := (\forall a: V. (a \rightarrow V) \rightarrow V) (\lambda-, f, x, i. f i(x \ i)).
\]

\[
\text{!check } (\forall a: V. f: a \rightarrow V. \Pi a \ f = (\forall i: a. f \ i)).
\]

\[
\text{!check } (\forall a: V. f: a \rightarrow V, x: \Pi a \ f, i: a \ x : f \ i).
\]

\羿 See [Wad90] and [Mog91] for definition.
and the existentially quantified type \(\Sigma \ a \ f = \exists x: a. f \ x \) by

\[
\Sigma := (\forall a: V. (a \to V) \to P \ prod) (\lambda a, f, (i, x). (a \ i, f \ i \ x)).
\]

\(\check{\text{verifying notation}} \)

rules (\(\Sigma .1 \)) and (\(\Sigma .2 \))

Because there is a type-of-types \(V \), these dependent types encompass kinds of polymorphic types. For example

\[
\check{\text{check}} (\forall a: V. V \to \text{From} \ a).
\]

\[
\check{\text{check}} (V \to (\forall b: V. \text{To} \ b)).
\]

Using dependent types, we can even define a type of definable functor

\[
\text{functor} := (\exists f: V \to V. \forall a: V, b: V. (a \to b) \to f \ a \to f \ b).
\]

Which types, e.g., the semiset monad and the Maybe functor.

\[
\check{\text{check}} (\text{Sset, map_Sset}) : \text{functor}.
\]

\[
\check{\text{check}} (\text{Maybe, map_Maybe}) : \text{functor}.
\]

Symmetry types

An interesting feature of the types-as-closures paradigm is the definability of quotient types for objects invariant under a monoid action. For example the two-element group \(\{I, C\} = \{\lambda f, x, y. f \ x \ y, \lambda f, x, y. f \ y \ x\} \) (acting as always by left-application), permutes the first two arguments of a function. This action induces the type of symmetric binary functions

\[
\text{Sym_bin_fun} := (V \to V \to P \ C) (\lambda a, b. a \to a \to b).
\]

\[
\check{\text{check}} \ \text{sym_bin_fun} = \text{Sym_bin_fun} \ \bot \ \bot.
\]

\[
\check{\text{check}} \ \text{sym_bin_fun} <\: (\lambda f, x, y. f \ x \ y).
\]

\[
\check{\text{check}} \ \text{sym_bin_fun} <\: (\lambda f, x, y. f \ y \ x).
\]

\[
\check{\text{check}} (J, P, 2 \ K \ x : \text{sym_bin_fun}).
\]

\[
\check{\text{check}} J = \text{sym_bin_fun} \ K = \text{sym_bin_fun} \ F.
\]

As a special case, we will use commutative binary operations

\[
\text{Comm_op} := (V \to V) (\lambda a, P \ \text{sym_bin_fun}. \ \text{Bin_op} \ a).
\]

\[
\check{\text{check}} \ \text{Comm_op} a = \text{Sym_bin_fun} \ a \ a.
\]

\[
\check{\text{check}} \ \text{sym_bin_fun} = \text{Comm_op} \ \bot.
\]

Now we can conveniently define some logical types

\[
\text{Pred} := (V \to V) (\lambda a. a \to \text{bool}).
\]

\[
\text{Bin_rel} := (V \to V) (\lambda a. a \to a \to \text{bool}).
\]

\[
\text{Sym_bin_rel} := (\lambda a. P \ \text{sym_bin_fun}. \ \text{Bin_rel} \ a).
\]

An advantage of types-as-closures over types-as-projections is the definability of quotients by *infinite* monoids. Consider for example functions of tails of sequences, which are invariant under shifts in either

An example of a function symmetric under an uncountable symmetry monoid (in fact group) is the Join_stream function on streams, invariant under the group of permutations of ω.

More generally, we can define the quotient of semisets

\[\text{Mod} := (\forall a:V. \text{Sset}(a → a) → P(\text{Sset} a)) (\lambda-, ms, xs. ms λm. (m x)). \]

\[\text{mod} := \text{Mod} \bot. \]

If we further have an apartness assertion assert_neq: a → a → unit for some algebra, we can construct true quotients.

\[\text{Quotient} := (\forall a:V. \text{Sset}(a → a) → P(\text{a→a→unit}) → P(\text{Sset} a)) (\lambda a, sym, assert_neq. λxs. (xs λx. xs λx'. assert_neq x x'). sym λs. xs λx. ⟨s x⟩). \]

Open Questions

Question 3.7.11. Are intro-elim forms definable uniformly from a simple type code?

Question 3.7.12. Does SKJ have all singleton closures, i.e., is there for every SKJ-term m a closure unit_m with inhabitants only \{m, ⊤\}? If so, is this uniformly definable from codes for m?

Definition 3.7.13. Let M be a term and define

\[\text{unit}_M := \bigsqcup \{a:V \mid M:a\} \]

to be the principle type of M.

Lemma 3.7.14. inhab(unit_M) = {M, ⊤}

Question 3.7.15. For which M is unit_M definable?

For example we already have principle types for I, ⊤, ⊥, K, F, namely unit_I = unit, unit_⊤ = nil, unit_Bot = div, P bool (J K) = unit_K, and P bool (J F) = unit_F.

Conjecture 3.7.16. unit_M is not uniformly definable.

Later in [5.7] we show that principle types of SKJ terms are uniformly definable in SKJO.
3.8 Axioms for a few simple types

Atomic types

The type unit is inhabited by \(\{ I, \top \} \).

\[\begin{align*}
! & \text{assume } (I, \top : \text{unit }) . \\
! & \text{assume } \text{unit } x = (\text{unit } x) \circ (\text{unit } x) = (\text{unit } x)(\text{unit } x).
\end{align*} \]

Within the domain unit, application is the same as composition.

\[! \text{assume } (\text{unit } x)(\text{unit } y) = (\text{unit } x) \circ (\text{unit } y). \]

The following axiom schemata are enforced for unit

\[
\frac{x \not\sqsubseteq I \quad \text{unit } x = \top}{x \sqsubseteq \text{unit}}
\frac{x \sqsubseteq \text{unit}}{x \sqsubseteq x}
\]

The latter holds since unit is the largest function \(I \rightarrow I \).

The type semi is inhabited by \(\{ \bot, I, \top \} \).

\[\begin{align*}
! & \text{assume } (\bot, I, \top : \text{semi }) . \\
! & \text{assume } \text{semi } x = (\text{semi } x) \circ (\text{semi } x) = (\text{semi } x)(\text{semi } x) \\
& \hspace{1em} = (\text{semi } x) \circ (\text{unit } x) = (\text{semi } x)(\text{unit } x).
\end{align*} \]

As with unit, application is the same as composition.

\[! \text{assume } (\text{semi } x)(\text{semi } y) = (\text{semi } x) \circ (\text{semi } y). \]

The following inference rules are enforced for semi

\[\frac{x \not\sqsubseteq \bot \quad \text{semi } x \sqsubseteq \bot}{x \sqsubseteq \text{semi}} \frac{x \not\sqsubseteq I \quad \text{semi } x = \top}{x \sqsubseteq \text{semi}} \frac{x \not\sqsubseteq \top \quad x \sqsubseteq \text{semi}}{x \sqsubseteq x} \]

The boolean type bool is inhabited by \(\{ \bot, K, F, \top \} \).

\[! \text{assume } (\bot, K, F, \top : \text{bool }) . \]

We can thus check equations pointwise, e.g.,

\[\begin{align*}
! & \text{assume } \text{bool } x = \text{bool } x \ K \ F \\
& \hspace{1em} = \text{bool } x \ I \ I (\text{bool } x) \\
& \hspace{2em} = \text{bool } x \ (\text{bool } x) \ (\text{bool } x) \\
& \hspace{3em} = \text{bool } x \ K \ \bot \mid \text{bool } x \ \bot \ F.
\end{align*} \]

Type constructors

We will also add the four most basic type constructors to the basis.

\[! \text{using } \text{prod} \ \text{sum} \ \text{maybe} \ \text{sset}. \]

The polymorphic versions relate to the simple versions via \(P \).

\[\begin{align*}
! & \text{assume } \text{Prod } a \ b = P \ \text{prod } ((a \rightarrow b \rightarrow \text{any}) \rightarrow \text{any}). \\
! & \text{assume } \text{Sum } a \ b = P \ \text{sum } ((a \rightarrow \text{any}) \rightarrow (b \rightarrow \text{any}) \rightarrow \text{any}). \\
! & \text{assume } \text{Maybe } a = P \ \text{maybe } (\text{any} \rightarrow (a \rightarrow \text{any}) \rightarrow \text{any}). \\
! & \text{assume } \text{Sset } a = P \ \text{sset } ((a \rightarrow \text{any}) \rightarrow \text{any}).
\end{align*} \]
Conversely, the simple versions are sketches of the polymorphic versions.

\[
\begin{align*}
!\text{assume } \text{prod} &= \prod \bot \bot. \\
!\text{assume } \text{sum} &= \Sigma \bot \bot. \\
!\text{assume } \text{maybe} &= \text{Maybe} \bot. \\
!\text{assume } \text{sset} &= \text{Sset} \bot.
\end{align*}
\]

We also characterize typical inhabitants

\[
\begin{align*}
!\text{assume } (x, y) : \text{prod}.
!\text{assume } (\bot, \text{inl } x, \text{inr } y : \text{sum}).
!\text{assume } (\bot, \text{none}, \text{some } x : \text{maybe}).
\end{align*}
\]

Semisets are inhabited by singletons \(\langle x \rangle\) and nonempty finitary joins, which we achieve through binary joins \(\text{sset } x | \text{sset } y\).

\[
!\text{assume } (\langle x \rangle, \text{sset } x | \text{sset } y).
\]

3.9 Various-valued logics

In this section we develop logical calculi with four different truth values: boolean truth values for (two-sided) decidability, semiboolean truth values for positive semidecidability (e.g. convergence testing), and unit and divergent truth values for negative decidability (e.g. error checking). The four types turn out to have practical utility for "programming" in SKJ, but there is also motivation from descriptive complexity theory.

In the theory \(H^*\), raw equality and information ordering between SKJ terms is \(\Pi^0_2\)-complete. But some verification problems are naturally of lower complexity, e.g. converge testing (a result can be found), or divergence testing (no errors can be found). The logical types \(\text{div}, \text{unit}, \text{semi}, \text{bool}\) provide restricted domains over which questions of lower complexity class, respectively \(\Pi^0_1, \Pi^0_1, \Delta^0_2, \Delta^0_2\). For example determining whether \(x = \text{I}\) is \(\Pi^0_1\)-complete, but restricted to the type unit, the question \(x : \text{unit} \vdash x : \text{I}\) is \(\Pi^0_1\)-complete.

In stating and proving the following motivational theorems, use some material from later sections, e.g. \(P_{\text{test}}\) below and \(\text{Join}_{\text{nat}}\) and \(\text{test}_{\text{nat}}\) from \(3.12\).

Theorem 3.9.1. The following complexity characterizations hold for raw problems in SKJ.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (x = \bot)</td>
<td>(\Pi^0_1)-complete</td>
</tr>
<tr>
<td>(b) (x = \text{I})</td>
<td>(\Pi^0_2)-complete</td>
</tr>
<tr>
<td>(c) (x = \top)</td>
<td>(\Pi^0_2)-complete</td>
</tr>
</tbody>
</table>

Proof.

Upper Bounds:

(a) \(x = \bot\) iff \(\text{div } x = \bot\) iff no \(\beta\)-\(\eta\) reduction shows \(\text{div } x = \top\).

The remaining cases reduce to information ordering, which is \(\Pi^0_2\).

Hardness: Let \(\phi : \text{nat} \rightarrow \text{bool}\) be a total recursive predicate.

(a) \(\forall n. \phi(n) \iff (\text{Join}_{\text{nat}} \lambda n. \phi(n) \bot \bot) = \bot\).
We can is the same as that for universal quantifiers and hypothetical tests. Letting Theorem 3.9.2.

(b) Suppose \(x = I \), where we further know \(x \in \{ \bot, I \} \).

Now consider an infinite \(\eta \)-expansion of

\[
I = \lambda x, y_0. \ x y_1. \ y_0 y_2. \ y_1 y_3 \cdot y_2 y_4. \ \ldots
\]

Let \(\psi(m) \) be a \(\Sigma_1^0 \) predicate where for each \(m \),

\[
u_m = I \iff \psi(m) \text{ and } u_m \in \{ \bot, I \}. \]

Then inserting \(u_m \)'s into the expansion of \(I \),

\[
\forall m. \psi(m) \iff I = \lambda x, y_0. \ x y_1. \ y_0 y_2. \ y_1 y_3. \ u_1 y_3. \ u_2 y_2 y_4. \ \ldots
\]

(c) Consider a definition of \(\top \) as

\[
\top = \bigcup_n K^n
\]

Note that any finite such join is not \(\top \). Let \(\psi(m) \) be a \(\Sigma_1^0 \) predicate where for each \(m \), \(u_m = I \iff \psi(m) \) and \(u_m \in \{ \bot, I \} \). Note that

\[
\forall m < 1 + n. \ \psi(m) \iff I = u_0 \circ u_1 \circ \ldots \circ u_n
\]

so let us define \(v_n = u_0 \circ u_1 \circ \ldots \circ u_n \), so that if \(\psi(m) \) fails, then \(v_n = \bot \) for all \(n \geq m \). Now

\[
\forall m. \ \psi(m) \iff \top = \bigcup_n v_n \ K^n
\]

\[\square\]

The situation is much nicer in typed or typed-and-tested contexts. Our semantics for contexts \(\Gamma \vdash M = N \) is the same as that for universal quantifiers and hypothetical tests. Letting \(a : V \) and \(t : \text{test} \), we localize via

\[
(x::a \vdash f \ x = g \ x) \iff \text{fo} \ a \ x = \text{go} \ a \ x
\]

\[
(x::t \vdash f \ x = g \ x) \iff (t \ x)(f \ x) = (t \ x)(g \ x)
\]

\[
(x::a::t \vdash f \ x = g \ x) \iff (\text{to} \ a \ x)(\text{fo} \ a \ x) = (\text{to} \ a \ x)(\text{fo} \ a \ x)
\]

Theorem 3.9.2. The following complexity characterizations hold for local problems in \(\text{SKJ} \).

<table>
<thead>
<tr>
<th>Context (\vdash) Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (x::\text{div} \vdash x = \bot)</td>
<td>(\Pi_1^0)-complete</td>
</tr>
<tr>
<td>(b) (x::\text{div} \vdash x = \top)</td>
<td>(\Sigma_1^0)-complete</td>
</tr>
<tr>
<td>(c) (x::\text{unit} \vdash x = I)</td>
<td>(\Pi_1^0)-complete</td>
</tr>
<tr>
<td>(d) (x::\text{semi} \vdash x = I)</td>
<td>complete for differences between (\Sigma_1^0) sets</td>
</tr>
<tr>
<td>(e) (x::\text{semi::unit} \vdash x = I)</td>
<td>(\Sigma_1^0)-complete</td>
</tr>
<tr>
<td>(f) (x::\text{bool::test Bool} \vdash x = K)</td>
<td>(\Delta_0^0)-complete</td>
</tr>
<tr>
<td>(g) (\vdash s <:: t)</td>
<td>(\Pi_2^0)-complete</td>
</tr>
</tbody>
</table>

Note that testing \(x::t \) is equivalent to \(\text{semi}(t \ x) = I \), corresponding to case (c).

Proof. We can WLOG restrict terms \(x::a \) for closures \(a \), by raising incomplete \(x \) via \(x \mapsto a \ x \).

(a) The problem \(x = \bot \) does not depend on \(x::\text{div} \), so apply the previous theorem.

(b) Suppose \(x::\text{div} \), i.e., \(x \in \{ \bot, \top \} \). Then \(\text{div} \ x = \top \iff x \neq \bot \).

(c) Suppose \(x::\text{unit} \), i.e., \(x \in \{ \bot, I, \top \} \). Then \(x = I \iff \text{div} \ x = \bot \).

(d) Suppose \(x::\text{semi} \), i.e., \(x \in \{ \bot, I, \top \} \). Then \(x = I \iff x = \bot \) or \(x = \bot \) or \(x = \bot \), which is \(\Pi_1^0 \)-complete. Also, \(x \equiv I \iff x = \bot \neq \bot \), which is \(\Sigma_1^0 \)-complete. Conjoining these two problems gives problem complete for differences between \(\Sigma_1^0 \) sets.

(e) Suppose \(x::\text{semi::unit} \), i.e., \(x \in \{ \bot, I \} \). Then \(x = I \iff \text{div}(x \ \bot) = \bot \), which is \(\Pi_1^0 \)-complete.

62
Suppose \(x : \text{bool} \mapsto \text{test} \text{bool} \), i.e., \(x \in \{ \text{K, F} \} \). Then \(x = \text{K} \) iff \(\text{div}(x \perp \top) = \bot \) iff \(\text{div}(x \top \bot) \neq \bot \). The former is \(\Pi^1_0 \)-complete and the latter is \(\Sigma^1_0 \)-complete.

First we can reduce the subtest problem to \(s <:: t \) iff \(\forall x :: s. x :: t \). Now the inner testing problem is equivalent to \(x :: t \), which is \(\Sigma^0_1 \)-complete. Letting \(s = \text{test} \text{nat} \),

Later in 5.6 we will extend these to hyperarithmetic analogs.

Boolean Logic

We begin with Boolean logic.

\[
\begin{align*}
\check{\text{true}} &= \text{K} = \text{bool} (\lambda x, -. x). \\
\check{\text{false}} &= \text{F} = \text{bool} (\lambda -, y. y).
\end{align*}
\]

The logical operations are all \(\text{SKJ} \)-definable.

\[
\begin{align*}
\check{\text{not}} &= (\text{bool} \rightarrow \text{bool} \rightarrow \text{bool}) (\lambda x, y. x y). \\
\check{\text{not}} \circ \check{\text{not}} &= \text{bool}.
\end{align*}
\]

Following Plotkin, we define parallel versions of \(\text{and} \) and \(\text{or} \), initially using symmetry types

\[
\begin{align*}
\text{and} &= \text{Comm} \text{op} \text{bool} (\lambda x, y. x y) \text{F}). \\
\text{or} &= \text{Comm} \text{op} \text{bool} (\lambda x, y. x K y). \\
\text{iff} &= \text{Comm} \text{op} \text{bool} (\lambda x, y. x \text{not} y).
\end{align*}
\]

The parallel implication requires a little more work. For this we first define Dijkstras guarded commands

\[
\begin{align*}
\text{if} &= (\text{bool} \rightarrow \text{semi}) (\text{I}, \bot).
\end{align*}
\]

which can be joined together, as in

\[
\begin{align*}
\text{implies} &= (\text{bool} \rightarrow \text{bool} \rightarrow \text{bool}) (\lambda x, y. \text{if} y \text{K} \\
& \quad | \text{if} (\text{not} x) \text{K} \\
& \quad | \text{if} (\text{and} x \text{not} y)) \text{F} \\
).
\end{align*}
\]

and the converse

\[
\begin{align*}
\text{impliedby} &= \text{C} \text{implies}.
\end{align*}
\]

Note the relation to the sequential implication

\[
\begin{align*}
\check{\text{implies}} &= \text{C} (\lambda x : \text{bool}, y : \text{bool}. x y) \text{K}). \\
\check{\text{implies}} &= \text{C} (\lambda x : \text{bool}, y : \text{bool}. x y) \text{K}.
\end{align*}
\]
Using this technique we can redefine and and or via

\[
!\text{check or} = \text{Bin_op bool } (\lambda x, y. \text{if } x \ K \\
| \text{if } y \ K \\
| \text{if } (\text{not } x). \text{if } (\text{not } y) \ F
).
\]

\[
!\text{check and} = \text{Bin_op bool } (\lambda x, y. \text{if } (\text{not } x) \ F \\
| \text{if } (\text{not } y) \ F \\
| \text{if } x. \text{if } y \ K
).
\]

Weak Logics

Weaker than boolean logic is *testing logic* with truth values: semi.

\[
\text{test} := \text{any } \rightarrow \text{semi.} \\
\text{Test} := (V \rightarrow V) (\lambda a. a \rightarrow \text{semi}). \\
!\text{check test} = \text{Test } \perp. \\
!\text{check } (K I, K \perp, K \top : \text{test }) \text{ succeed/fail/err everywhere}
\]

Weaker still are *probing logic* with truth values: div

\[
\text{probe} := \text{any } \rightarrow \text{div.} \\
\text{Probe} := (V \rightarrow V) (\lambda a. a \rightarrow \text{div}). \\
!\text{check probe} = \text{Probe } \perp. \\
!\text{check } (K \perp, K \top : \text{probe }) \text{ the minimum and maximum probes}
\]

and *checking logic* with truth values: unit

\[
\text{check} := \text{any } \rightarrow \text{unit.} \\
\text{Check} := (V \rightarrow V) (\lambda a. a \rightarrow \text{unit}). \\
!\text{check check} = \text{Check } \perp. \\
!\text{check } (K I, K \top : \text{check }) \text{ the minimum and maximum checks}
\]

Note that checks can easily be made into closures:

\[
!\text{check } W \circ \text{check} : \text{check } \rightarrow V. \\
\text{Checked} := (\forall a. \text{Check } a \rightarrow P a) \ (\lambda \neg, c, x. c \times x). \\
!\text{check } \text{Checked } \perp \perp = I. \\
!\text{check } \text{Checked } a \perp = V a. \\
!\text{check } \text{Checked } c x = \text{check } c \times x. \\
!\text{check } \text{Checked } a c <: V a. \\
!\text{check } \text{Check } (\text{Checked } a c) <: \text{ Check } a. \\
!\text{check } \text{Check } a c : \text{ Check } (\text{Checked } a c).
\]

The logics have meet and join operations, but no negation.

\[
\text{or}_\text{semi} := \text{Comm_op semi } (\lambda x, y. x). \text{ i.e., J} \\
\text{or}_\text{unit} := \text{Comm_op unit } (\lambda x, y. x). \\
\text{or}_\text{div} := \text{Comm_op div } (\lambda x, y. x).
\]
and_semi := Comm_op semi (λx,y. x y).
and_unit := Comm_op unit (λx,y. x y).
and_div := Comm_op div (λx,y. x y).

!check or_semi \top = \top.
!check or_semi \bottom = semi.
!check or_semi I I = I.
!check and_semi \top = \top.
!check and_semi \bottom \bottom = \bottom.
!check and_semi \bottom I = \bottom.
!check and_semi I I = I.

Note that checking logic simply checks for errors, so

!check and_unit = or_unit.
!check and_div = or_div.

Checking logic is used in assertions and subtyping:

assert := (bool \rightarrow unit) (I, \top).
where := (\forall a:V. (a \rightarrow unit) \rightarrow P a) (\lambda a,w,x. w x x).

Definition 3.9.3. We refer to bool-, semi-, unit- and div- valued functions as predicates, tests, checks, and probes, respectively.

The motivation is that a term passes a check if no error is found (as in static typechecking); a term passes a test if no error is found and in addition it performs some computation (as in a unit test); and a term passes a probe if it doesn’t blow up when mucked with. We can weaken any test by forcing convergence

\text{test2check} := \text{(test \rightarrow check)} (\lambda t,x. I \mid t x).

and checks are naturally tests

\text{!check check} ::= \text{test}.

For each weak predicate type we can define implication / subobjecthood as follows:

Definition 3.9.4. (weak implication)

• Let c, c': check be checks. Then c is a subcheck of c' iff c \sqsubseteq c'.
• Let p, p': probe be probes. Then p is a subprobe of p' iff p \sqsubseteq p'.
• Let t, t': test be tests. Then t is a subtest of t' iff t = P test t t' where

\text{P test} = \text{Sym_bin_op test} (\lambda s,t,x. \text{and_test} (s x) (t x)).

We use the notation x::t \iff test t x = I to say that x has passed test t, and the notation s \ll:= t to say that s is a subtest of t.

Thus to intersect / conjoin checks and probes we need only join them. but to combine tests, we consider errors are more important than failures.

!define \text{P test} := \text{Comm_op test} (\lambda p,q,x. \text{and_semi}(p x)(q x)).
\text{P check} := \text{Comm_op check} (\lambda p,q,x. \text{and_unit}(p x)(q x)).
\text{P probe} := \text{Comm_op probe} (\lambda p,q,x. \text{and_div}(p x)(q x)).
3.10 Tests for totality and correctness

Types as tests

Following the interpretation of types-as-closures of 3.3, we will pursue an alternate interpretation of types-as-tests, with a similar convenient notation. Moreover, the two interpretations of types cohabit gracefully.

Definition 3.10.1. (types as tests)

\[
\begin{align*}
(\lambda x::t. x) &= (\lambda x. \text{semi}(t \ x) x) \quad \text{tested abstraction} \\
\forall x::t. \ M = N &\iff (\lambda x::t. M) = (\lambda x::t. N) \quad \text{universal quantifiers} \\
s <:: t &\iff \text{test } s = S(\text{test } t)(\text{test } s) \quad \text{sub-testing} \\
(s::t \implies M \sim N) &\iff \text{test } t \ s \ M \sim \text{test } t \ s \ N \quad \text{tests as hypotheses}
\end{align*}
\]

where in the conclusion \(M \sim N\), the relation \(\sim\) is one of =, ⊑, ⊒.

Lemma 3.10.2. The following are always true.

\[
\begin{align*}
!\text{check } (\forall x::t. x::t) &\iff \text{check } \forall x::t. x::t \\
!\text{check } x::t \implies x::t &\iff m = m \\
!\text{check } T::I &\implies \bot = T
\end{align*}
\]

Proof. Letting \(i = \text{test } t \ x\) below,

\[
\begin{align*}
\forall x::t. x::t &\iff \forall x::t. \text{test } t \ x = I \\
&\iff (\lambda x::t. \text{test } t \ x) = (\lambda x::t. I) \\
&\iff (\lambda x. \text{test } t \ x)(\lambda x. I) = (\lambda x. \text{test } t \ x) \\
&\iff \text{test } t \ x \ (\lambda x. \text{test } t \ x) = \text{test } t \ x \\
&\iff i i = i I
\end{align*}
\]

In either case, we can pointwise check, since \(\text{inhab(semi)} = \{\bot, I, T\}\):

\[
\begin{align*}
\bot \bot &= \bot = \bot I \\
I I &= I = I I \\
T T &= T = T I
\end{align*}
\]

The last two implications are trivial.

Lemma 3.10.3. Subtesting is a preorder.

(a) \(t <:: t\).

(b) If \(r <:: s\) and \(s <:: t\) then \(r <:: t\).

Proof. Assume WLOG \(r, s, t: \text{test}\)

(a) \(t <:: t\) if \(t = S \ t\ t\), which holds pointwise since \(I I = I, \bot = \bot,\) and \(T T = T\).

(b) Noting that application and composition are the same for semibooleans

\[
!\text{check } (\text{semi } x)(\text{semi } y) = (\text{semi } x) (\text{semi } y).
\]

we can again look at the pointwise situation.

\[
\begin{align*}
r x &= (r x)(s x) & \text{since } r <:: s \\
&= (r x)(s x)(t x) & \text{since } s <:: t \\
&= (r x)(t x) & \text{since } r <:: t
\end{align*}
\]

whence \(r <:: t\).
However, subtesting is not a partial order, even on test, since antisymmetry fails, e.g. \(\bot \ll :: \top \) and \(\top \ll :: \bot \). The problem is that tests can fail in two directions (\(\bot \) and \(\top \)), but subtesting only ask whether, not how tests fail.

Atomic tests and checks.

We define atomic tests for a few types

- \(\text{test_any} := \text{Test_any}(\mathbf{K}\ I) \). \textit{maximal test: everything passes}
- \(\text{test_nil} := \text{Test_nil}() \). \textit{minimal test: nothing passes}
- \(\text{test_div} := \text{Test_div}() \).
- \(\text{test_unit} := \text{Test_unit}(\mathbf{I}) \).
- \(\text{test_semi} := \text{Test_semi}(\mathbf{I}) \).
- \(\text{test_bool} := \text{Test_bool}(\mathbf{I}, \mathbf{I}) \).

Note that the subtypes of \(\text{semi} \) are their own tests:

- \(!\text{check test_nil} = \text{nil} \).
- \(!\text{check test_div} = \text{div} \).
- \(!\text{check test_unit} = \text{unit} \).
- \(!\text{check test_semi} = \text{semi} \).

Checks can now be defined in terms of tests.

- \(\text{check_any} := \text{test2check test_any} \).
- \(\text{check_nil} := \text{test2check test_nil} \).
- \(\text{check_unit} := \text{test2check test_unit} \).
- \(\text{check_semi} := \text{test2check test_semi} \).
- \(\text{check_bool} := \text{test2check test_bool} \).

The subtypes of \(\text{unit} \) are their own checks:

- \(!\text{check check_nil} = \text{nil} \).
- \(!\text{check check_unit} = \text{unit} \).

Compound Tests

In defining compound tests, we first extend to the categories of testable types and checkable types

- \(\text{testable} := (\exists a: V. \text{test\ a}) \).
- \(\text{checkable} := (\exists a: V. \text{check\ a}) \).
- \(\text{Testable} := (P V \rightarrow \text{testable}) (\lambda t. \exists a: t. \text{test\ a}) \).
- \(\text{Checkable} := (P V \rightarrow \text{checkable}) (\lambda t. \exists a: t. \text{check\ a}) \).
- \(!\text{check testable} = \text{Testable}\ \bot \).
- \(!\text{check checkable} = \text{Checkable}\ \bot \).

For example we can define

- \(\text{tb_unit} := (\text{unit}, \text{test_unit}) \).
- \(\text{tb_semi} := (\text{semi}, \text{test_semi}) \).
- \(\text{tb_bool} := (\text{bool}, \text{test_bool}) \).

Remark. Testing exponentials requires enumerating the compact elements of the domain, which is not always easy (or possible). Hence these categories are not closed.
Now we can define constructors for testables

```plaintext
test_prod := (2 K I) ◦ prod.
tb_Prod := (testable → testable → testable) (λ(a, t_a), (b, t_b). (Prod a b,
    λp. and_semi (test_prod p). and_semi (t_a (p K)) (t_b (p F)))
)
    let (-, a) := aa.
    let (-, b) := bb.
    let (-, ab) := tb_Prod aa bb.
    ∀x::a, y::b. (x, y) :: ab
).

tb_Sum := (testable → testable → testable) (λ(a, t_a), (b, t_b). (Sum a b,
    λp. and_semi (p (K I) (K I)) (p t_a t_b)
)
    let (-, a) := aa.
    let (-, b) := bb.
    let (-, ab) := tb_Sum aa bb.
    (∀x::a. inl x :: ab) AND (∀y::b. inr y :: ab)
).

tb_Maybe := (testable → testable) (λ(a, t_a). (Maybe a,
    λp. and_semi (p I (K I)) (p I t_a)
)
). check (∀aa: testable.
    let (-, a) := aa.
    let (-, ma) := tb_Maybe aa.
    (∀x::a. some x :: ma) AND (none :: ma)
).

and more weakly-typed versions for tests and checks only

```plaintext
test_Prod := (test → test → Test prod) (λs, t, (x, y). and_semi (s x) (t y))
). test_Sum := (test → test → Test sum) (λs, t, (s, t)).
test_Maybe := (test → Test maybe) (λt. (I, t)).

```plaintext
check_Prod := (check → check → Check prod) (λs, t, (x, y). s x | t y).
check_Sum := (check → check → Check sum) (λs, t, (s, t)).
check_Maybe := (check → Check maybe) (λt. (I, t)).
```
Semisets pass a test if at least one element converges, and no diverge.

\[
\begin{align*}
test_{\text{sset}} & := \text{Test sset } (\lambda x \cdot (K I)). \\
test_{\text{Set}} & := P_{\text{test}} test_{\text{sset}} (\text{Test sset}) (\lambda t \cdot (t)). \\
!\text{check test}_{\text{sset}} & = test_{\text{Set}} (K I).
\end{align*}
\]

3.11 Axioms for a few simple tests

The test intersection operator

The test intersection operator is

\[
P_{\text{test}} = (\text{test} \to \text{test} \to \text{test}) (\lambda t, t', x. \text{semi} (t x) (t' x)).
\]

The following axiom shemata will be enforced for the atom \(P_{\text{test}} \)

\[
\begin{align*}
\text{check } p & \sqsubseteq \text{check } q \\
\text{probe } p & \sqsubseteq \text{probe } q \\
\text{test } p & <:: \text{test } q
\end{align*}
\]

where the subtest relation \(<::\) is defined as

\[
p <:: q \iff p = P_{\text{test}} q p
\]

We also assume the ACI axioms, as mentioned in [3.9]

\[
\begin{align*}
!\text{assume } & P_{\text{test}} p p = \text{test } p. \\
!\text{assume } & P_{\text{test}} p q = P_{\text{test}} q p. \\
!\text{assume } & P_{\text{test}} p(P_{\text{test}} q r) = P_{\text{test}}(P_{\text{test}} p q)r.
\end{align*}
\]

3.12 Church numerals

The type of Church numerals

\[
\begin{align*}
nat & := V (\\
& \text{Y} a. V. (\text{Simple } \lambda b, b'. (b' \to b) \to b \to b') \\
& \quad | \ (J, I, \bot) \\
& \quad | \ (\lambda n : a, f : a \to a, x : a. f(n f x), \lambda n : a, x : a. x) \\
& \quad | \ \lambda q. q \perp (q T \perp) \\
& \quad | \ q \ (q \perp T) \perp \\
\}). \\
\text{check}_n & := \text{Check } n (\lambda x . I \mid x, I). \\
\text{test}_n & := \text{Test } n (\lambda x . x, I).
\end{align*}
\]

with intro forms

\[
\begin{align*}
\text{zero} & := nat (\lambda f, x. x). \\
\text{succ} & := (\text{nat} \to \text{nat}) (\lambda n, f, x. f(n f x)).
\end{align*}
\]

Theorem 3.12.1. \(\text{inhab}(nats) = \{T\} \cup \{\text{succ}^n z \mid n \in \text{Nats}, z \in \{\bot, \text{zero}\}\}. \)

Proof. By the Simple types theorem, all inhabitants of the raw simple type can be written as
Of these, we want to eliminate incompatible joins and successors of \top via disambiguation. The first disambiguation term $\langle J, I, \bot \rangle$ eliminates successors of \top by raising them to the head, as in

\[
\text{check } \langle J, I, \bot \rangle \ (\text{succ } \top) = \text{succ } \top J I \bot = J \top J I \bot = J \top \bot = \top.
\]

and similarly for $n \text{ succ } \top$. The third disambiguation term $q. q \bot (q \top \bot) \ | \ q (q \bot \top) \bot$ prevents incompatible joins at the top of the B"ohm tree, as in

\[
\text{check } (\lambda q. q \bot (q \top \bot) \ | \ q (q \bot \top) \bot) \ zs = zh \bot (zh \top \bot) \ | \ zh (zh \bot \top) \bot = zh \bot \top \ | \ zh \top \bot = \top).
\]

Finally, the third disambiguation term $\langle \lambda n : \text{nat}, f : \text{nat} \rightarrow \text{nat}, x : \text{nat}.f(n \ f \ x), \ \lambda \cdot, x : \text{nat}.x \rangle$ applies the second disambiguator deeper in the B"ohm tree, preventing successors of incompatible joins. \qed

Dual to the type nat is the type of sequences.

\[
\text{Seq} := (V \rightarrow V) \ (\lambda a. \text{nat} \rightarrow a).
\]

Some extra intro forms for nats are convenient.

\[
\text{one} := \text{nat} \ (\lambda f, x.f \ x).
\]

\[
\text{two} := \text{nat} \ (\lambda f, x.f.f \ x).
\]

\[
\text{check } \omega = \text{nat} \ (\lambda f, x.Y \ f).
\]

\[
\text{check } \text{succ } \text{zero} = \text{one}.
\]

\[
\text{check } \text{succ } \text{one} = \text{two}.
\]

\[
\text{check } \omega = \omega.
\]

\[
\text{check } Y \text{ succ } \omega = \omega.
\]

We also have a two-sided test for zero

\[
\text{is_zero} := (\text{nat} \rightarrow \text{bool}) \ \langle \text{K} \ \text{false}, \ \text{true} \rangle.
\]

\[
\text{nonzero} := \text{not is_zero}.
\]

\[
\text{check } \text{is_zero zero} = \text{true}.
\]

\[
\text{check } \text{is_zero(succ } \bot) = \text{false}.
\]
and a one-sided test for infinity, recalling the definition of ω,

```
| !check $\omega = Y \text{ succ}. |
| !check $\omega : \text{ nat}. |
| if_{finite} := \text{(nat $\rightarrow$ semi) (I, I)}. |
| !check if_{finite} zero = I. |
| !check if_{finite} x = if_{finite} (\text{succ} x). |
| !check if_{finite} $\omega = \bot$. |
```

We can partially eliminate with Kleene’s predecessor function, assuming nonzero input

```
| prec := \text{(nat $\rightarrow$ nat)} ( |
| \lambda (n, _). \text{(succ n, n)}, |
| \text{(zero, } \top), |
| \text{ F extract rhs of result} |
| ). |
| !check prec zero = \top. |
| !check prec one = zero. |
| !check prec two = one. |
| !check prec $\omega = \omega$. |
| !check precosucc = nat. |
| !check succprec = \text{P nat} \lambda n. \text{(is_zero n) } \top). |
| !check precosuccosucc $\bot = \text{succ } \bot$. |
```

Remark. Note the difference between the predecessor function in Gödel’s T and in system F ([GTL89] end of sec. 7.3.2).

Case analysis gives a more complete elimination form.

```
| case_{nat} := \text{(nat $\rightarrow$ Maybe nat) (}| \lambda n. \text{is_zero n none (some. prec n)}. |
| !check case_{nat}\text{circ} \text{succ n = test_{nat} n (some n)}. |
| !check \text{(zero, succ)} \circ \text{case_{nat} = nat.} |
```

Note that Church numerals are particularly poor representatives of counting, since the predecessor or case analysis is so difficult to construct.

Gödel’s recursor can be seen as a non-homogeneous time-evolution operator, polymorphic with type $(\text{nat} \rightarrow a \rightarrow a) \rightarrow \text{nat} \rightarrow a \rightarrow a$,

```
| \text{Rec}_{nat} := (\forall a: V. \text{ Endo. Seq. Endo a}) ( |
| \lambda n . Y \lambda r, fs, n, x. \text{ case_{nat} n x lambda' r fsosucc n' (fs 0 x)} |
| ). |
| \text{rec_{nat} := Rec}_{nat} \bot. |
```

The recursor is perhaps more natural on streams and coalgebraic numerals (see 3.13).

Remark. Girard considers Gödel’s system a step backward from the logical standpoint (see [GTL89] ch. 7), since its terms “do not correspond to proofs in an extended logical system”. On the contrary, Gödel’s T is a half-step forward, the remaining half being dependent types, where the recursor becomes the induction scheme for second-order Peano arithmetic.

A dependent recursor for second-order dependently typed Peano arithmetic is

```
| \text{Ind}_{nat} := ( |
| \forall a: n \rightarrow V. a \text{ zero } \rightarrow (\forall n: \text{nat a n } \rightarrow a \text{osucc n}) \rightarrow \forall n: \text{nat a n }) ( |
| \lambda n . Y \lambda i, s, n. \text{ case_{nat} n z lambda' i (s 0 z) sosucc n'} |
| ). |
| \text{ind}_{nat} := \text{Ind}_{nat} \bot. |
```

71
Alternatively, without using the fixed-point combinator, and so typable in system-F,

\[
\text{check } Ind_nat = (\forall a: \text{nat} \rightarrow V. \text{a zero } \rightarrow (\forall n: \text{nat}. \text{a } n \rightarrow a \circ succ \ n) \rightarrow \forall n: \text{nat}. \text{a } n).
\]

\[
\text{check } \text{add zero } = \text{nat. zero is an additive unit}
\]

\[
\text{check } \text{add one } = \text{succ.}
\]

\[
\text{check } \text{add two } = \text{succ } \circ \text{succ.}
\]

\[
\text{check } \text{add } \omega = (\lambda n. \text{check nat n } \omega).
\]

\[
\text{add } := \text{P C (nat } \rightarrow \text{nat } \rightarrow \text{nat) (} \lambda m, n, f. (m f)\circ (n f)).
\]

\[
\text{mul } := \text{P C (nat } \rightarrow \text{nat } \rightarrow \text{nat) (} \lambda m, n, f. m(n f)).
\]

\[
\text{pow } := (\text{nat } \rightarrow \text{nat } \rightarrow \text{nat) (} \lambda m, n, m).
\]

\[
\text{sub } := (\lambda n, m. m \text{ prec } n).
\]

\[
\text{eq } := (\lambda n, m. \text{m } \text{prec } n).
\]

\[
\text{if } := (\lambda n, m. \text{m } \text{prec } n).
\]

3.13 Coalgebraic numerals

The type of coalgebraic numerals is \(\mu a. \ 1 + a\), or simply

\[
\text{check num } = V (Y \text{ Maybe}).
\]

\[
\text{test_num } := \text{Test num } (Y \text{ test Maybe}).
\]

Theorem 3.13.1. num is an adequate numeral system.

Proof. By definition, we need only the following terms:

\[
\text{zero_num } := \text{num none.}
\]

\[
\text{succ_num } := (\text{num } \rightarrow \text{num}) \text{ some.}
\]

\[
\text{prec_num } := (\text{num } \rightarrow \text{num}) (\text{error, I}).
\]

\[
\text{check succ_num } n = \text{succ_num } \circ \text{succ_num } n.
\]

Equality is thus bool-decidable

\[
\text{eq_num } := (\text{num } \rightarrow \text{bool}) (Y \lambda e. ((K, \lambda n. F), \lambda m. (F, \lambda n. e m n))).
\]

\[
\text{if_eq_num } := (\text{num } \rightarrow \text{bool}) (Y \lambda e. ((I, \lambda n. \bot), \lambda m. (\bot, \lambda n. e m n))).
\]

\[
\text{check if_eq_num } = \text{if } \circ \text{eq_num}.
\]
As mentioned in §3.7 numerals are indices of streams.

\[\text{check } (\forall a : V, s : \text{Stream } a, n : \text{num}. \; s \; n : a). \]

\[\text{check } (\forall a : V. \; (\text{Stream } a) \downarrow \text{num} \; < : \; \text{num} \rightarrow a). \]

\[\text{check } (x, xs) \; \text{zero} _ \text{num} = x. \]

\[\text{check } (x, xs) \; (\text{succ} _ \text{num } n) = xs \; n. \]

Indeed primitive recursion with numerals and streams is very simple: given an initial state \(x \) and a sequence of state transitions \(fs \), construct the stream of evolving states \(\text{Rec} _ \text{num } x \; fs \).

\[\text{Rec} _ \text{num} := (\forall a : V. \; a \rightarrow \text{Stream } (a \rightarrow a) \rightarrow \text{Stream } a) \right. \]

\[\lambda . \; Y \lambda r, x, (f, fs). \; (x, \; r \; (f \; x) \; fs) \right). \]

\[\text{rec} _ \text{num} := \text{Rec} _ \text{num} \; \bot. \]

We will use a similar encoding for recursion in Gödel’s T in §6.2.

Numerals are also useful as a uniform type for large finite sets.

\[\text{num} _ \text{below} := (\text{nat} \rightarrow P \; \text{num}) \langle \lambda s. \; (\bot, s), \; T \rangle. \]

\[\text{nat}2\text{num} := (\text{nat} \rightarrow \text{num}) \langle \text{some}, \; \text{none} \rangle. \]

\[\text{check } \text{num} _ \text{below } 0 \; \text{zero} _ \text{num} = T. \]

\[\text{check } \text{zero} _ \text{num} : \text{num} _ \text{below } 1. \]

\[\text{check } (\forall n :: \text{test} _ \text{nat}. \; (\text{num} _ \text{below } n) \; (\text{nat}2\text{num } n) = T). \]

\[\text{check } (\forall n :: \text{test} _ \text{nat}. \; \text{nat}2\text{num } n : \text{num} _ \text{below}(\text{succ } n)). \]

3.14 Dependent types for reduction proofs

Under the Curry-Howard correspondence, we can encode theorems as types, and construct proofs as total inhabitants of the types. More precisely, we can encode a theorem as a closure, test pair \((a, t) : \exists a : V. \; \text{Test } a \), and prove that the theorem is true by providing a proof \(p : a :: t \), i.e. an SKJ term \(p : a \) for which \(t \; p = I \).

As mentioned before, the join operation provides no new theorems under Curry-Howard, but it does provide a mechanism for ambiguity in proofs, e.g., a convenient without-loss-of-generality construct. But the join operation offers a much more powerful tool, a semantic equivalent of type-inference.

To illustrate how type-inference of proof sketches works, let us consider a simple example, say a theorem that there is no greatest natural number

\[\text{thm} ::= \forall n :: \text{nat}. \; \exists m :: \text{nat}. \; \text{assert} _ \text{greater } m \; n. \; \text{unit} \]

We can test a proof candidate by checking whether

\[\forall n :: \text{test} _ \text{nat}. \; \text{let } (\rightarrow, u) := p \; n. \; u :: \text{unit} \]

An obvious proof would be to provide the successor function

\[\text{pf} ::= \text{thm } (\lambda n :: \text{nat}. \; (\text{succ } m, \; \text{assert} _ \text{greater } m \; n \; I)) \]

but since \(\text{assert} _ \text{greater} \) is already built into \(\text{thm} \), we can achieve the same result by simply sketching

\[\text{pf}' ::= \text{thm } (\lambda n. \; (\text{succ } n, \; \bot)) \]

where the bottom element \(\bot \) is a formalization of ellipses in human proofs.

For our main example of real theorems, we will prove properties of the system SKJ itself, working with \(\beta \)-reduction, convergence, and later in §6.1 the Scott ordering. The two-category of \(\beta \)-reductions has objects
SKJ-terms, morphisms reductions between terms, and two-cells sets of reductions between terms. We need to deal with two-categories since composition of reduction sequences is only associative up to equivalence. Identifying all reductions between terms yields a true category, in fact a preorder. The skeleton of this preorder is a poset, in fact the lattice SKJ.

Question 3.14.1. What is the higher homology of this higher-category? Eg, how do transformations between reductions look?

A type for SKJ terms

Our indices for reduction proofs will be terms in the language of untyped SKJ-terms with an explicit \top

\[
\begin{align*}
\times \text{ term} & \quad y \text{ term} \quad (\text{ap}) \quad S \text{ term} (S) \quad K \text{ term} (K) \quad J \text{ term} (J) \quad \top \text{ term} (\top)
\end{align*}
\]

For these SKJ terms, we define a type, test, and check

\[
\begin{align*}
\text{pre term} & := V (Y\lambda a. \text{Sum} (\text{Prod} a a)) \quad 2 \text{ Maybe bool).} \\
\text{check term} & := \text{Check pre term} (\\
& \quad Y\lambda c. \text{check Sum} (\text{check Prod} c c)) \quad 2 \text{ check Maybe check bool) } \\
\text{!define term} & := \text{Checked pre term check term.} \\
\text{!check check term} & := \text{Check term.} \\
\text{!define test term} & := \text{Test term} (\\
& \quad Y\lambda t. \text{test Sum} (\text{test Prod} t t)) \quad 2 \text{ test Maybe test bool) }
\end{align*}
\]

where 2 Maybe bool has three values, for S, K, J, \top. The atomic introduction forms are thus

\[
\begin{align*}
S & := \text{ term } (\text{inr none).} \\
K & := \text{ term } (\text{inr. some none).} \\
J & := \text{ term } (\text{inr. 2 some true).} \\
\top & := \text{ term } (\text{inr. 2 some false).} \\
\text{!check} & \quad (S, K, J, \top :: \text{ test term }).
\end{align*}
\]

For convenience, we define two compound introduction forms

\[
\begin{align*}
ap & := (\text{ term } \rightarrow \text{ term } \rightarrow \text{ term}) \quad (\lambda x, y. \text{ inl } (x, y)). \\
\text{join} & := (\text{ term } \rightarrow \text{ term } \rightarrow \text{ term}) \quad (\lambda x, y. \text{ ap}(\text{ap} J x) y). \\
\text{!check} & \quad \text{ test term } (\text{ap } x \ y) = \text{ and } \text{semi } (\text{test term } x) \quad (\text{test term } y). \\
\text{!check} & \quad \text{ test term } (\text{join } x \ y) = \text{ and } \text{semi } (\text{test term } x) \quad (\text{test term } y).
\end{align*}
\]

One form of elimination is by evaluating a term.

\[
\begin{align*}
eval term & := (\text{ term } \rightarrow \text{ any }) \quad (\\
& \quad \lambda x::\text{test term}. \quad x). \\
& \quad Y\lambda e. \quad (\lambda(x, y). \quad (e x)(e y), \quad S, K, J, \top) \quad). \\
\text{!check} & \quad \text{eval term } S = S. \\
\text{!check} & \quad \text{eval term } K = K. \\
\text{!check} & \quad \text{eval term } J = J. \\
\text{!check} & \quad \text{eval term } \top = \top. \\
\text{!check} & \quad \text{eval term } (\text{ap } x \ y) \\
& \quad = \text{ and } \text{semi } (\text{test term } x) \quad (\text{test term } y) \quad (\text{eval term } x) \quad (\text{eval term } y). \\
\text{!check} & \quad \text{eval term } (\text{join } x \ y) \\
& \quad = \text{ and } \text{semi } (\text{test term } x) \quad (\text{test term } y) \quad (\text{eval term } x \mid \text{ eval term } y).
\end{align*}
\]
We can also discriminate total terms, with truth values either bool, semi, or unit

\[
\text{eq_term} ::= \text{P C (term \to term \to bool)} (\lambda x, y. \text{and_semi (test_term x) (test_term y)} \langle x, y \rangle).
\]

\[
\text{Y}\lambda e. (\lambda l, r. (\lambda l', r'). \text{and (e l l') (e r r')}, \text{F, F, F, F}),
\]

\[
(\lambda - \cdot, \text{F, K, F, F, F}),
\]

\[
(\lambda - \cdot, \text{F, F, F, K, F}),
\]

\[
(\lambda - \cdot, \text{F, F, F, K, K})
\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

\]

If we are in the right case, we can get the terms x, y back.

```
!check (\forall x::term::test_term, y::term::test_term.
    x = (case_ap (ap x y) \lambda u. - u) = (if_case_ap (ap x y) \lambda u. - u)
).
!check (\forall x::term::test_term, y::term::test_term.
    y = (case_ap (ap x y) \lambda -, u. u) = (if_case_ap (ap x y) \lambda -, u. u)
).
```

But in the wrong case (here, an atom) the elim forms either err or diverge.

```
!check \top = case_ap \textbf{\textit{S}} = case_ap \textbf{\textit{K}} = case_ap \textbf{\textit{J}} = case_ap \top.
!check \bot = if_case_ap \textbf{\textit{S}} = if_case_ap \textbf{\textit{K}} = if_case_ap \textbf{\textit{J}} = if_case_ap \top.
```

We also need elim forms for redexes $S \times y$, $K \times y$, $J \times y$, and $\top \times x$.

```
case_S := (term \rightarrow (term \rightarrow term \rightarrow term \rightarrow any) \rightarrow any) (\lambda sxyz. case_ap sxyz \lambda sxy, z.
    case_ap sxy \lambda sx, y.
    case_ap sx \lambda s, x.
    assert_eq_term \textbf{\textit{S}} s. \langle x, y, z \rangle).
if_case_S := (term \rightarrow (term \rightarrow term \rightarrow term \rightarrow any) \rightarrow any) (\lambda sxyz. if_case_ap sxyz \lambda sxy, z.
    if_case_ap sxy \lambda sx, y.
    if_case_ap sx \lambda s, x.
    if_eq_term \textbf{\textit{S}} s. \langle x, y, z \rangle).
!check (\forall x::term, y::term, z::term. Sxyz := ap(ap(\textbf{\textit{S}} x)y)z.
    x = (case_S Sxyz \lambda u, -, -, u) = (if_case_S Sxyz \lambda u, -, -, u) AND
    y = (case_S Sxyz \lambda -, u, -, u) = (if_case_S Sxyz \lambda -, u, -, u) AND
    z = (case_S Sxyz \lambda -, -, -, u) = (if_case_S Sxyz \lambda -, -, -, u)).
```

```
case_K := (term \rightarrow (term \rightarrow term \rightarrow any) \rightarrow any) (\lambda kxy. case_ap kxy \lambda kx, y.
    case_ap kx \lambda k, x.
    assert_eq_term \textbf{\textit{K}} k. \langle x, y \rangle).
if_case_K := (term \rightarrow (term \rightarrow term \rightarrow any) \rightarrow any) (\lambda kxy. if_case_ap kxy \lambda kx, y.
    if_case_ap kx \lambda k, x.
    if_eq_term \textbf{\textit{K}} k. \langle x, y \rangle).
!check (\forall x::term, y::term. Kxy := ap(ap \textbf{\textit{K}} x)y.
    x = (case_K Kxy \lambda u, -, -. u) = (if_case_K Kxy \lambda u, -, -. u) AND
    y = (case_K Kxy \lambda -, u. u) = (if_case_K Kxy \lambda -, u. u)).
```

76
\[
\begin{align*}
\text{case}_J & := (\text{term} \to (\text{term} \to \text{term} \to \text{any}) \to \text{any}) (\lambda jxy. \text{case}_\text{ap} jxy \lambda jx.y. \\
& \quad \text{case}_\text{ap} jx \lambda j.x. \\
& \quad \text{assert}_\text{eq}_\text{term} J j. \langle x, y \rangle) \\
\text{if}_\text{case}_J & := (\text{term} \to (\text{term} \to \text{term} \to \text{any}) \to \text{any}) (\lambda jxy. \text{if}_\text{case}_\text{ap} jxy \lambda jx.y. \\
& \quad \text{if}_\text{case}_\text{ap} jx \lambda j.x. \\
& \quad \text{if}_\text{eq}_\text{term} J j. \langle x, y \rangle)
\end{align*}
\]

\begin{align*}
\lambda tx. \text{case}_\text{ap} tx \lambda t.x. \\
\text{assert}_\text{eq}_\text{term} \top t. \langle x \rangle
\end{align*}

Finally, we will often need to join over all total terms.

\[
\text{Join}_\text{term} := \text{Sset}_\text{term} (Y \lambda s. ((S) | (K) | (J) | (\top) | s \lambda x. s \lambda y. (\text{ap} x y))
\]

\begin{align*}
\lambda tx. \text{case}_\text{ap} tx \lambda t.x. \\
\text{assert}_\text{eq}_\text{term} \top t. \langle x \rangle
\end{align*}

A dependent type for reduction paths

Next we define a type for reduction paths, dependent on the start and end terms. Our reduction paths will capture the following inference rules, notably omitting reflexivity

\[
\begin{array}{c}
\frac{x \rightarrow y \quad y \rightarrow z}{x \rightarrow z} \quad (\text{trans}) \quad \\
\frac{f \rightarrow g \quad x : \text{term}}{f \times \rightarrow g \times} \quad (\text{lhs}) \quad \\
\frac{f : \text{term} \quad x \rightarrow y}{f \times \rightarrow f y} \quad (\text{rhs}) \quad \\
\frac{\top \text{ term}}{\top \times \rightarrow \top} \quad (\text{T}) \quad \\
\frac{x, y, z : \text{term}}{S x y z \rightarrow x \times y \times z} \quad (S) \quad \\
\frac{x, y : \text{term}}{K x y \rightarrow x} \quad (K) \quad \\
\frac{x, y : \text{term}}{J x y \rightarrow x} \quad (J1) \quad \\
\frac{x, y : \text{term}}{J x y \rightarrow y} \quad (J2)
\end{array}
\]

Now the type of reductions depends on the equality of some terms in the hypotheses above. Eg, transitivity requires the \(y\) in \(x \rightarrow y\) and \(y \rightarrow z\) to agree. Recalling our notation of Or = Sum and And = Prod, we define a
Next we check the pre-proofs for errors, raising the entire proof to \top if any errors are found.

$$\text{test}_\text{pre}_\text{Red} := (\forall u: \text{term}, v: \text{term}. \text{Test}_\text{pre}_\text{Red} u v) (\lambda x \in X. \text{Test}_\text{Sum} (\text{test}_\text{Prod} \text{test}_\text{term} \text{test}_\text{Prod} t t). \text{test}_\text{Sum} (\text{test}_\text{Sum} t t). 3 \text{ test}_\text{Maybe} \text{test}_\text{bool})).$$

Once check_Red has eliminated possible errors, totality testing is much easier, and can in fact ignore its parameters.

$$\text{test}_\text{Red} := (\forall x: \text{term}, y: \text{term}. \text{Test}_\text{Red} x y) \text{ test}_\text{pre}_\text{Red}.$$
Reduction proofs have introduction forms for each inference rule above.

\[
\begin{align*}
\text{Trans} & := (\forall x, y, z. \text{Red } x \rightarrow \text{Red } y \rightarrow \text{Red } z) \ (\lambda , y, , x, , y, , z. \ \text{inl} (y, xy, yz) \\
\text{Lhs}_r & := (\forall f, f', x. \text{Red } f \rightarrow \text{Red } (\text{ap } f \rightarrow \text{ap } f') \ (\lambda , y, , x, , y, , z. \ \text{inr} (y, , y,)) \\
\text{Rhs}_r & := (\forall f, f', x. \text{Red } x \rightarrow \text{Red } (\text{ap } f \rightarrow \text{ap } f') \ (\lambda , y, , x, , y, , z. \ \text{inr} (y, , y,)) \\
\top_R & := (\forall x. \text{Red } (\text{ap } \top x) \ (\lambda , y, , x, , y, , z. \ \text{inr} (y, , y,)) \\
\text{S}_r & := (\forall x, y, z. \text{Red } (\text{ap } (\text{ap } \text{ap } S x) y z) \ (\lambda , y, , x, , y, , z. \ \text{inr} (y, , y,)) \\
\text{K}_r & := (\forall x, y. \text{Red } (\text{join } x y) \ (\lambda , y, , x, , y, , z. \ \text{inr} (y, , y,)) \\
\text{J}_{R1} & := (\forall x, y. \text{Red } (\text{join } x y) \ (\lambda , y, , x, , y, , z. \ \text{inr} (y, , y,)) \\
\text{J}_{R2} & := (\forall x, y. \text{Red } (\text{join } x y) \ (\lambda , y, , x, , y, , z. \ \text{inr} (y, , y,)) \\
\text{J}_{R3} & := (\forall x, y. \text{Red } (\text{join } x y) \ (\lambda , y, , x, , y, , z. \ \text{inr} (y, , y,))
\end{align*}
\]

Now these introduction forms are dependent on the terms they deal with. The join operation allows us to ignore these parameters in proof bodies, simply sketching the rules we use. Wrapping a proof sketch in the theorem-as-closure it proves will raise the proof sketch up to a total well-indexed inhabitant. Thus we can use the abbreviated introduction forms

\[
\begin{align*}
\text{trans}_r & := \text{Trans } \bot \bot \bot . \\
\text{lhs}_r & := \text{Lhs}_r \bot \bot \bot . \\
\text{rhs}_r & := \text{Rhs}_r \bot \bot \bot . \\
\top_r & := \top \bot . \\
\text{S}_r & := \text{S}_r \bot \bot \bot . \\
\text{K}_r & := \text{K}_r \bot \bot . \\
\text{J}_{r1} & := \text{J}_{R1} \bot \bot . \\
\text{J}_{r2} & := \text{J}_{R2} \bot \bot . \\
\end{align*}
\]

The case study in 6.1 gives many examples of how to use these proof sketches.

We can also search for reduction proofs by joining

\[
\begin{align*}
\text{Join}_\text{Red} & := (\forall x: \text{term}, y: \text{term}. \ \text{Sset } \text{Red } x y) \ (\lambda \text{eq } \text{if}_\text{eq}_\text{term} . \\
\text{Y} & \lambda j, u, v. (\text{Join}_\text{term } \lambda x. j u x\lambda r. j x x\lambda r'. (\text{trans}_r r' r)) \\
 & | (\text{if}_\text{case}_\text{ap } \lambda f. x. \\
 & \text{if}_\text{case}_\text{ap } v \lambda f'. x'. \text{eq } x x' (j f f' \lambda r. (\text{lhs}_r r)) \\
 & | \text{eq } f f' (j x x' \lambda r. (\text{rhs}_r r))) \\
 & | (\text{if}_\text{case}_\top u \lambda -. \text{eq } v \top (\text{Tr} r)) \\
 & | (\text{if}_\text{case}_\text{S} u \lambda x, y. \text{eq } v (\text{ap } (\text{ap } x z) \ (\text{ap } y z)) (\text{S}_r)) \\
 & | (\text{if}_\text{case}_\text{K} u \lambda x, y. \text{eq } v x (\text{K}_r)) \\
 & | (\text{if}_\text{case}_\text{J} u \lambda x, y. \text{eq } v x (\text{J}_{r1})) \\
 & | \text{eq } v v (\text{J}_{r2})) \\
) . \\
\text{check } (\forall x:: \text{test}_\text{term}, y:: \text{test}_\text{term} . \ \text{Join}_\text{Red } x y (\text{check}_\text{Red } x y) = \text{I}).
\end{align*}
\]

This allows us to semidecide reduction between any two terms:

\[
\text{if}_\text{Red} := (\text{term } \rightarrow \text{term } \rightarrow \text{semi}) (\lambda x, y. \ \text{Join}_\text{Red } x y (\text{test}_\text{pre}_\text{Red } x y)).
\]
Dependent types for convergence

Convergence is much easier to prove than general reduction. In \(\mathcal{H}^* \), a term converges iff there is a reduction sequence to \(\top \), after feeding the term some number of arguments of \(\top \). Thus we formalize this idea as the two inference rules

\[
\begin{align*}
\frac{x \rightarrow \top}{x \ Conv} \quad \text{(done)} \\
\frac{x \top \ Conv}{x \ Conv} \quad \text{(next)}
\end{align*}
\]

As with the type of reductions \(\text{Red} \), we define the type of convergence proofs by first defining a type of possibly-erroneous pre-proofs (\(\text{conv} \)), then defining a proof-checker (\(\text{check} _\text{Conv} \)), and finally restricting the pre-proofs to checked proofs (\(\text{Conv} \)).

\[
\text{conv} ::= \begin{cases}
V & (Y \lambda a. \text{Or} a. \text{Red} \bot \top) \\
\end{cases}
\]

\[
\text{test_conv} ::= \begin{cases}
\text{Test conv} (Y \lambda t. \lambda x. \text{test_sum} t (\text{test_red} \bot \top)) \\
\end{cases}
\]

\[
\text{check} _\text{Conv} ::= (\text{term} \rightarrow \text{Check conv}) (Y \lambda c. x. \text{check_term} x. \text{check_sum} (c (\text{ap} x \top)) (\text{check_red} \bot \top))
\]

\[
\text{Conv} ::= (\forall x: \text{term}. \text{Checked conv. check} _\text{Conv} x). \quad \text{!check check} _\text{Conv} x : \text{Check} (\text{Conv} x).
\]

\[
\text{test} _\text{Conv} ::= (\forall x: \text{term}. \text{Test Conv} x) (\lambda -. \text{test_conv}).
\]

Convergence proofs have the total introduction forms

\[
\begin{align*}
\text{Next} & ::= (\forall x. \text{if} (\text{Conv. ap} x \top). \text{Conv} x) (\lambda -. \text{inr}). \\
\text{Done} & ::= (\forall x. \text{if} (\text{Red} x \top). \text{Conv} x) (\lambda -. \text{inl}).
\end{align*}
\]

and partial proof sketches

\[
\begin{align*}
\text{next} & ::= \text{Next} \bot. \\
\text{done} & ::= \text{Done} \bot.
\end{align*}
\]

For example each atom in the basis provably converges.

\[
\begin{align*}
\text{!check} \ 3 \ \text{next} (\text{done} \ S_r) & :: \text{test_conv} S_r . \\
\text{!check} \ 2 \ \text{next} (\text{done} \ K_r) & :: \text{test_conv} K_r . \\
\text{!check} \ 2 \ \text{next} (\text{done} \ J_r) & :: \text{test_conv} S_r . \\
\text{!check} \ \text{next} (\text{done} \ \top) & :: \text{test_conv} \top
\end{align*}
\]

We can also semidecide convergence of terms by joining over all total proofs

\[
\begin{align*}
\text{Join} _\text{Conv} ::= (\forall x: \text{term}. \text{Sset. Conv} x) (Y \lambda j. x. (\text{Join_red} x \top \lambda r. (\text{done} r))) \\
& \quad \mid (j (\text{ap} x \top) \lambda c. (\text{next} c)).
\end{align*}
\]

\[
\text{!check} (\forall x: \text{test_term}. \text{Join} _\text{Conv} x \ x \ \text{check_conv} = \top).
\]

and testing whether any of them match a term in question

\[
\begin{align*}
\text{if} _\text{conv_term} ::= (\text{term} \rightarrow \text{semi}) (\lambda x. \text{Join} _\text{Conv} x \ \text{test_conv}). \\
\text{!check} (\ S_r, K_r, J_r, \top :: \text{if} _\text{conv_term}). \\
\text{!check} (\forall x, y. \text{ap} x y :: \text{if} _\text{conv_term} \Rightarrow x :: \text{if} _\text{conv_term}).
\end{align*}
\]

80
Chapter 4

Untyped λ-calculus for convex sets of probability distributions (SKRJ)

In this chapter we examine a λ-calculus SKRJ with uncertainty, represented as convex sets of probability distributions (CSPDs), or lower-sets of probability valuations. Our design goal for this language is a definability of simple types theorem, in the manner of \[3.6\]. At the time of the writing this thesis we have not achieved this goal; however, the attempt has shed light on the simpler language SKJ, in two respects.

First, join has traditionally been interpreted as nondeterminism or concurrency ([DCHA00], [DCL02]); however concurrency distributes over randomness, preventing definable types-as-closures. Our solution is to instead let randomness distributes over join, naturally leading to convex sets of probability distributions. In this semantics, join is seen to model ambiguity or indeterminacy rather than concurrency.

Second, just as the Simple type constructor in SKJ allows ambiguous inhabitants, any possible constructor definable in SKRJ would allow fuzzy inhabitants (where fuzzy means ambiguously random, as in CSPDs). In SKJ we were able to filter these out with disambiguation tricks (in \[5.7\]), but these tricks generally fail in SKRJ. Forced to accommodate the fuzzy inhabitants of a possible Simple type constructor, we develop a sampling monad for arbitrary simple types (similar to [PPT05]). Although the monadic types are more difficult to hack with, they obey better categorical properties than our easier-to-work-with types from \[3.7\].

Our motivation for working with probabilistic languages comes from research in Bayesian networks and their generalizations. Koller et al [KMP97] describe methods for learning parameters of stochastic programs. Pfenning et al [PPT05] implement a probabilistic language λ_O by extending OCaml with a monadic probability type. Although this language does not admit a types-as-closures interpretation in SKRJ, their probability monad can be interpreted unchanged to represent convex sets of probability distributions.

Semantics of probabilistic programs has a long history, beginning in the early 1980s. Kozen [Koz81] describes a linear probabilistic semantics, but his stochastic programs cannot take random generators as parameters. That is, pmfs can only be input via their parameters. Plotkin [Plo82] and Plotkin and Jones [JP89] develop a probabilistic powerdomain as a domain-theoretic model of ambiguity. Jones analyses the interaction of probability and non-determinism in her thesis [Jon89]. Heckmann [Hec94] develops the probabilistic powerdomain in terms of Vickers’ information systems. Edalat [Eda95] develops domain theory for stochastic processes. Jung [Jung98] discusses problems relating the probabilistic powerdomain and function space operators. Desharnais and Jagadeesan [DGJP04] discuss metric structure on probabilistic spaces, where equality is too fine for many practical purposes.

Convex sets of probability distributions (CSPDs), or credal sets, are widely studied in the literature on imprecise probabilities, for example in the bi-annual International Symposium on Imprecise Probability: Theory and Applications (ISIPTA). Doan et al [DVH98] provide geometric foundations for CSPDs. Cano and Moral [CM99] survey belief propagation algorithms for CSPDs.
4.1 Axioms for randomness

In this section we show that joins of mixtures generalize convex sets of probability valuations. Hence SKRJ provides a nice denotational semantics for programming languages with monadic types of imprecise probabilities. First let us introduce a syntax with infinitary joins and mixtures.

Definition 4.1.1. A *join* is a J-term (closure under J), defined by the language

\[
\begin{align*}
\text{x term} & \quad \text{x join (singleton)} \\
\text{x join y join} & \quad \text{x \mid y join (binary)} \\
\text{X sset} & \quad \text{infinitary}
\end{align*}
\]

A *mixture* is an R-pmf (closure under R), defined by the language

\[
\begin{align*}
\text{x term} & \quad \text{x mix (singleton)} \\
\text{x mix y mix} & \quad \text{x + y mix (binary)} \\
\text{X pmf(mix)} & \quad \text{E[X] mix (infinitary)}
\end{align*}
\]

A *(JR-)slurry* is a join-mixture (closed under J,R).

Notation 4.1.2. We write \(R x y = x + y\) for the random choice operation. Beware that + is commutative but not associative: we never write \(x + y + z\). We let + have higher precedence than join, so that \(x + y \mid z\) = \((x + y) \mid z\).

Our semantics for randomness will be defined in terms of traces.

Definition 4.1.3. A *trace* is a sequence \(1 \langle M_1, \ldots, M_n \rangle\) of \(n\) terms, for some \(n \geq 0\). An SKJ-*trace* is a sequence of terms from SKJ; and similarly for other fragments.

In SK and SKJ, convergence under traces provide complete information about any term.

Theorem 4.1.4. Let \(x, y\) be SK or SKJ terms. Then \(x \sqsubseteq y\) iff for every trace \(t = \langle M_1, \ldots, M_n \rangle\),

\[t x \quad \text{conv} \quad \Rightarrow \quad t y \quad \text{conv}.
\]

In a system with randomness, convergence is probabilistic so that a given term \(x\) will converge only with some probability \(p\). This motivates the extension of \(h^*\) from SK and SKJ to SKRJ:

Definition 4.1.5. In *trace probability* semantics \(h^*\) of the language SKRJ, the order relation \(x \sqsubseteq y\) between terms \(x, y\) holds iff under every SKJ-*trace* \(t\), \(y\) is at least as likely to converge as \(x\), i.e., \(P(t x \quad \text{conv}) \leq P(t y \quad \text{conv})\).

Our main theorem of this section is that mixtures distribute over joins,

Theorem 4.1.6. *(distributivity)* \((x \mid y) + z = x + z \mid y + z\).

Proof. Consider trace probability semantics. At each trace \(t\), we have convergence \(c(-) := P(t - \quad \text{conv})\)

\[
c((x \mid y) + z) = (\max(c(x), c(y)) + c(z))/2
\]

\[
= \max((c(x) + c(z))/2, (c(y) + c(z))/2)
\]

\[
= c(x + z \mid y + z)
\]

\[\square\]

\(^1\)Recall from [13] that \((M_1, \ldots, M_n) = M. f M_1 \ldots M_n\) so that we can treat sequences as argument lists.
Naively slurries can be arbitrarily deep, as in $w + (x \mid (y + z))$, however, distributivity gives us a notion of join normal form.

Corollary 4.1.7. (JR-normal form) Every slurry can be written as a join of mixtures.

In contrast to join-as-concurrency, our join-as-ambiguity does not distribute over mixtures (J does not distribute over R). This means we have no R-normal form, and an operational semantics for random sampling fails.

Distributivity gives us a clean notion of Böhm trees in $SKRJ$.

Definition 4.1.8. A JR-Böhm tree (JR-BT) is the $SKRJ$ notion of Böhm tree, defined by limits in the language

$$\frac{x \ var}{x \ BT} (\text{var}) \quad \frac{x, h \ var \ M \ slurry(BT)}{\lambda x, h \ M \ BT} (\text{abs-\ app})$$

A finite BT consists of only finite slurries and finitely many applications of rule abs-app.

Theorem 4.1.9. Every $SKRJ$ term is a join of mixtures of JR-BTs (under H^*).

Proof. By straight-forward extension of SKJ-theorem.

Finite approximation also carries over, using the following

Lemma 4.1.10. Let X be a probability distribution over $SKRJ$ terms. Then the mixture $E[X]$ is a directed join of finite mixtures of $SKRJ$ terms.

Proof. Note that X must have countable support, since $SKRJ$ is countable. Let X_n be the approximation of X where probabilities are rounded down to n-bit approximations, with the remaining mass given to \bot. Then $E[X] = \bigsqcup_{n>0} X_n$.

Finally, we give a semantics as convex sets of probability distributions, where join is interpreted as the convex hull operation, and mixture is interpreted as the convex combination operation.

Definition 4.1.11. (CSPD semantics) Let the CSPD interpretation of a term x be the set

$$[x] := \{(t, [0, P(t \times \text{conv})]) \mid t \text{ a trace}\}$$

of trace, probability pairs such that $(t, p) \in x$ iff $P(t \times \text{conv}) < p$.

Theorem 4.1.12. Joins interpret as convex hulls

$$[x \mid y] = \langle [x], [y] \rangle := \{(t, [x] t \cap [y] t) \mid t \text{ a trace}\}$$

and mixtures interpret as convex combinations

$$[x + y] = \frac{[x] + [y]}{2} := \left\{ \left(t, \frac{[x] t + [y] t}{2} \right) \mid t \text{ a trace} \right\}$$

Proof. By trace probability semantics, joins are maxima, and mixtures are averages.

Distributivity has a nice visual interpretation in this semantics, shown in Figure 4.1. We will use the following lemma to characterize types-as-closures in 4.3.

Corollary 4.1.13. Let $x = \bigcup \alpha E[X_\alpha]$ be the JR-normal form of x, where each X_α is a head normal form. Then x can be interpreted as the convex hull of points X_α in the simplex of probability distributions over $\bigcup \alpha \text{ support}(X_\alpha)$.

Note that among types with a totality semipredicate, we can think of \bot as a non-value and instead consider convex sets of subprobability distributions.
Axioms and axiom schemata

The following axiom schemata are enforced for the atom R:

\[\begin{align*}
 x + x &= x \quad \text{(idem)} \\
 x + y &= y + x \quad \text{(comm)} \\
 (x + y)z &= xz + yz \quad \text{(distrib – R)} \\
 x \sqsubseteq y \quad & y \sqsubseteq z \quad \text{(subconvex)} \\
 x \sqsubseteq y + z \quad & x \sqsubseteq y + z \quad \text{(supconvex)}
\end{align*} \]

We begin with negative order axioms (the first since 2.1):

\[!\text{assume } K + F = R. \]
\[!\text{assume } (K, F \not\sqsubseteq R). \]
\[!\text{assume } (K, F \not\sqsubseteq R). \]
\[!\text{assume } \bot \sqsubseteq / R \sqsubseteq / I \sqsubseteq / R \sqsubseteq / T. \]
\[!\text{check } R : \Phi. \]
\[!\text{check } R : (K, F). \]

algebraic properties

\[!\text{assume } x + x = x. \quad \text{idempotence} \]
\[!\text{assume } (x + y)z = xz + yz. \quad \text{distributivity of right-application} \]
\[!\text{assume } B(x + y) = Bx + By. \quad \text{distributivity of right-composition} \]

and shallow and deep commutativity.

\[!\text{assume } x + y = y + x. \]
\[!\text{assume } (\forall x. (a + x) + (b + y) = (b + x) + (a + y)). \]
\[!\text{assume } (\forall y. (a + x) + (b + y) = (b + x) + (a + y)). \]

Note that we manually abstract the \(x \) and \(y \) in the last two, as the cost of closing over four variables is very high (see 2.2).

We can express countable additivity as

\[!\text{assume } Y(R \ x) = x. \]
Corollary 4.1.14. \(R \) is injective, with left-inverse \(Y \).

\[\text{!check } Y \circ R = I. \]

The basic combinators left-distribute over mixtures

\[\text{!assume } K(x + y) = K \times + K \ y. \]
\[\text{!assume } F(x + y) = F \times + F \ y. \]
\[\text{!assume } C(x + y) = C \times + C \ y. \]
\[\text{!assume } B(x + y) = B \times + B \ y. \]
\[\text{!assume } W(x + y) = W \times + W \ y. \]
\[\text{!assume } S(x + y) = S \times + S \ y. \]

Mixture distributes over join

\[\text{!assume } x + (y \mid z) = x + y \mid x + z. \]
\[\text{!assume } (x \mid y) + z = x + z \mid y + z. \]

but not conversely

\[\text{!check } J(x + y) \neq J \times + J \ y. \]

Some care must be taken when joining \(R \)-pmfs, for example one might hope to join two sketches \(K + \bot \mid \bot + F \) to get \(K + F \), however

\[\text{!check } K + \bot \mid \bot + F = J + \bot \triangleq K + F. \]

4.2 A constructor for simple types of fuzzy terms

This section describes our attempt to define closures for simple types in \(\text{SKRJ} \). At the time of writing of this thesis, we have not succeeded in defining a Simple type constructor. Later sections in this chapter rely on a Simple type constructor, and serve to motivate what can be done if Simple is indeed definable.

The main difficulty in extending our definition of Simple from §3.6 is that we cannot raise different branches of Böhm trees with different section-retract pairs; i.e., the coherence lemma fails. This same difficulty prevents us from disambiguating terms in §5.7.

Interpreting simple types as closures

We now state the simple types conjecture for \(\text{SKRJ} \), following the simple types theorem from \(\text{SKJ} \). The languages of terms and types in §4.7 differ from the \(\text{SKJ} \) terms and types only in that we now have mixtures.

Conjecture 4.2.1. There is an \(\text{SKRJ} \)-definable term Simple and corresponding interpretation \([-]\) of simple types, following §4.6 such that for each term \(q \) and simple type \(\tau \) as in Figure 4.2, \(q : \tau \iff q : [\tau] \).

Our current best attempt is similar to the Simple from \(\text{SKJ} \). We first define two section-retract pairs

\[\text{raise} := (\lambda x. _ _ _ _ _ _ _ _ _ _ x), \]
\[\text{lower} := (\lambda x. x \top). \]
\[\text{!check } \text{raise} \circ \text{lower} = I. \]
\[\text{!check } \text{lower} \circ \text{raise} \triangleq I. \]

\[\text{join} := (\lambda f, x, y. f (x \mid y)), \]
\[\text{copy} := (\lambda f, x. f \times x). \]
\[\text{!check } \text{join} \circ \text{copy} = I. \]
\[\text{!check } \text{copy} \circ \text{join} \triangleq I. \]
and then recursively close under conjugation.

\[
\text{Simple} ::= (\text{any} \rightarrow V \oplus (Y \lambda s.f. \ f \ I \ I \\
| f \text{ raise lower} \\
| f \text{ join copy} \\
| s \lambda a, a'. s \lambda b, b'. f \ (a' \rightarrow b) \ (a \rightarrow b'))
\]

Note that we need section-retract pairs to distribute over CSPDs of head normal forms. Each of raise, lower, join, copy and their conjugates do, however, this requirement prevents us from using pairs like

\[
\text{open} ::= (\lambda f, (\chi). f \ x).
\]
\[
\text{pack} ::= (\lambda f, x. f(\chi)).
\]
\[
\text{curry} ::= (\lambda f, x, y. f(\chi, y)).
\]
\[
\text{uncurry} ::= (\lambda g, (\chi, y). g \times y).
\]

4.3 Monadic types as closures

In this section we define a monadic type Fuzzy for CSPDs, and define compatible basic types and type constructors. Our main tool is the Simple type constructor defined in 3.6. However, unlike our treatment in 3.7 we will not be able to use disambiguation tricks to prevent, e.g. K | F:bool.
Monadic types

The Kleisli triple presentation of a monad ([Wad90], [Mog91]) is a functor Fuzzy, Map together with a pair of natural transformations. Exactly, Lift:

\[\text{Fuzzy : } V \to V \]
\[\text{Map : } \forall a:V, b:V. (a \to b) \to \text{Fuzzy } a \to \text{Fuzzy } b \]

Exactly:
\[\forall a:V. a \to \text{Fuzzy } a \]
\[\text{Lift : } \forall a:V, b:V. (a \to \text{Fuzzy } b) \to \text{Fuzzy } a \to \text{Fuzzy } b \]

Specializing to SKRJ, Exactly is the identity, and Lift = Map basically sample points from CSPDs. The main discovery of this section is that we can implement Lift for the standard Church-style booleans, naturals, etc., by using a continuation passing transform.

Our Fuzzy types will be the same as the previous SKJ types-as-closures in [3.7], only we will not disambiguate (so e.g. K | F: bool here). Lift is not definable uniformly over types; however we will attempt to define it uniformly for type constructors (e.g. define Lift_{a+b} in terms of Lift_{a} and Lift_{b}).

\[
\begin{align*}
\text{Test} & := (V \to V) (\lambda a. a \to \text{semi}). & & \text{a type of tests} \\
\text{Lift} & := (\lambda a:V. P (\text{Endo} (a \to \text{any})) (\text{Above } \lambda f, _ _ f _ \)). & & \text{a type of lifters} \\
\text{testable} & := (\exists a:V. \text{Test } a). \\
\text{fuzzy} & := (\exists a:V. \text{Prod} (\text{Test } a) (\text{Lift } a)).
\end{align*}
\]

It will be helpful in constructing types to ensure that lift \(f \sqsupseteq \lambda - . f _ _ \), i.e., lifting is at least as informative as blinding \(f \mapsto \lambda - . f _ _ \) (however blinding can safely be ignored in the lifting theorem below).

To reason about the behavior of lifted functions by their action on unambiguous things, we will sample them at various points. The sampling process should distribute over CSPDs as follows: For this we need

Theorem Schema: (sampling) Let \(a \) be a “nice” testable type, and \(f : a \to \text{any} \) be a strict co-strict function, i.e., \(f \bot = \bot \) and \(f \top = \top \). Then lifted functions distribute over CSPDs, i.e., letting \(f' := \text{Lift}_{a} f \) and \(x, y : a \),

\[
\begin{align*}
f'(x \mid y) & = f' x \mid f' y \\
f'(x + y) & = f' x + f' y
\end{align*}
\]

and lifting preserves the identity

\[\forall x : a::\text{test}_{a}. \text{lift}_{a} I x = x \]

Proof Schema: We will typically implement lifting functions by performing a continuation passing transform, so that \(\text{lift}_{a} f \) is a trace \((M_{1}, \ldots, M_{n})\). Distributivity of \(\text{lift}_{a} f \) then follows from distributivity of right-application over joins and mixtures:

\[
\begin{align*}
\text{lift}_{a} f (x \mid y) & = (M_{1}, \ldots, M_{n}) (x \mid y) \\
& = (x \mid y) M_{1} \ldots M_{n} \\
& = x M_{1} \ldots M_{n} | y M_{1} \ldots M_{n} & \text{by distributivity} \\
& = (M_{1}, \ldots, M_{n}) x | (M_{1}, \ldots, M_{n}) y \\
& = \text{lift}_{a} f x \mid \text{lift}_{a} f y
\end{align*}
\]

and similarly for mixtures \(x + y \). Preservation of identity will depend on the implementations. \(\square \)

We would like to formally verify such theorems in Johann by eliminating universal quantifiers over fuzzy types \(a \) and functions \(f \). We can eliminate the quantifier over \(f \) using the test for \(a \), but we cannot eliminate the quantifier over fuzzy types \(a \), since the closure fuzzy fails to ensure the important property

\[\forall x : a. \text{test}_{a} x = \top \implies x = \top \]

87
Thus we uniformize all three equations for verification, parametrized by fuzzy type:

```
sampling_thm_J := (fuzzy → prod) (λ(a, test_a, lift_a), w, f, x, y. 
f' := lift_a (λx. test_a x. f x). 
w (f'(x | y)) (f' x | f' y).  
).
sampling_thm_R := (fuzzy → prod) (λ(a, test_a, lift_a), w, f, x, y. 
f' := lift_a (λx. test_a x. f x). 
w (f'(x+y)) (f' x + f' y).  
).
sampling_thm_I := (fuzzy → prod) (λ(a, test_a, lift_a), w, x. 
(x, lift_a I x).  
).
```

To verify the theorems a specific type fuzzy_a, we show that the equations are symmetric under swapping

```
swap := (prod→prod) (λ(x, y). (y, x)).  
```

as in

```
!check sampling_thm_J fuzzy_a : swap.  
!check sampling_thm_R fuzzy_a : swap.  
!check sampling_thm_I fuzzy_a : swap.  
```

Fuzzy atomic types

Let’s begin by define sampling functions for types nil, unit, bool, using their fuzzy forms.

```
il := (Simple λa, a’. a”).  
unit := (Simple λa, a’. a→a’ | (I)).  
bool := (Simple λa, a’. a→a→a’ | (K, F)).  

```

```
test_nil := Test nil φ.  
test_unit := Test unit I.  
test_bool := Test bool I, I.  

```

```
lift_nil := Lift nil (λf. φ).  
lift_unit := Lift unit (λf. f I).  
lift_bool := Lift bool (λf. f K, f F).  

```

```
fuzzy_nil := fuzzy (nil, test_nil, lift_nil).  
fuzzy_unit := fuzzy (unit, test_unit, lift_unit).  
fuzzy_bool := fuzzy (bool, test_bool, lift_bool).  
```

Theorem 4.3.1. (sampling nil, unit, and bool)

```
!check sampling_thm_J fuzzy_nil : swap.  
!check sampling_thm_R fuzzy_nil : swap.  
!check sampling_thm_I fuzzy_nil : swap.  

```

```
!check sampling_thm_J fuzzy_unit : swap.  
!check sampling_thm_R fuzzy_unit : swap.  
!check sampling_thm_I fuzzy_unit : swap.  
```

88
\textbf{Theorem 4.3.2.} (sampling nat)

\begin{quote}
\begin{align*}
\text{Proof.} & \quad \text{Left as exercise for Johann.} \\
\text{Naturals are a bit trickier: we need to pay special attention to partial naturals like \texttt{succ(\texttt{___})}. We define a type and a test}
\end{align*}
\end{quote}

\begin{align*}
\text{nat} & \quad := \ V \ (\\
\quad & \quad \ Y \lambda a. \ \text{Simple } \lambda b, b'. \ (b'\rightarrow b)\rightarrow b' \\
\quad & \quad \quad \ | \ \langle \lambda n : a, f : a \rightarrow a, x : a. \ f(n \ f \ x), \ \lambda x, x : a. \ x \rangle
\end{align*}

\begin{align*}
\text{test_nat} & \quad := \ \text{Test nat } \langle \text{K I, I} \rangle.
\end{align*}

with intro forms

\begin{align*}
\text{zero} & \quad := \ (\lambda x, x). \\
\text{succ} & \quad := \ (\lambda n : \text{nat}, f, x. \ f(n \ f \ x) \ | \ n \ f(f \ x)).
\end{align*}

Note that \texttt{succ} joins over two ways to increment. Now to lift

\begin{align*}
\text{lift_nat} & \quad := \ \text{Lift nat } \langle Y \lambda l. \ (\lambda n, f. \ f \ _ | \ l \circ \text{succ } n, \ \lambda f. \ f \ \text{zero}) \rangle.
\end{align*}

Finally we package these together as a fuzzy type.

\begin{align*}
\text{fuzzy_nat} & \quad := \ \text{fuzzy } (\text{nat, test_nat, lift_nat}).
\end{align*}

\textbf{Theorem 4.3.2.} (sampling nat)

\begin{quote}
\begin{align*}
\text{Proof.} & \quad \text{Left as exercise for Johann.} \\
\end{align*}
\end{quote}

\textbf{Fuzzy covariant type constructors}

We define products, sums, and successor types as in37 and tests as in3.10

\begin{align*}
\text{Prod} & \quad := \ (V \rightarrow V \rightarrow V) \ (\lambda a, b. \ \text{Simple } \lambda c, c'. \ (a \rightarrow b \rightarrow c) \rightarrow c'). \\
\text{Sum} & \quad := \ (V \rightarrow V \rightarrow V) \ (\lambda a, b. \ \text{Simple } \lambda c, c'. \ (a \rightarrow c) \rightarrow (b \rightarrow c) \rightarrow c'). \\
\text{Maybe} & \quad := \ (V \rightarrow V) \ (\lambda a. \ \text{Simple } \lambda c, c'. \ c \rightarrow (a \rightarrow c) \rightarrow c').
\end{align*}

\begin{align*}
\text{test_Prod} & \quad := \ (\forall (a,_). \text{testable, } (b,_). \text{testable). Test. Prod a b}) \ (\\
\quad & \quad \lambda(-, ta), (-, tb), (x, y). \ \text{and semi } (ta \ x) \ (tb \ y)
\end{align*}

\begin{align*}
\text{test_Sum} & \quad := \ (\forall (a,_). \text{testable, } (b,_). \text{testable). Test. Sum a b}) \ (\\
\quad & \quad \lambda(-, ta), (-, tb). \ (\lambda x. \ I \ | \ ta \ x, \ \lambda y. \ I \ | \ tb \ y)
\end{align*}

\begin{align*}
\text{test_Maybe} & \quad := \ (\forall (a,_). \text{testable}. Test. Maybe a}) \ (\\
\quad & \quad \lambda(-, ta). \ I, \ \lambda x. \ I \ | \ ta \ x)
\end{align*}

These have intro forms

\begin{align*}
\pi_1 & \quad := \ (\lambda (x,_). \ x). \ \ \ \ \text{inl} \ := \ (\lambda x, f, _ : f \ x). \ \ \ \ \text{none} \ := \ (\lambda f, _ : f).
\end{align*}

\begin{align*}
\pi_2 & \quad := \ (\lambda (-, y). \ y). \ \ \ \ \text{inr} \ := \ (\lambda x, _, g : g \ x). \ \ \ \ \text{some} \ := \ (\lambda x, _, g : g \ x).
\end{align*}
and lifters

\[
\text{lift}_\text{Prod} := (\forall (a, b) : \text{fuzzy}, (b, a) : \text{fuzzy}. \text{Lift. Prod } a \ b) \ \lambda (a, b) \in \chi. \lambda x. \lambda y. f (x, y))
\]

\[
\text{lift}_\text{Sum} := (\forall (a, b) : \text{fuzzy}, (b, a) : \text{fuzzy}. \text{Lift. Sum } a \ b) \ \lambda (a, b) \in \chi. \lambda (a, b) \in \chi. \lambda x. \lambda y. f \circ \text{inl} \ \lambda x. \lambda y. f \circ \text{inr})
\]

\[
\text{lift}_\text{Maybe} := (\forall (a, b) : \text{fuzzy}. \text{Lift. Maybe } a) \ \lambda (a, b) \in \chi. \lambda x. \lambda y. f \circ \text{some}
\]

We package all of this information together as fuzzy types.

\[
\text{fuzzy}_\text{Prod} := (\text{fuzzy} \to \text{fuzzy} \to \text{fuzzy}) (\lambda (a, b) \in \chi. \lambda (a, b) \in \chi. \lambda (a, b) \in \chi. \lambda x. \lambda y. f \circ \text{some})
\]

We cannot verify general sampling theorems for algebraic these types, since the type constructors take arguments whose fuzziness cannot be guaranteed with a closure, and thus cannot be eliminated.

Theorem 4.3.3. (sampling products, sums, and successors) If sampling works for \(a, b : \text{fuzzy}\), then it also works for \(\text{fuzzy}_\text{Prod} a b\), for \(\text{fuzzy}_\text{Sum} a b\), and for \(\text{fuzzy}_\text{Maybe} a\).

Proof. By distributivity of traces over joins and mixtures. \(\square\)

We can verify some particular cases:

\[
\begin{align*}
\text{!check sampling_thm}_J \ (\text{fuzzy}_\text{Prod} \text{fuzzy}_\text{bool} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\text{!check sampling_thm}_R \ (\text{fuzzy}_\text{Prod} \text{fuzzy}_\text{bool} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\text{!check sampling_thm}_I \ (\text{fuzzy}_\text{Prod} \text{fuzzy}_\text{bool} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\text{!check sampling_thm}_J \ (\text{fuzzy}_\text{Sum} \text{fuzzy}_\text{bool} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\text{!check sampling_thm}_R \ (\text{fuzzy}_\text{Sum} \text{fuzzy}_\text{bool} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\text{!check sampling_thm}_I \ (\text{fuzzy}_\text{Sum} \text{fuzzy}_\text{bool} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\text{!check sampling_thm}_J \ (\text{fuzzy}_\text{Maybe} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\text{!check sampling_thm}_R \ (\text{fuzzy}_\text{Maybe} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\text{!check sampling_thm}_I \ (\text{fuzzy}_\text{Maybe} \text{fuzzy}_\text{bool}) & : \text{swap}. \\
\end{align*}
\]

The coalgebraic numeral type is the fixed points of the successor

\[
\text{num} := \text{Y} \text{Maybe}.
\]
\[\text{test_num} := (Y \lambda t. \text{Test_Maybe \(num, t\))}. \]

\[\text{lift_num} := \text{Lift \num \(\lambda f. (f \text{zero}, f \circ \text{succ})\).} \]

\[\text{fuzzy_num} := \text{fuzzy \num, test_num, lift_num).} \]

Theorem 4.3.4. (sampling \num)

\[\text{!check sampling_thm_J fuzzy_num : swap.} \]
\[\text{!check sampling_thm_R fuzzy_num : swap.} \]
\[\text{!check sampling_thm_I fuzzy_num : swap.} \]

Proof. By induction, using the sampling theorem for \text{Maybe} above. \qed

Coinductive stream types are fixed points of products

\[\text{Stream} := (V \to V) (\lambda a. Y (\text{Prod} a)). \]

\[\text{stream} := \text{Stream } \bot. \]

\[\text{test_Stream} := (\forall (a,-):\text{testable. Test a}) (\lambda (a,ta). Y \lambda t. \text{Test_Prod} (a,ta) (\text{Stream} a,t)). \]

\[\text{lift_Stream} := (\forall (a,-):\text{fuzzy. Lift. Stream a}) (\lambda aa. (a,ta,la) := aa. \text{ts} := \text{test_Stream} (a,ta). Y \lambda ls. \text{lift_Prod} aa (\text{Stream} a,ts,ls)). \]

\[\text{fuzzy_Stream} := (\text{fuzzy \to fuzzy}) (\lambda aa. (a,ta,la) := aa. (\text{Stream} a,\text{test_Stream} (a,ta),\text{lift_Stream} (a,ta,la))). \]

Dialogs, e.g. \(V (Y \lambda a. \text{Sum} a. W \text{Prod} a)\), are similarly definable.

Theorem 4.3.5. (sampling streams) If sampling works for \a: fuzzy, then it also works for fuzzy_Stream \a.

Proof. By coinduction, using the sampling theorem for \text{Prod} above. \qed

We can verify some particular cases:

\[\text{!check sampling_thm_J (fuzzy_Stream fuzzy_bool) : swap.} \]
\[\text{!check sampling_thm_R (fuzzy_Stream fuzzy_bool) : swap.} \]
\[\text{!check sampling_thm_I (fuzzy_Stream fuzzy_bool) : swap.} \]

\[\text{!check sampling_thm_J (fuzzy_Stream fuzzy_nat) : swap.} \]
\[\text{!check sampling_thm_R (fuzzy_Stream fuzzy_nat) : swap.} \]
\[\text{!check sampling_thm_I (fuzzy_Stream fuzzy_nat) : swap.} \]
Fuzzy exponentials

We can define fuzzy exponentials for general types that support case analysis for partial terms. That is, let \((a, \text{test}_a, \text{lift}_a) : \text{fuzzy}\) be a fuzzy type with inhabitants \(\{\bot, x_1, \ldots, x_n, \top\}\) such that for each \(i, x_i : \text{test}_a\). Suppose there is an elim form \(\text{case}_a\) implemented as a trace, and satisfying \(\text{case}_a x_i y_1 \ldots y_n = y_i\) for each \(i = 1, \ldots, n\). Then we can implement fuzzy exponentials from \(a\) using the test

\[
\begin{align*}
\text{test}_{a\rightarrow b} &:= \text{Test} (a \rightarrow b) (\\
& \quad \lambda f : a \rightarrow b. \ \text{test}_b (f x_1) \ | \ldots \ | \text{test}_b (f x_n))
\end{align*}
\]

and lifter

\[
\begin{align*}
\text{lift}_{a\rightarrow b} &:= \text{Lift} (a \rightarrow b) (\\
& \quad \lambda f : a \rightarrow b : \text{test}_{a\rightarrow b}, \ x : a :: \text{test}_a. \ \text{case}_a x (f x_1) \ldots (f x_n))
\end{align*}
\]

Examining some special cases, consider first the domain \(\text{bool} \rightarrow \text{unit}\), with functions discriminated by response to well-checked arguments \(\bot, \text{K}, \text{F}\)

\[
\begin{align*}
\text{T} & \quad | \quad \text{K} \\
\quad | \quad \text{I} \\
/ & \quad \backslash \\
<_{I,\bot}> & \quad <_{\bot,I}> \\
\quad \backslash & \quad / \\
\end{align*}
\]

where we ensure \(\top\) always maps to \(\top\) (and hence ignore \(\langle \top, \bot \rangle\) and \(\langle \bot, \top \rangle\)).

\[
\begin{align*}
b_{2u} &:= \text{P} (\text{bool} \rightarrow \text{unit}) (\langle \text{K}, \bot \rangle | \langle \text{F}, \bot \rangle). & \text{ensure toplessness} \\
\text{test}_{b_{2u}} &:= \text{Test} b_{2u} (\langle \text{K} \rangle | \langle \text{F} \rangle).
\end{align*}
\]

\[
\begin{align*}
lift_{b_{2u}} &:= \text{Lift} b_{2u} (\\
& \quad \lambda p : \bot, \ p : \bot \rightarrow (f \lambda \rightarrow \text{I}) \\
& \quad \quad \mid \ p \text{ K} (f (\text{I}, \bot)) \mid p \text{ F} (f (\text{I}, \text{I})) \\
& \quad \quad \mid p \text{ F} (f (\bot, \text{I})) \mid p \text{ K} (f (\text{I}, \text{I}))) \\
& \quad)
\end{align*}
\]

\[
\begin{align*}
fuzzy_{b_{2u}} &:= \text{fuzzy} (b_{2u}, \text{test}_{b_{2u}}, \text{lift}_{b_{2u}}).
\end{align*}
\]

Theorem 4.3.6. (sampling \(b_{2u}\)) Sampling works for \(b_{2u}\):

\[
\begin{align*}
!\text{check sampling_thm} _\text{T} \text{fuzzy}_{b_{2u}} : \text{swap}.
!\text{check sampling_thm} _\text{R} \text{fuzzy}_{b_{2u}} : \text{swap}.
!\text{check sampling_thm} _\text{I} \text{fuzzy}_{b_{2u}} : \text{swap}.
\end{align*}
\]

Proof. Left as exercise for Johann. \(\square\)

For less trivial codomain, we add branching, as in \(\text{bool} \rightarrow \text{bool}\)

\[
\begin{align*}
b_{2b} &:= \text{P} (\text{bool} \rightarrow \text{bool}) (\langle \text{K}, \bot, \bot \rangle | \langle \text{F}, \bot, \bot \rangle). \\
\text{test}_{b_{2b}} &:= \text{Test} b_{2b} (\langle \text{K}, \text{I}, \text{I} \rangle | \langle \text{F}, \text{I}, \text{I} \rangle).
\end{align*}
\]

92
lift_b2b := Lift b2b (λf. p. p ⊥ (f λ. I))
 | p K (f ⟨K, ⊥⟩) | p F (f ⟨K, K⟩) (f ⟨K, F⟩)
 | (f ⟨F, ⊥⟩) | p F (f ⟨K, K⟩) (f ⟨K, F⟩)
 | p F (f ⟨⊥, K⟩) | p K (f ⟨K, K⟩) (f ⟨F, K⟩)
 | (f ⟨⊥, F⟩) | p K (f ⟨K, F⟩) (f ⟨F, F⟩)
).

fuzzy_b2b := fuzzy (b2b, test_b2b, lift_b2b).

Theorem 4.3.7. (sampling b2u)

!check sampling_thmJ fuzzy_b2u : swap.
!check sampling_thmR fuzzy_b2u : swap.
!check sampling_thmI fuzzy_b2u : swap.

Proof. Left as exercise for Johann.

Finally, we consider functions of infinite domains, say num → semi (witnessed by semi-streams). We can no longer implement case analysis as traces, but we can recursively sample, as in lift_Stream above.

n2s := P (num → semi) (Y λc. q. q none ⊥ | c q some).
test_n2s := Test n2s (Y λc. q. q none | c q some).
lift_n2s := Lift n2s (λf. p. p ⊥ (λ . I))
 | p none (f ⟨I, ⊥⟩) | l (λp'. f ⟨I, p'⟩)
 | l (λp'. f ⟨⊥, p'⟩) p some
).

fuzzy_n2s := fuzzy (n2s, test_n2s, lift_n2s).

Theorem 4.3.8. (sampling n2s)

!check sampling_thmJ fuzzy_n2s : swap.
!check sampling_thmR fuzzy_n2s : swap.
!check sampling_thmI fuzzy_n2s : swap.

Proof. Left as exercise for Johann.

Question 4.3.9. What data is needed to uniformly define exponentials? Is this data itself uniformly definable, under exponentials?
Chapter 5

Untyped λ-calculus with logical reflection (SKJO)

This chapter deals with automated reasoning in illative combinatory logic, the programme of using combinatory algebras as languages for logics. Building on the algebra SKJ and Johann’s equational theorem proving, we develop two tools to achieve a powerful verification system:

1. a code comonad à la Brookes for efficient storage of quoted terms, and
2. an oracle for encoding Δ_1 statements about SKJO terms as booleans.

These two developments are independent, but in our implementation, the oracle relies on comonadic codes to achieve a reasonable density of information storage.

Our first verification tool is an coding of terms in a flat domain, so that algorithms can work with intensions of terms. Some coding of terms is needed if we are to reflect statements about the calculus into the calculus itself, i.e. to embed an intensional semantics into our extensional model. The natural way to define codes ([DP96], [WLPD98]) is with a modal type Code, functions Apply, Eval, Quote, and an operation $\{-\}$ to quote closed terms. This structure and its untyped version $\langle \text{code}, A, E, Q, \{-\} \rangle$ afford us notation for quoted pattern-matching of untyped and typed terms

$$\begin{align*}
M & \mapsto \{M\} & \text{quoting closed terms} \\
\{M\ N\} & = A\{M\}\{N\} & \text{application} \\
(\text{let } \{x\} := M. x) & = E\ M & \text{evaluation} \\
(\text{let } \{x\} := M. \{x\}) & = \text{code} M & \text{typing} \\
(\text{let } \{x\} := M. \{\{x\}\}) & = Q\ M & \text{quoting quoted terms}
\end{align*}$$

Note that $\text{Quote}\{a\}:\text{Code}\{a\} \rightarrow \text{Code}\{\text{Code}\{a\}\}$ can be applied to arbitrary terms of type code, and $\{-\}$ can be applied to closed terms of arbitrary type, but variables of arbitrary arbitrary type cannot be quoted. This restriction allows quoting to be non-monotone, so that codes can provide a flat representation of an ordered domain.

The problem with a naively modal type of codes is code size: Johann remembers facts about extensional terms only once per equivalence class, but intensional terms would require overhead for each inhabitant of an equivalence class. For example, Johann knows that $S\ K = K\ I$, and so needs store only one of the equations $(K\ I)I = I$ and $(S\ K)I = I$. However the naively modal type of codes, the intensions are different: $\{S\ K\} \neq \{K\ I\}$, so each equation $E(A\{S\ K\}\{I\}) = E\{I\}$ and $E(A\{K\ I\}\{I\}) = E\{I\}$ must be stored separately.

Our solution is to define intensional codes modulo extensionality, to achieve a space-efficient 1-1 coding of terms, while still neutralizing the Scott order, so that, e.g., $\bot \sqsubseteq \top$ but $\{\bot\}$ and $\{\top\}$ are order-incomparable. This solution is captured by the two reasoning principles.
$$\vdash M = N \quad (\text{extensional})$$

$$\vdash \{M\} = \{N\} \quad (\text{neutral})$$

The 1-1 coding of terms is only consistent only w.r.t. provable equality, but this turns out to be just as space efficient as a true 1-1 coding would have been. Adding the extensionality equations to our modal type system yields the richer structure of a computational comonad, as studied by Brookes and Geva [BG92]. The extensional computational comonad provides a tower of isomorphisms between the code types, where all but the first operation \{−\} are SKJ-code-definable.

Our second verification tool is an extension of SKJ with a Π1 semi-hard (hence Δ1 boolean-hard) oracle \(O\), to achieve an elegant illative combinatory logic SKJO for hyperarithmetic functions. It is well-known that the equational logic of hyperarithmetic functions is equivalent in logical strength to predicative set theory ([Fef05]). Moreover, Feferman, Weyl, Poincare and later Friedman have shown that “most” of mainstream mathematics can be carefully formulated within predicative set theory ([Fef92]). Thus SKJO is sufficiently strong to serve as a foundation for “most” of mathematics.

Our approach is to add an oracle answering a simple (but uncomputable) problem, but allow it to recursively call itself as a subroutine. There is some freedom as to what sort of simple question the oracle solves at each stage. An obvious choice would be to have the oracle solve the halting problem, reducing a Π0-complete problem down to a Δ0 problem. However, since we are starting with the Π0-complete equational theory \(H^\ast\) (recall from 3.9), it is more convenient to be able to reduce a Π0-complete problem down to a Δ0 problem. Specifically, we want to eliminate universal quantifiers over some countable domain, converting them to semiboolean values, e.g.,

\[
O_{nat}\{φ\} = \begin{cases}
I & \text{if } \forall n \in \mathbb{N}. \ φ(n) = I \\
⊥ & \text{otherwise}
\end{cases}
\]

We can make the oracle even more convenient if we abstract out the domain as a parameter to \(O\), i.e. as a code for the totality test for that domain (so that, e.g., \(O_{nat} = O\{\text{test}_n\}\)). Thus we choose to let \(O\) answer the Π0-complete subtest problem

Given: an SKJ-code \(\{s\}\) for \(s:\text{test}\), and an SKJO-code \(\{t\}\) for \(t:\text{test}\)

Semidecide: \(O\{s\}\{t\} = I \iff s <:: t\)

where the subtest relation is defined as

\[
s <:: t \iff (\forall x::s. x::t) \iff \forall x. (s \times I \implies t \times x = I)
\]

Recall from 3.9 that the testing problem \(x::t \iff \text{semi}(t \times x) = I\) is Δ0, so the subtest problem is Π0. We will define \(O\) more precisely in 5.5.

5.1 Related work

Curry developed many systems of illative combinatory logic, but his strongest systems were plagued by inconsistencies. See Curry’s volume [CHS72] for an overview of his approach. [BBB93] discusses an illative combinatory logic for first-order predicate calculus; our present logic is stronger.
Harrison (Har95) surveys a wide variety of reflection principles in logic. Nuprl’s principle of proof reflection is detailed in [ACHA90] and surveyed in [Con94]. DeMers ([DM95]) surveys reflection principles in logic, functional programming and metaprogramming.

Kieffer, Avigad and Friedman [KAF08] propose an extension ZFC with partial terms as a human-motivated foundation for mathematics. They compute statistics as to the complexity of formulas on a corpus of data. The language SKJO can be motivated as a foundation of math with simplified syntax, so that such statistics are much easier to compute.

5.2 Axioms for an extensional code type (code, A, E, Q, {−})

In this section we axiomatize a comonadic type for codes modulo provable equality. We start with a definable type for free codes in a language C defined by

\[
C ::= C \cdot C \mid S \mid K \mid J \mid O \mid \text{code}
\]

Next we axiomatize a quotient type code <:: code₀, modulo Johann’s theory of equality. This quotient type is then extensional in that provably equal terms have provably equal codes. But the type is also intensional in that the order of terms is neutralized by quoting, so that we can discriminate codes with a predicate \(\text{equal}_\text{code} : \text{code} \rightarrow \text{code} \rightarrow \text{bool}\), total up to Johann’s theory of equality. Thus we achieve a good balance between intensionality (which is required to discriminate between codes), and extensionality (which is desired for space efficiency).

It turns out that the quotient type code and introduction form for application \(A\{−\}\) together form a functor from the category of unityped terms under composition to the category of codes under quoted composition. Moreover the evaluation and quotation operators E, Q form a comonadic pair of natural transformations between 1 and the \((\text{code}, A\{−\})\) functor. Finally, the quoting operation \({−}\) on closed terms provides a third natural transformation. This combined structure \(⟨\text{code}, A\{−\}, E, Q, {−}\rangle\), together with a few equations, constitutes a computational comonad (as observed in a similar setting by Brookes and Geva [BG92]). Weaker forms of quoting, with the same signature but missing some equations, are well-studied in the programming languages literature (e.g., [DP96], [WLPD98]). However, those equations –the computational comonad conditions– are exactly what makes extensional codes attractive for our purposes, and seem only to hold in the presence of some extensionality principle.

Axioms for a quotient type of codes

We start with a closure, test pair for free codes

\[
\begin{align*}
\text{code}_0 & := P (Y \lambda a. \text{Sset. Sum (Prod a a) (num_below 5)}). \\
\text{test_code}_0 & := \text{Test_code}_0 (\\
& \quad Y \lambda t. \text{test_Sset. test_Sum (test_Prod t t) test_num}) \\
\text{!_check_code}_0 & = \text{Sset (Sum (W Prod code}_0) (num_below 5)). \\
\text{!_check_code}_0 & <:: \text{Sset (Sum (W Prod code}_0) num). \\
\end{align*}
\]

The type code will be a similar but undefinable type

\[
\begin{align*}
\text{!using code test_code.} \\
\text{!assume code :: V.} \\
\text{!assume code <:: Sset (Sum (W Prod code) num).} \\
\text{!assume test_code = Test_code test_code}_0. \\
\end{align*}
\]

which is a quotient of the code₀ type

\[
\begin{align*}
\text{!assume code <:: code}_0. \\
\text{!assume test_code <:: test_code}_0. \\
\end{align*}
\]
For introduction forms, we need codes for combinators (application, \(S\), \(K\), and \(J\)), a code for the oracle \(O\) (which will be axiomatized later in §5.5), and access to the code comonad itself (via code). Note that Johann’s theory is \(\Sigma_0^1\) at any time, so the atom code has no extra logical power beyond the Turing-complete language SKJ. However, to allow Johann’s theory to change over time, we must refrain from statically defining code as an SKJ term; having access to code in the basis allows us to be agnostic about its SKJ-definition. Thus we introduce atoms

\[
\text{atom_code} := (\text{nat} \rightarrow \text{code}) (\lambda n. (\text{inr} \cdot \text{nat2num } n)).
\]

\(\text{using } O.\)

\(\text{assume } \text{atom_code } 0 = \{S\}.\)

\(\text{assume } \text{atom_code } 1 = \{K\}.\)

\(\text{assume } \text{atom_code } 2 = \{J\}.\)

\(\text{assume } \text{atom_code } 3 = \{O\}.\)

\(\text{assume } \text{atom_code } 4 = \{\text{code}\}.\)

\(\text{check } \text{atom_code } 5 = \top.\)

\(\text{assume } (\{S\}, \{K\}, \{J\}, \{O\}, \{\text{code}\} :: \text{test_code}).\)

and applications

\[
\text{define } \text{A} := \text{Bin_op code } (\lambda x, y. (\text{inl}\cdot\text{pair}\cdot e\cdot x, e\cdot y)).
\]

\(\text{assume } \text{test_code } (\text{A } x y) = \text{and}_semi (\text{test_code } x) (\text{test_code } y).\)

\(\text{assume } \text{A}\{x\}\{y\} :: \text{test_code}.\)

\(\text{check } \{x y\} = \text{A}\{x\}\{y\}.\)

just checking notation

(We will explain the semantics for quoted quantification \(\forall \{x\}. \phi(x, \{x\})\) shortly.)

We define evaluation and quoting operations \(E, Q\) by simultaneous recursion, using only the atoms \(S, K, J, O, \text{code}\) and the quoting operation \(\{\cdot\}\) on various closed terms.

\[
\text{let } (\text{eval_code}, \text{quote_code}) := (\text{Y}\lambda (e, q). (\text{eval_code } e, q) \cdot ((\text{code} \rightarrow \text{any}) \cdot (\text{pair}\cdot e\cdot x, e\cdot y), \text{S, K, J, O, code, error}), (\text{code} \rightarrow \text{code}) \cdot (\text{pair}\cdot e\cdot x, e\cdot y), \text{S, K, J, O, code, error})).
\]

\(\text{define } E := \text{eval_code}.\)

\(\text{check } E = (\text{code} \rightarrow \text{any}) \cdot ((\text{pair}\cdot e\cdot x, e\cdot y), \text{S, K, J, O, code, error}).\)

\(\text{check } E\{S\} = S.\)

\(\text{check } E\{K\} = K.\)

\(\text{check } E\{J\} = J.\)

\(\text{check } E\{O\} = O.\)

\(\text{check } E\{\text{code}\} = \text{code}.\)

\(\text{check } E\{x y\} = (E\{x\})(E\{y\}).\)
\begin{quote}
\texttt{!define Q := quote_code.}
\texttt{!check Q = (code\rightarrow\textit{code}) \((\lambda(x,y). \ A \ (\ A \ \{A\} \ (Q \ x)) \ (Q \ y),}
\texttt{\{\{S\}\}, \{\{K\}\}, \{\{J\}\}, \{\{O\}\}, \{\{\textit{code}\}\},
\texttt{error}
})\).
\texttt{!check Q\{S\} = \{\{S\}\}.}
\texttt{!check Q\{K\} = \{\{K\}\}.}
\texttt{!check Q\{J\} = \{\{J\}\}.}
\texttt{!check Q\{O\} = \{\{O\}\}.}
\texttt{!check Q\{\textit{code}\} = \{\{\textit{code}\}\}.}
\texttt{!check Q\{x \ y\} = A \ (A \ \{A\} \ (Q\{x\})) \ (Q\{y\}).}
\end{quote}

Next we assume a very natural set of 15 equations that turn out to axiomatize \(\langle\text{code}, A\{-\}, E, Q, \{-\}\rangle\) being a computational monad. Because the definition of a comonad is clearer in a typed theory (i.e., in a category with more than one object), we will delay the definition until we introduce an type-indexed comonad \(\langle\text{Code, Apply, Eval, Quote}\rangle\) in 5.3. For now, simply observe that the following equations are all natural assumptions that are desirable for a type of extensional codes.

\begin{quote}
\texttt{functoriality}
\texttt{!assume code : V.}
\texttt{!assume A\{f\} : code\rightarrow\textit{code}.}
\texttt{!assume A\{I\} = code.}
\texttt{!assume A\{f\} ; A\{g\} = A\{f ; g\}.}
\end{quote}

\begin{quote}
\texttt{naturality}
\texttt{!assume E : code\rightarrow\textit{any}.}
\texttt{!assume Q : code\rightarrow\textit{code}.}
\texttt{!assume A\{f\} ; E = E ; f.}
\texttt{!assume A\{f\} ; Q = Q ; A\{A\{f\}\}.}
\end{quote}

\begin{quote}
\texttt{comonad conditions}
\texttt{!assume Q ; E = code.}
\texttt{!assume Q ; A\{E\} = code.}
\texttt{!assume Q ; Q = Q ; A\{Q\}.}
\end{quote}

\begin{quote}
\texttt{computation conditions}
\texttt{!assume \{x\} : code.}
\texttt{!assume A\{f\}\{x\} = \{f \ x\}.}
\texttt{!assume E\{x\} = x.}
\texttt{!assume Q\{x\} = \{\{x\}\}.}
\end{quote}

Axioms and axiom schemata for extensionality

Ideally we would like a fully extensional 1-1 coding of terms, so that each \(H^*\) equivalence class corresponded to a unique code; that way there would be as few as possible codes taking up space in Johann’s database. This ideal is captured by the reasoning principles
The (1 − 1) rule guarantees that codes cost as few obs as possible, and the (flat) rules guarantee that every term \(c : \text{code} :: \text{test code} \) is the quotation \(\{ M \} \) of some term \(M \). However these rules are inconsistent. An example of terms \(M, N \) for which \(M = N \) but \(\{ M \} = \{ N \} \) is inconsistent is provided by Gödel’s second incompleteness theorem (discussed in detail later in 5.6). To achieve consistent coding principles that are still dense (nearly 1-1), we avoid self-referential terms by restricting the hypotheses in the ideal reasoning principles to provable equality and inequality.

The following axiom schemata will be enforced for the quoting operation \(\{ - \} \) and the atoms \(\text{code}, \text{test code}, A, E \). Note that since \(E \) is a left inverse for \(Q \) on codes, we do not need explicit axiom schemata regarding \(Q \).

The quoting axioms \(\{ - \} \) simply ensure that quoted terms are codes and evaluate to the terms they quote (so \(E \) is a left inverse for \(\{ - \} \)). The \((E - A) \) axiom maintains consistency between the code for a term and the codes for its subterms, relating them by application \(A \). The (flat) axioms ensure flatness of the code type, up to provable equality.

The quoting axioms describe exactly what we need to interpret universal quantification over codes, as in \(\forall \{ x \}. x = E \{ x \} \) above. We generally want to interpret a sentence \(\forall \{ x \}. \phi(x, \{ x \}) \) depending on both \(x \) and \(x \)'s code\(^1\) as a sentence \(\forall c. \psi(c) \) quantifying over codes \(c \). The quoting axioms require \(x = E\ c, c : \text{code}, \) and \(c :: \text{test code} \), so it is enough to interpret

\[
\forall \{ x \}. \phi(x, \{ x \}) \iff \forall c : \text{code} :: \text{test code}. \phi(E\ c, c)
\]

This provides semantics for universal quantification codes above, and allows us to universally close equations with variables that appear in quotes.

\(^1\)higher codes can be attained by quoting.
To ensure provable extensionality, we need to reflect each of Johann’s equational reasoning principles to a corresponding principle for quoted terms. We begin by explicitly identifying codes of β-equivalent terms.

\begin{verbatim}
!assume {⊥ x} = {⊥}. i.e., ∀c: code :: test_code. A(⊥)c = {⊥}
!assume {⊤ x} = {⊤}.
!assume {I x} = {x}.
!assume {K x y} = {x}.
!assume {F x y} = {y}.
!assume {W x y} = {x y y}.
!assume {B x y z} = {x (y z)}.
!assume {C x y z} = {x z y}.
!assume {S x y z} = {x z (y z)}.

We also assume the bounded semilattice axioms for join

\begin{verbatim}
!assume {J x x} = {x}.
!assume {J x y} = {J y x}.
!assume {J x (J y z)} = {J (J x y) z}.
\end{verbatim}

and the defining properties of Y and V.

\begin{verbatim}
!assume {Y f} = {f(Y f)}.
!assume {V a} = {I | (V a)◦a}.
\end{verbatim}

Finally we need to reflect the axiom schemata hard-coded into Johann. These reflected axiom schemata are listed in Appendix B.

Characterization weakly extensional codes

What does does the code closure look like in this weaker theory of provable extensionality? By relaxing extensionality to only provable equality, we gave up true flatness, so that the ideal (flat) rules fail. To see the local effects of the relaxation, observe that for distinct M, N whose equality is unknown to Johann, the following are all distinct inhabitants of code.

\begin{diagram}
\begin{tikzpicture}[level distance=2.5cm, level 1/.style={sibling distance=3cm}, level 2/.style={sibling distance=2cm}]

 \node {\{$M\} | \{N\}\)}
 child {node {\{$M\} | \{N\}\}}
 child {node {\{$M\} | \{N\}\}}
 child {node {\{$M\} | \{N\}\}}
 child {node {\{$M\} | \{N\}\}}
 child {node {\{$M\} | \{N\}\}}
 child {node {\{$M\} | \{N\}\}}

\end{tikzpicture}
\end{diagram}

Lemma 5.2.1. If Johann can prove neither $M = N$ nor $M \not= N$, then

(a) the codes $\{M\}, \{N\}, \{M | N\},$ and $\{M\} | \{N\}$ are distinct total inhabitants of code, and
(b) they obey the order relations in the diagram above.

Proof. In acquiring information, Johann can only join equivalence classes of code. Consider the four possibilities of acquiring information

1. If $M = N$ then $\{M\} = \{N\} = \{M | N\} = \{M\} | \{N\}$.
2. If $M \not\leq N$ then $\{M\}, \{N\} = \{M | N\}$ and $\{M\} | \{N\} = \top$ are distinct.
3. If $M \not\geq N$ then $\{M\} = \{M | N\}, \{N\}$ and $\{M\} | \{N\} = \top$ are distinct.
4. If $M \not= N$ are incomparable, then all four codes are distinct.
In all cases of complete knowledge, \(\{M \mid N\} \subseteq \{M\} \mid \{N\} \), so this relation also holds under incomplete knowledge. However, since in case (4) all four codes are distinct, they must also be distinct in the partial information case.

The minimal tested codes all arise as quotations of terms \(\{M\} \); thus inhabitants like \(\{M\} \mid \{N\} \) are pathological.

Definition 5.2.2. A term \(c: \text{code} :: \text{test_code} \) is *standard* iff it arises as the quotation of some term \(M \), and *nonstandard* otherwise.

Lemma 5.2.3. \(c: \text{code} :: \text{test_code} \) is nonstandard iff there is another \(c': \text{code} :: \text{test_code} \) strictly below \(c \).

Even within standard codes, unbounded \(\beta \)-expansion leads to noncompact codes below every compact code, but evaluating to the same thing.

Example 5.2.4. An infinite I-expansion of any term

\[x = I x = I(I x) = I(I(I x)) = \ldots \]

will evaluate to \(\bot \), but code can’t raise it to a tested semiset.

\[\text{III} = Y(A\{I\}). \]
\[\text{check III : code.} \]
\[\text{check test_code III = \bot.} \]
\[\text{check (\forall c::test_code. III | c :: test_code).} \]

Nonstandard codes pose a potential problem to our interpretation of statements universally quantifying quoted variables

\[\forall \{x\}. \phi\{x\} \iff \forall c: \text{code} :: \text{test_code}. \phi(c) \]

For example the flatness statement

\[\forall \{x\}, \{y\}. \{x\} \mid \{y\} :: \text{test_code} \implies x = y \]

fails even though there are no provable witnesses of this failure. We can manually avoid such problems by never mentioning nonstandard codes like \(\text{code}(\{x\} \mid \{y\}) \). In addition to allowing term discrimination, the flatness rules allow Johann to re-use the application indexing data structure to index also quoted terms. To see how this works, first consider the ideal situation. Under the ideal (flat) rules above, we could define \(\{M\} \) in terms of \(M \), as the unique solution \(c \) to

\[E \; c = M \; \text{c::code} \; \text{c::test_code} \]

Then Johann could avoid explicitly indexing quoting, and instead search for a solution to the above equations. In weaker extensionality with only provable equality, there will be additional nonstandard solutions \(c \) at any time. However only the standard solution will be the only *provable* solution, so we can still use the ideal indexing scheme.

Subalgebras of SKJO as subtypes of code

Later we will need to restrict some functions and quantifiers from SKJO codes to SKJ codes (e.g. the oracle inputs two codes \(O\{p\}\{q\} \), but we will require \(\{p\} \) to be SKJ-definable). To achieve a uniform quoting mechanism \(\{\cdot\} \) across multiple subalgebras, we will re-use the code closure, and vary only the test semipredicate for definability. Abstractly, we implement a definability test parametric in the subset
\[B \subseteq \{ S, K, J, O, \text{code} \} \] generating the subalgebra (so a term is \(B \)-definable iff it can be expressed using only atoms from \(B \)).

\[
\text{test_subcode} := (\text{Test num} \rightarrow \text{Test code}) (\lambda \text{basis}. \\
\text{Y} \lambda t. \text{test_Sset. test_Sum (test_Prod t t) (P_{test \text{ test_num basis}})}).
\]

!\text{check test_subcode b} <:: \text{test_code}.
!\text{check test_code = test_subcode }\bot.
!\text{check test_code = test_subcode } (I, I, I, I, \top).

Thus the whole algebra \(SKJO \) is given by the closure,test pair

\[
skjo := \text{code}.
\text{test_skjo} := \text{test_subcode} (I, I, I, I, \bot).
\]

In fact at any time code is \(SKJ \)-definable, hence \(SKJO \)-definable, so we have

\[
!\text{assume test_skjo = test_code}.
\]

Now for \(SKJ \) codes, we test whether there is an \(O \)-free form.

\[
skj := \text{code}.
\]

!\text{define test_skj = test_subcode (I, I, I, \bot, \top)}.
!\text{assume test_skj := test_subcode (I, I, I, I, \top)}.
!\text{assume } (\{S\}, \{K\}, \{J\}, \{\text{code}\} :: \text{test_skj}).
!\text{assume test_skj (A x y) = and_semi (test_skj x) (test_skj y)}.

To express that \(O \) is not \(SKJ \)-definable, we assume that

\[
!\text{assume test_skj }\{O\} = \bot.
\]

5.3 Injective codes for reflection

In this section we extend the \(\langle \text{code}, A\{\cdot\}, E, Q, \{\cdot\} \rangle \) structure to a rich type-indexed modal type structure

\[
\langle \text{Code}\{\cdot\}, \text{Apply}\{\cdot\}\{\cdot\}\{\cdot\}, \text{Eval}\{\cdot\}, \text{Quote}\{\cdot\}, \text{Code}\{\cdot\}\{\cdot\} \rangle
\]

combining the expressive power of codes and Simple-definable types. We show that the two structures are [untyped and typed, resp.] computational monads in the sense of Brookes and Geva [BG92].

A computational comonad for typed codes

Definition 5.3.1. A (definable) function on types-as-closures is a pair \(F = (F_0, F_1) \) of transformations of type

\[
F_0 : V \rightarrow V \\
F_1 : \forall a: V, b: V. (a \rightarrow b) \rightarrow F_0 a \rightarrow F_0 b
\]

perserving identity and composition

\[
F_1 a b 1_a = 1_b \\
F_1 a b f ; F_1 b c g = F_1 a c (f; g)
\]
Definition 5.3.2. A (definable) natural transformation between functors $\eta: F \to \Gamma$ is an operation

$\eta : \forall a: V. \ F_0 a \to \Gamma_0 a$

satisfying

$F_1 a \ b \ f \ ; \ \eta \ b = \eta \ a \ ; \ \Gamma_1 a \ b \ f$

Comonads are dual to the more familiar structure of monads, in that arrows of η and μ are reversed

Definition 5.3.3. A (definable) comonad is a functor F_0, F_1 together with a pair of natural transformations $\eta, \mu: F \to F^2$ satisfying

$\mu \ a ; \ \eta(F_0 \ a) = 1_{F_0 \ a}$ \hspace{1cm} \text{left-identity}

$\mu \ a ; \ F_1(\eta \ a) = 1_{F_0 \ a}$ \hspace{1cm} \text{right-identity}

$\mu \ a ; \ \mu(F_0 \ a) = \mu \ a ; \ F_1(\mu \ a)$ \hspace{1cm} \text{associativity}

(which are generalizations of the monoid axioms – just squint).

Monads ([Wad90], [Mog91]) and comonads ([BG92], [Geh95]), with a little extra structure come up frequently in functional programming, though true comonads appear only in the context of semantics.

Definition 5.3.4. A (definable) computational comonad is a comonad ($F_0, F_0, \eta, \mu, \gamma$) with an additional natural transformation $\gamma: 1 \to F$ satisfying

$\gamma \ a ; \ \eta \ a = 1_a$

$\gamma \ a ; \ \mu \ a = \gamma \ a ; \ \gamma \ (F_0 \ a)$

Brooks and Geva [BG92] use a comonad to capture intensional semantics in an extensional system. There is also a history of comonadic type structure in staged compilation of functional languages (e.g. [DP96], [WLPD98]). In these applications, the comonad captures an idea of neutralization of computations, and is often called a code, eval, quote comonad.

Definition 5.3.5. The type-indexed code comonad

$(\text{Code} {-}, \ \text{Apply} {-}\{-\}\{-\}, \ \text{Eval} {-}, \ \text{Quote} {-}, \ \text{Code} {-}\{-\})$

now has components

\[\text{Code} \ := \ (\text{code} \to \ P \ \text{code}) \ (\lambda a, x. \ A (\text{A} \ {\text{V}} \ a) x). \]
\[\text{Apply} \ := \ (\forall a: V. \ {\{b: V. \ \text{Code} a \to b \} \to \text{Code} a \to \text{Code} b}) \ (\lambda \ a, \ -. \ A). \]
\[\text{Eval} \ := \ (\forall a: V. \ \text{Code} a \to a) \ (\lambda \ a, \ -. \ E). \]
\[\text{Quote} \ := \ (\forall a: V. \ \text{Code} a \to \text{Code} \{\text{Code} a\}) \ (\lambda \ a, \ -. \ Q). \]

where Code[a] is the action of the functor on the object a, Apply[a]{b}{f} is the action of the functor on the arrow $f : a \to b$, Eval{-} and Quote{-} form the comonadic pair of natural transformations, and the typed quoting operation Code{-}{-} constructs computations.

The components of the code comonad are not definable as functions, so some of the arrows in the comonad conditions will not be realized by SKJO -terms (because of the undefinability of quoting {-}). However the relations still hold at each objects a, b and arrows f, g. This contrasts the case of, e.g., the Sset monad, where Sset a and the other structure is all SKJO -definable (see §3.7).

Having assumed in §5.2 the computational comonad conditions for the unityped, fully-definable comonad (code, A {-}, E, Q, [-]), we now verify the computational comonad conditions for the indexed version.\(^2\)

\(^2\)Keep in mind the semantics of quantified variables:

$\forall[x]. \ \phi(x, \{x\}) \iff \forall c: \text{code::test_code}. \ \phi(E c, c)$

104
These equations were arrived at by straight-forward annotation of the 15 comonad axioms for the untyped theory, which were in turn arrived at by reversing the arrows in Wadler’s very lucid exposition [Wad90] of computational monads.

\[
\text{the type-indexed identity morphism}
\]
\[
\text{Id} := (\forall a: V. a \rightarrow a) (\lambda x. I).
\]
\check{\text{Id}} = V.

\[
\text{functoriality of (Code[-], Apply[-][-][-])}
\]
\check{\forall a: V. \text{Code}[a] : V}.
\check{\forall a: V, b: V, \text{f: a \rightarrow b}. \text{Apply}[a/b] \text{f} : \text{Code}[a] \rightarrow \text{Code}[b]}.
\check{\forall a: V. \text{Apply}[a] \text{Id a} = \text{Id(\text{Code}[a])}}.
\check{\forall a: V, b: V, c: V, \text{f: a \rightarrow b}, \text{g: b \rightarrow c}.}
\check{\text{Apply}[a/b] \text{f} : \text{Apply}[b/c] \text{g} = \text{Apply}[a/c] \text{f/g}}

\[
\text{naturality of Eval[-][-] and Quote[-][-]}\text{-}
\]
\check{\forall a: V. \text{Eval}[a] : \text{Code}[a] \rightarrow a}.
\check{\forall a: V. \text{Quote}[a] : \text{Code}[a] \rightarrow \text{Code}[\text{Code}[a]}).
\check{\forall a: V, b: V, \text{f: a \rightarrow b}. \text{Apply}[a/b] \text{f} : \text{Eval}[b] = \text{Eval}[a] \circ \text{f}.}
\check{\forall a: V, b: V, \text{f: a \rightarrow b}.}
\check{\text{Apply}[a/b] \text{f} : \text{Quote}[b]}
\check{\text{=} \text{Quote}[a] : \text{Apply}[\text{Code}[a]](\text{Code}[b])(\text{Apply}[a/b] \text{f})}

\[
\text{comonad conditions}
\]
\check{\forall a: V. \text{Quote}[a] : \text{Eval}[\text{Code}[a]] = \text{Code}[a]}.\check{\forall a: V. \text{Quote}[a] : \text{Apply}[a] \text{Code}[a] \text{Eval}[a] = \text{Code}[a]}.
\check{\forall a: V.}
\check{\text{Quote}[a] : \text{Quote}[\text{Code}[a]] = \text{Quote}[a]}.
\check{\text{Apply}[a] \text{Code}[a] \text{Quote}[a]}.

\[
\text{computation conditions}
\]
\check{\forall a: V, \{x:a\}. \text{Code}[a] \{x\} : \text{Code}[a]}.
\check{\forall a: V, \{x:a\}.}
\check{\text{Apply}[a/b] \{\text{Code}[a] \{x\} \} = \text{Code}[b] \{\text{f x}\}}
\check{\forall a: V, \{x:a\}. \text{Eval}[a] \{\text{Code}[a] \{x\}} = x).
\check{\forall a: V, \{x:a\}. \text{Quote}[a] \{\text{Code}[a] \{x\} \} = \text{Code}[\text{Code}[a]] \{\text{Code}[a] \{x\}}

105
Finally, as with every polymorphic type, we also define tests, checks, and joins for Code

\[
\text{test_Code} := (\forall \{a:V\}. \text{Test } a \rightarrow \text{Test}(\text{Code}\{a\})) (\\
\lambda \mu, t, \{x\} :: \text{test_code. } t \times
).
\]

!check test_code = test_Code \{any\} I.

\[
\text{check_Code} := (\forall \{a:V\}. \text{Check } a \rightarrow \text{Check}(\text{Code}\{a\})) (\\
\lambda \mu, t, \{x\} :: \text{check_code. } t \times
).
\]

!check check_code = check_Code \{any\} I.

\[
\text{Join_code} := \text{Sset_code (} \\
\Sigma \lambda j. (\lambda x. j \lambda y. (A \times y)) | \{\{S\}\} | \{\{K\}\} | \{\{J\}\} | \{\{O\}\} | \{\{\text{code}\}\} \\
)).
\]

\[
\text{Join_Code} := (\forall \{a:V\}. \text{Sset_Code}\{a\}) (\lambda a. \text{Join_code } \lambda x. (A \ a \times)).
\]

!check Join_code = Join_Code \{I\}.

\[
\text{Join_skj} := \text{Sset_skj (Join_code } \lambda c::\text{test_skj. } \{c\}).
\]

Domain-specific quoting functions

As mentioned earlier, the quoting arrow \(a \rightarrow \text{Code}\{a\}\) is missing from general comonads, but is present in computational comonads for some restricted subsets of \(a\), e.g. as \{-\} for closed terms of type \(a\). The arrow is also present for code types \(\text{quote_code} = Q\) and flat domains e.g. numeral systems, though only the total inhabitants are correctly quoted. We provide quoting functions for polynomial datatypes in general. Each quoter will have type

\[
\text{Quoter} := (\text{code } \rightarrow V) (\forall \{a:V\}. a \rightarrow \text{Code}\{a\}).
\]

For example the atomic types

\[
\text{quote_semi} := \text{Quoter\{semi\} } \{\{I\}\}.
\]

!check test_semi = test_code=quote_semi;

!check quote_semi I = \{I\}.

\[
\text{quote_bool} := \text{Quoter\{bool\} } \{\{K\}, \{F\}\}.
\]

!check test_bool = test_code=quote_bool;

!check quote_bool K = \{K\}.

!check quote_bool F = \{F\}.
and basic type constructors

quote_Maybe := \((\forall a : V). \text{Quoter}\{a\} \rightarrow \text{Quoter}\{\text{Maybe}\ a\} \) (\\
\lambda x, q. \{\text{none}\}, \text{inr}\circ q_b \)).

quote_Sum := (\\
\forall\{a : V\},\{b : V\}. \text{Quoter}\{a\} \rightarrow \text{Quoter}\{b\} \rightarrow \text{Quoter\{Sum\ a\ b\}} \) (\\
\lambda x, y, q_a, q_b. \text{inl}\circ q_a, \text{inr}\circ q_b \)).

quote_Prod := (\\
\forall\{a : V\},\{b : V\}. \text{Quoter}\{a\} \rightarrow \text{Quoter}\{b\} \rightarrow \text{Quoter\{Prod\ a\ b\}} \) (\\
\lambda x, y, q_a, q_b, (x, y). \{x\} := q_a \times \{y\} := q_a \times \{(x, y)\})
).

We also provide quoters specifically for numerals, naturals and SKJ-terms.

quote_num := \text{Quoter\{num\}} (Y \text{quote_Maybe}) .

!check test_num = test_code\circ quote_num .

!check quote_num none = \{none\} .

!check (\forall\{n::\text{test_num}\}. \text{quote_num}(\text{some}\ n) = \{\text{some}\ n\}) .

quote_nat := \text{Quoter\{nat\}} (A\{\text{succ}\}, \{\text{zero}\}) .

!check test_nat = test_code\circ quote_nat .

!check quote_nat 0 = \{0\} .

!check (\forall\{n::\text{test_nat}\}. \text{quote_nat}(\text{succ}\ n) = \{\text{succ}\ n\}) .

quote_term := \text{Quoter\{term\}} (Y \lambda q. (\\
\lambda (x, y). \lambda (A\{\text{ap}\}(q\ x)) (q\ y), \{S\}, \{K\}, \{J\})) .

!check test_term = test_code\circ quote_term .

!check quote_term S = \{S\} .

!check quote_term K = \{K\} .

!check quote_term J = \{J\} .

!check quote_term \bot = \{\bot\} .

!check (\forall\{x::\text{test_term}\}. \{y::\text{test_term}\}. \text{quote_term}(\text{ap}\ x\ y) = \{\text{ap}\ x\ y\}) .

Since codes can be thought of as equivalence classes of terms, we can define a lifting function from term to skj

term_to_code := (\text{term} \rightarrow \text{code}) (\\
Y \lambda x. c2t\lambda x. \lambda y. (c2t\ x)\ (t2c\ Y), \{S\}, \{K\}, \{J\}, \{\top\})
).

and an inverse from code \rightarrow \text{Sset}\ term. Since code is not statically SKJ-definable, we must postulate its definition as a term.

!using code_as_term

!assuming code_as_term : term

!assuming code_as_term :: test_term.

code_to_term := (skj \rightarrow \text{Sset}\ term) (\\
Y \lambda c2t. (\\
\lambda (x, y). c2t\lambda x. ct2\lambda y. (ap\ x\ y), \{S\}, \{K\}, \{J\}, \{\bot\})
).

)}.
Now we can relate the quoting operation on terms to the quoting operations on codes
\[
\text{!check } (\lambda(x). \text{quote_term } t) \circ \text{code_to_term} \subseteq \text{code_to_term} \circ Q.
\]

Fixed-point theorems

In this section we formulate some basic results from classical recursion theory in terms of the code comonad. See [Kleene, 1938], [Bohm, 1946], for classical presentations, [Böhm, 1952] for presentation in untyped λ-calculus, and [CS88] for presentation in a typed λ-calculus.

Kleene’s first fixed-point theorem (the recursion theorem), plus uniqueness

Theorem 5.3.6. (Kleene, Böhm, van der May)

(a) follows from (b).

(b) We simply annotate with quotes the proof from the first fixed point theorem. Recall the syntactic sugar for quoting

\[
\lambda\{x\}. \{y\}. \{x y\} = A
\]

\[
\lambda\{x\}. \{\{x\}\} = Q
\]

\[
\lambda\{x\}. x = E
\]

Consider the following (purely mechanical) annotation steps

\[
Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\]

\[
\sim \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\]

\[
\sim \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\]

\[
\sim \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\]

\[
\sim \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\]

\[
= \ Y'
\]

Now checking

\[
\text{!define } Y' := (\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))).
\]

\[
\text{!check } Y'\{f\}
\]

\[
= (\lambda x. f(x x)) (\lambda x. f(x x))
\]

\[
= f((\lambda x. f(x x)) (\lambda x. f(x x))
\]

\[
= f\{Y'\{f\}\}.
\]

as required.

3Warning: our notation \{M\} for quoting terms is opposite to Kleene’s notation \{φ\} for evaluating codes for partial recursive functions.
Question 5.3.8. Does uniqueness still hold for \(Y' \)?

Following [DP96], we can also take a modal logic perspective. Letting \(\square a = \text{Code}\{a\} \) denote the comonadic type constructor for a moment, we see that the Code comonad’s terms have types corresponding to the (S4) axioms of modal logic (see 5.3). To these we can further add a typed fixedpoint \(\text{Fix} \) corresponding to the irreflexivity axiom and Löb’s theorem,\(^4\) to achieve the typings

\[
\begin{align*}
\text{Code}\{a\}\{x\} & : \square a & \text{necessitation} \\
\text{Apply}\; a\; b & : \square(a \rightarrow b) \rightarrow \square a \rightarrow \square b & \text{distribution} \\
\text{Eval}\; a & : \square a \rightarrow a & \text{reflexivity} \\
\text{Quote}\; a & : \square a \rightarrow \square \square a & \text{transitivity} \\
\text{Fix}\; a & : \square(\square a \rightarrow a) \rightarrow \square a & \text{irreflexivity} = \text{Löb’s theorem}
\end{align*}
\]

\(\text{Fix} \) is defined in terms of \(Y' \) by quoting the result of \(Y' \).

\[
\text{Fix} := (\forall\{a:V\}. \text{Code}\{\text{Code}\{a\} \rightarrow \text{Code}\{a\}\}) (\lambda -, \{f\}. \{Y'\{f\}\}).
\]

!check \(\forall\{a:V\}, \{f:a\}. \text{Fix}\{a\}\{f\} : \text{Code}\{a\} \).

Later in 5.4 \(\text{Fix} \) will be the main tool in proving Löb’s theorem.

Provable equality

Our extensional code type identifies provably equivalent terms, and thus allows introspection into Johann’s current theory. For example, we can define semipredicates for \textit{provable} equality and information ordering, employing the \((E=__)\) rule

\[
\begin{align*}
\text{if_pr_equal} & := \; \text{P_C_equal} \; (\text{code} \rightarrow \text{code} \rightarrow \text{semi}) \; (\lambda x,y. \; ((\lambda x', y'. \; \text{and_semi} \; (x \cdot x') \; (y \cdot y')). \; (\bot)), \; (\lambda n. \; ((\bot, \text{eq_num} \; n))) \\
\text{!check}\; \lambda x,y. \; ((\lambda x', y'. \; \text{and_semi} \; (x \cdot x') \; (y \cdot y')). \; (\bot)), \; (\lambda n. \; ((\bot, \text{eq_num} \; n))) & \end{align*}
\]

!check \(\lambda x,y. \; ((\lambda x', y'. \; \text{and_semi} \; (x \cdot x') \; (y \cdot y')). \; (\bot)), \; (\lambda n. \; ((\bot, \text{eq_num} \; n))) \).

Negation is a little trickier, but we can define it in terms of code, employing the rule \((E__\)\)

\[
\begin{align*}
\text{if_pr_nequal} & := \; \text{P_C_nequal} \; (\text{code} \rightarrow \text{code} \rightarrow \text{semi}) \; (\lambda x, \{y\}. \; \text{if_pr_equal} \; \{x\; |\; \{y\}\} \; \{y\}) \\
\text{!check}\; \lambda x, \{y\}. \; \text{if_pr_equal} \; \{x\; |\; \{y\}\} \; \{y\}) & \\
\text{if_pr_nless} & := \; \text{P_C_nless} \; (\text{code} \rightarrow \text{code} \rightarrow \text{semi}) \; (\lambda x, \{y\}. \; \text{if_pr_equal} \; \{x\; |\; \{y\}\} \; \{y\}) \\
\text{!check}\; \lambda x, \{y\}. \; \text{if_pr_equal} \; \{x\; |\; \{y\}\} \; \{y\}) \\
\text{!check}\; 1 & = \; \text{if_pr_nless} \; \{\top\} \; \{\bot\} &
\end{align*}
\]

\(^4\)Note that these axioms are inconsistent for modal logic, as reflexivity and irreflexivity together imply \(\square a \) for any \(a \).
Combining (positive,negative) pairs of tests, we can define boolean-valued introspective predicates for equality and Scott ordering.

\[
\text{pr_equal} := \text{P C (code \rightarrow code \rightarrow bool)} (\text{\lambda x, y. if_pr_equal x y true } | \text{if_pr_nequal x y false })
\]

\[
\text{pr_less} := \text{(code \rightarrow code \rightarrow bool)} (\text{\lambda x, y. if_pr_less x y true } | \text{if_pr_nless x y false })
\]

At any time the value of such a predicate will be provably true if Johann has proved the result, provably false if Johann has disproved the result, and undecidable otherwise. In particular, \(\text{pr_equal x y}\) will never be proved to be bottom (for total \(x, y\)); that way Johann leaves room for future assumptions/axioms.

We will see stronger predicates later in 5.6, including a generalized provability logic.

5.4 Provability and reflection

Previously in 5.3 we saw how to decide provable equality between quoted SKJO terms. At the term \(\{\text{true}\}\) this gives us a decision procedure for provability of general boolean statements.

\[
\text{pr} := \text{(Code\{bool\} \rightarrow bool)} (\text{\lambda x::test_bool. pr_equal \{true\} \{x\}})
\]

The provability predicate \(\text{pr}\{_\}\) is defined by the bi-directional reasoning principle

\[
\frac{\text{pr}\{\phi\} = \text{true}}{\{\phi\} = \{\text{true}\}} \quad (\text{pr - def})
\]

Soundness of \(\text{pr}\{_\}\) (as Johann’s theory) can be expressed by the two reasoning principles

\[
\frac{\phi = \text{false} \quad \text{pr}\{\phi\} = \text{false}}{\phi = \text{true} \quad \text{pr}\{\phi\} = \text{true}}
\]

While the former holds by definition

\[
\text{!check pr\{true\} = true.}
\]

the latter \(\text{pr}\{\text{false}\} = \text{false}\) cannot be proven or even assumed. In fact this is Gödel’s second incompleteness theorem.

The provability predicate \(\text{pr}\{_\}\) models the provability logic GL (see [Ver08], [JJ98]). GL is the modal logic satisfying Löb’s theorem (as above), the distribution rule

\[
\text{!check } (\forall \phi::\text{bool::test_bool}, \{\psi::\text{bool::test_bool}. \text{true} = \text{implies (pr\{implies \phi \psi\})}.}
\]

\[
\frac{\text{implies (pr\{\phi\})}.}{\text{pr\{\psi\}}}
\]

110
and the inference rule \(\frac{\phi = \text{true}}{\phi} = \text{true} \) (but not its converse). This rule follows from the definition of \(\phi \) and the extensionality principle for code \(\frac{\psi}{\text{true}} = \text{true} \).

Transitivity is a theorem of GL; hence GL extends K4.

Having reflected Johann’s hard-coded reasoning principles in B, we can also assume the converse of transitivity

\[\forall \{\phi : \text{bool} \mapsto \text{test} \cdot \text{bool} \}. \text{true} \quad \Rightarrow \quad \text{pr} \{ \phi \} = \text{pr} \{ \text{pr} \{ \phi \} \} \]

and justly refer to \(\text{pr} \{ - \} \) as Johann’s theory.

Using the provability predicate \(\text{pr} \{ - \} \), we can relativize some classical incompleteness theorems from PA to code (see [Smo77] and [BBJ07] for statements of the theorems in these forms).

We begin with the diagonalization lemma, which in our context is a special case of Kleene’s second fixed point theorem (from 5.3). Let \(\psi \) denote \(\text{pr} \{ \phi \} = \text{true} \), and consider predicates of quoted booleans

\[\text{pred}_\text{qbool} := \lambda \psi. \text{and} \text{semi} (\phi \{ \text{true} \}) (\phi \{ \text{false} \}) \]

Theorem 5.4.1. (Diagonalization lemma)
(a) For every total predicate \(\phi \{ - \} \) on codes of sentences, there is a total sentence \(\psi \) satisfying \(\vdash \psi \leftrightarrow \phi \{ \psi \} \) (i.e., \(\text{pr} \{ \text{iff} \ \psi \ (\phi \{ \psi \}) \} = \text{true} \)).
(b) The \(\psi \) in part (a) is uniformly definable.

Proof. (a) follows from (b).
(b) We apply \(Y' \) from Kleene’s second fixed-point theorem

\[\psi := Y' \{ \phi \} \implies Y' \{ \phi \} = \phi \{ Y' \{ \phi \} \} \]

And since Johann knows this, we get the stronger \(\text{pr} \{ - \} \) version

\[\forall \{\phi : \text{pred}_\text{qbool} \mapsto \text{test}_\text{qbool} \}. \text{let} \{ \psi \} := \{ Y' \{ \phi \} \}. \text{let} \psi = \phi \{ \psi \} \quad \text{AND} \quad \text{pr} \{ \text{iff} \ \psi \ (\phi \{ \psi \}) \} = \text{true} \). \]

An easy consequence of the diagonalization lemma is Gödel’s first incompleteness theorem for Johann’s theory.

Theorem 5.4.2. (Gödel’s first incompleteness theorem) There is a sentence \(\phi \) such that neither \(\vdash \phi \) nor \(\vdash \neg \phi \).

In terms of decision,

\[\text{decides} := (\text{Code} \{ \text{bool} \} \mapsto \text{semi}) (\text{if} \circ \text{pr} \mid \text{if} \circ \text{pr} \circ (A \{ \text{not} \})). \]

\[\text{decides} \subseteq \text{test}_\text{Code} \{ \text{bool} \} \text{test}_\text{bool}. \]

The theorem states that Johann does not decide everything

\[\text{decides} \not\subseteq \text{test}_\text{Code} \{ \text{bool} \} \text{test}_\text{bool}. \]

\[\text{decides} \not\supset \text{test}_\text{Code} \{ \text{bool} \} \text{test}_\text{bool}. \]

(but Johann cannot prove these exactly; this is Gödel’s second incompleteness theorem).
Proof. Applying the diagonalization lemma, let $\phi := Y'(\neg \circ pr)$ so that $\phi = \neg \circ pr\{\phi\}$. Then assuming either $\vdash \phi$ or $\not \vdash \phi$ leads to contradiction

$\vdash \phi \iff \vdash pr\{\phi\}$ by strong transitivity

$\iff \vdash \neg \phi$ by definition

Formally checking,

\[
\begin{align*}
\text{!check } (\phi := Y'(\neg \circ pr). \ pr\{\phi\} &= \neg \circ pr\{\phi\} = \neg \circ pr\{\not \phi\}.
\end{align*}
\]

and assuming consistency, we can prove the contradiction

\[
\begin{align*}
inconsistent &= \neg \circ pr\{\false\}, \\
consistent &= \neg \circ pr\{\false\}, \\
\text{!check } (\phi := Y'(\neg \circ pr). \ pr\{\phi\} &= inconsistent = \neg \circ pr\{\not \phi\}).
\end{align*}
\]

Note that it is inconsistent for Johann to assume consistent = true. Also, the witness ϕ cannot be statically $SKJO$-definable; since every $SKJO$-definable sentence can eventually be decided (by assuming additional equations, e.g. the sentence itself). Thus ϕ must be theory- or time-dependent, by mentioning code.

Gödel’s second incompleteness theorem observes that the final ‘check above gives us a simpler form for the witness ϕ.

Theorem 5.4.3. (Gödel’s second incompleteness theorem) If Johann’s theory is consistent, then it cannot prove its own consistency (and also the trivial converse): consistent = not $\circ pr\{\text{consistent}\}$

I.e., consistent = not $\circ pr\{\false\}$ is the fixed point of not $\circ pr\{-\}$.

Proof. Continuing from above,

\[
\begin{align*}
\text{!check } (\phi := Y'(\neg \circ pr). \\
\text{inconsistent } &= \text{pr}\{\phi\} \quad \text{AND} \quad \text{by above} \quad \text{by above} \\
\text{consistent } &= \neg \circ pr\{\phi\} \quad \text{by negation} \quad \text{by definition of } \phi \\
\text{pr}\{\phi\} &= \neg \circ pr\{\neg \circ pr\{\phi\}\} \\
\text{pr}\{\phi\} &= \neg \circ pr\{\text{consistent}\} \quad \text{by above}
\end{align*}
\]

To state Löb’s theorem, we briefly use modal logic notation, with \Box denoting $pr\{-\}$.

Theorem 5.4.4. (Löb’s theorem) For any sentence ϕ, if $\vdash pr\{\phi\} \implies \phi$ then $\vdash \phi$; or in modal notation $\Box(\Box\phi \rightarrow \phi) \rightarrow \Box\phi$. Relying on the trivial converse allows a simpler assumption

\[
\begin{align*}
\text{!check } (\forall \phi: \text{bool}:: \text{test bool}. \ pr\{\implies \text{pr}\{\phi\}\}) \phi &= \text{pr}\{\phi\}).
\end{align*}
\]

I.e., $\Box\phi$ is the fixed point of $\Box(- \rightarrow \phi)$.

Proof. Applying the diagonalization lemma, let $\psi = Y'(\text{implies } (\text{pr}\{\psi\}) \phi)$, so that $\psi = \text{implies } (\text{pr}\{\psi\}) \phi$.

1. $\vdash \psi \iff (\Box\phi \rightarrow \Box\psi)$ diagonalization lemma
2. $\vdash \psi \rightarrow \Box\psi \rightarrow \phi$ 1
3. $\vdash \Box\phi \rightarrow \Box\psi \rightarrow \phi$ 2: informal transitivity
4. $\vdash \Box\phi \rightarrow \Box(\Box\psi \rightarrow \phi)$ 3: distributivity
5. $\vdash \Box\phi \rightarrow \Box\Box\psi \rightarrow \Box\phi$ 4: distributivity
6. $\vdash \Box\psi \rightarrow \Box\Box\phi$ formal transitivity
7. $\vdash \Box\psi \rightarrow \Box\phi$ 5,6
8. $\vdash (\Box\phi \rightarrow \phi) \rightarrow \Box\psi \rightarrow \phi$ 7
9. $\vdash (\Box\phi \rightarrow \phi) \rightarrow \psi$ 8,1
10. $\vdash (\Box\phi \rightarrow \phi) \rightarrow \Box\psi$ 9: distributivity
11. $\vdash (\Box\phi \rightarrow \phi) \rightarrow \Box\phi$ 7,10

112
Gödel’s second theorem and Löb’s theorems are instances of a more general fixed-point principle for \(pr \{-\} \)-guarded predicates.

Theorem 5.4.5. (de Jongh, Sambin 1975) Let \(a : \text{Code}(\text{bool}) \to \text{bool} \) be a predicate expression such that in \(a\{\phi\} \), \(\phi \) only occurs inside \(pr \{-\} \) (i.e. is “guarded” by \(pr \{-\} \)). Then there is a \(b : \text{Code}(\text{bool}) \to \text{bool} \) with

\[
\forall \{\psi: \text{bool} :: \text{test_bool} \}. \ pr \iff (b(\psi)) (a(b(\psi))\{\psi\})
\]

Proof. See [BBJ07].

Note that we can achieve the general fixed-point theorem already with \(Y' \), so that Sambin’s and de Jongh’s result guarantees definability in the guarded case.

5.5 Axioms for a hyperarithmetic oracle (O)

In this section we implicitly define an oracle \(O \) that answers hyperarithmetic questions with boolean values. The purpose of adding such an oracle to Johann’s language is to gain expressiveness. The language SKJ can express computable functions, and equations in SKJ essentially express totality of computable functions. By allowing access to a hyperarithmetic oracle, we can express essentially arbitrary statements in predicative set theory ([Fef05]). With a language complete for implicit definability, the task of verifying more complex problems is limited to the question of what inference rules to add.

The study of computability w.r.t. oracles has a long history (e.g. Rogers’ comprehensive [Rog67]) but is often confused by the definition of oracles as sets with two-sided membership decidability (the exception being enumeration degrees). This approach leads to various hierarchy theorems, which obfuscate the purpose of adding an oracle: to find a system closed under stronger notions of computability.

For example, it is classical theorem that the boolean implicit-definability operation has not fixedpoint

Theorem 5.5.1. The operation \(\text{jump} : (\text{Pred skj} \to \text{Pred skj}) \) defined

\[
jump o = (\text{Pred skj} \to \text{Pred skj}) (\lambda p : (\text{Pred skj} \to \text{Pred skj}) \to \text{pred} :: \text{test skj}.
\]

\[
p_o := p \circ o.
\]

\[
(\text{Join skj} \lambda x. \text{check bool}(p_o x)).
\]

\[
[\forall \{x : \text{test skj}. p_o \{x\}]))
\]

has no total well-tested fixedpoint.

Proof. Consider the term

\[
p := (Y' \lambda q, o, \{x\}. \text{implies}(eq_{skj}\{x\}\{q\}). \text{not}(o \{q\})).
\]

Then \(\text{jump o } \{p\} = \text{not}(o \{p\}) \).

However, our order-conscious approach embraces a variety of truth values bool, semi, unit, div. We show in this section that, formulating the same problem with semiboolean truth values, the implicit-definability operation does have a fixedpoint, a language closed under implicit semidefinability. This language is \(SKJO \).

In posing the implicit definability problem, we used a flat domain of codes. The definition of \(O \) works with any old flat type of codes, e.g. Gödel numerals. But since \(O \) respects equivalence of codes modulo their evaluation, it would waste space for codes to be perfectly intensional. This observation is the motivation for our extensional flat codes.
Implicit definition of the hyperarithmetic oracle

Statements in brackets $[\phi]$ are taken at meta-mathematical value, with bool values: true = K, false = F. Later in section 5.6 we will show how to compile a fragment of this informal logic to SKJO terms.

We define an oracle O as the least fixed point of the meta-equation

$$
O = (skj \to code \to semi) \quad (\lambda s:\text{test}_{skj}. \lambda t:\text{test}_{skjo}. \text{if } [\exists x::s. t x \supset T] T \quad \text{contravariant, so SKJ-definable}
\text{covariant, so allow self-reference}
\text{if } [\forall x::s. t x \sqsupset I] I)
$$

where O appears implicitly on the right hand side in evaluating the SKJO code t test, and the meta-level statements $[\exists x::s. t x \supset T]$ and $[\forall x::s. t x \sqsupset I]$ are interpreted as a bools. Note since the first argument s test is O-free, the right hand side is increasing in O, so by the Tarski-Knaster fixed-point theorem, O is well-defined. Moreover, since O operates on codes, it is a join of SKJ terms. Hence the B¨ohm-tree approximation theorem from 5 carries over, and with it the correctness proofs of Simple and all closures from SKJ.

What is the logical strength of O? At each step, O transforms a Π^0_2-complete problem $s <\ll t$ to a Δ^0_2 problem $O\{s\}(t) = I$ (see 5.3), but since O may occur in t, this step can be iterated arbitrarily often.

Definition 5.5.2. A predicate $\phi : nat \to bool$ is $bool$-hard (or just hard) for a problem class $X \subseteq \mathbb{N}$ iff X can be bool-decided by ϕ, i.e. $\phi n = (if \ n \in X \ then \ K \ else \ F)$. A semipredicate $\psi : nat \to semi$ semi-hard for a problem class X if every X can be semi-decided by ψ, i.e. $\psi n = (if \ n \in X \ then \ I \ else \ ⊥)$.

Theorem 5.5.3. O is Π^1_2-semi-complete.

Proof. (upper-bound) Let $\phi(-)$ be the Π^0_2 predicate of satisfying the above equation. Then O is the unique solution to the Π^1_2 predicate defining the least solution of $\phi(-)$, w.r.t. the Π^1_2 ordering problem $o \sqsubseteq o'$

$$
\phi(o) \ AND \ \forall o'. \ \phi(o') \implies o \sqsubseteq o'
$$

(completeness) It is enough to semidecide the well-foundedness of recursive (SKJ-definable) countably-branching trees:

$$
\text{if}_\text{wffd_tree} := (skj \to semi) \quad (\lambda \phi::\text{Test}(\text{Test num}). [\quad \text{given an SKJ-code } \phi,
\forall s::\text{test_{num}}. n::s \implies if \ s \ is \ total
\quad s::\phi
\quad]).
$$

In particular, it suffices to show that the meta-statement $[\ldots]$ can be interpreted as an SKJO term. Thus, working with SKJ codes,

$$
\text{if}_\text{wffd_tree} := (skj \to semi) \quad (\lambda \phi::(\text{num} \to semi) \to semi)::\text{test_{skj}}.
\text{or}_{\text{semi}} (\phi \ perp).
O \ {\text{test_{num}}} \ \{t \ \{(I, \phi_{\text{succ}})\}}
$$

\[\square\]

Question 5.5.4. How hard is equality in SKJO?
Axioms and axiom schemata

We start with some typing and testing axioms

\begin{verbatim}
| assume O : skj → code → semi.
| assume O : (∀p:Code{test}. Code{P_test p} → semi).
| assume O p q = and_semi (test_skj p) (test_code q) (O p q).
\end{verbatim}

and some properties

\begin{verbatim}
| assume O{p}{q} = O[p]{P_test p q}.
\end{verbatim}

Following\cite{553}, we consider as special cases the most commonly used flat domains: num, nat, term.

Example 5.5.5. Subtests of coalgebraic numerals.

\begin{verbatim}
| O_num := O {test_num}.
| assume O_num {test_num} = I.
| assume (div_at := (λm,n. if not (equal_num m n)).
 \forall{n:nat}. O_num {div at n} = ⊥).
\end{verbatim}

Example 5.5.6. Subtests of Church numerals.

\begin{verbatim}
| O_nat := O {test_nat}.
| assume O_nat {test_nat} = I.
\end{verbatim}

Example 5.5.7. Subtests of SKJ terms.

\begin{verbatim}
| O_term := O {test_term}.
| assume O_term {test_term} = I.
\end{verbatim}

Example 5.5.8. Subtests of codes.

\begin{verbatim}
| O_code := O {test_code}.
| assume O_code {test_code} = I.
\end{verbatim}

Example 5.5.9. Subtests of indexed Codes.

\begin{verbatim}
| O_Code := (λ{a:V}. t:Test a). O {test_Code[a]t}.
| assume (∀a:V, t:Test a). O_Code {test_code[a]t} = I).
\end{verbatim}

Example 5.5.10. Subtests of SKJ -codes.

\begin{verbatim}
| O_skj := O {test_skj}.
| assume O_skj {test_skj} = I.
\end{verbatim}

To prove properties of general tests, we need more general reasoning principles. Thus the following axiom schemata will be enforced for the atom O:

\cite{553} These schemata leverage the schemata for \div in \cite{58} and the schemata for P_{test} and the subtest relation $<::$ in \cite{511}.
The pass/fail/error rules reflect Johann’s knowledge of subtesting p <:: q to the oracle, as a quoted truth values: O{p}{q} = I for subtests, either ⊥ or ⊤ (i.e. some value: div) for failed subtests, and ⊤ for subtesting errors. The variance rules (O− ::>) and (O− ::<) rules state that O is contravariant and covariant in its first and second arguments, both with respect to the subtest ordering ::< and the information ordering ⊑.

Are these axioms and schemata enough for successful verification? How much do we need to assume to “reasonably” approximate O? It turns out that we can axiomatize ∆₁^1-much of O using only induction (via the above schemata) and H^*.

Theorem 5.5.11. (hardness) The partial axiomatization above, together with the locally Π₀^1^2-complete H^* is ∆₁^1^1-hard.

Proof. By classic theorem of Kleene ([Kle55]), the ∆₁^1 predicates are exactly the hyperarithmetic functions from a countable domain to booleans. The hyperarithmetic functions are exactly those functions definable by induction over recursively well-orderings. If we can locally decide H^*, then each stage of the oracle O’s definition can be decided by the O-axiom schemata. By induction over computable well-orderings, this allows us to compute arbitrary hyperarithmetic functions. □

Knowing this strength result of our O axioms allows us to focus scientific effort (finding new axioms) on H^*.

In fact this is all of O that is meaningfully observable, in the sense of refutation in the limit. The following adapt the work of Kelly and Schulte [KS95] to our setting of equational theories of SKJO.

Definition 5.5.12. Let a hypothesis be a set of equational theories (of say SKJO). A singleton hypothesis is called empirically complete. A hypothesis is refutable in the limit iff, as a set of sets of equations, it is Π₀^1^1.

A problem is reducible to a hypothesis iff it is uniformly reducible to the theories in the hypothesis; thus we can speak of the logical strength of an hypothesis as if it were a single partial theory.

Theorem 5.5.13. (limit of observability) No refutable-in-the-limit hypothesis with Π₀^1^1-hard conclusions can be empirically complete.

As a corollary of the completeness of axiomatization, we also have

Corollary 5.5.14. There is a refutable-in-the-limit hypothesis that has ∆₁^1-hard predictions.

Question 5.5.15. Is SKJO the full Böhm-tree model of SKJ in predicative set theory? (I.e, the model of Böhm trees whose nodes are arbitrary joins of head normal forms)
5.6 The logic of SKJ terms

In this section we develop first-order logic for SKJ-terms with basic relations for equality and Scott’s information ordering. This builds on the boolean and semiboolen propositional logics we developed in 3.9. Now in SKJO, with a Δ^1_1-bool-hard oracle in the language, we can even evaluate the truth-value of all such sentences that are meaningful.\footnote{Meaningful in the generalized Popperian sense of \cite{KS95}: predicted by hypotheses that are refutable in the limit.}
Recall from \[3.10\] that each type of conditional truth value unit, unit \(\vdash\) semi, semi \(\vdash\) bool corresponds to a complete complexity class, respectively \(\Pi_1^0\), \(\Sigma_1^0\), \(\Delta_2^0\), \(\Delta_0^0\). By adding the \(\Pi_1^0\)-complete oracle \(\mathcal{O}\) in the way we did, with truth-values of semi, the complexity theorem extends precisely to a hyperarithmetic analog.

Theorem 5.6.1. The following complexity characterizations hold for local problems in \(\mathcal{SKJ}\).\(^7\)

<table>
<thead>
<tr>
<th>Context (\vdash) Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x: \text{div} \vdash x = \bot)</td>
<td>(\Sigma_1^1)-complete</td>
</tr>
<tr>
<td>(x: \text{div} \vdash x = \top)</td>
<td>(\Pi_1^1)-complete</td>
</tr>
<tr>
<td>(x: \text{unit} \vdash x = I)</td>
<td>(\Pi_1^1)-complete</td>
</tr>
<tr>
<td>(x: \text{semi} \vdash x = I)</td>
<td>complete for differences between (\Pi_1^1) problems</td>
</tr>
<tr>
<td>(x: \text{semi} :: \text{unit} \vdash x = I)</td>
<td>(\Pi_1^1)-complete</td>
</tr>
<tr>
<td>(x: \text{bool} :: \text{test_bool} \vdash x = K)</td>
<td>(\Delta_1^1)-hard and (\Pi_1^1)</td>
</tr>
</tbody>
</table>

Note that in contrast to the case of \(\mathcal{SKJ}\) where \(s < t\) was \(\Pi_1^{0}\)-complete while \(x:: t\) was only \(\Delta_0^0\), in \(\mathcal{SKJO}\) the oracle reduces exactly these problems, so that \(s < t\) \(\iff\) \(\mathcal{O}(s)[t]:: I\), as in case (c).

Proof. We begin with cases (a) and (c), since they are closest to the definition of \(\mathcal{O}\). The functions \(\lambda x. x :: I\) : \(\text{div} \rightarrow \text{unit}\) and \(\lambda x. \bot :: \text{unit} \rightarrow \text{div}\) provide translations between (a) and (c), so we show hardness for (c) and prove the upper bound for (a).

- (c) We showed in \[5.5\] that \(\mathcal{O}\) is hard for \(\Pi_1\) questions, using truth values \(\{\bot, I\}\).
- (a) Note that the definition of \(\mathcal{O}\) is \(\Pi_1\), so convergence of \(\mathcal{SKJO}\) terms can be at most \(\Pi_1\).

Now all other cases variously reduce to case (c).

- (b) This is just the negation of part (a).
- (d) Suppose \(x: \text{semi}\). Then \(x = I\) iff \(\text{unit} \vdash x = I\) and \(\text{div} \vdash x = \top\). Conjoining these is a difference of \(\Pi_1^1\)-complete problems.
- (e) Suppose \(x: \text{semi} :: \text{unit}\). Then \(x \in \{\bot, I\}\). The function \(\lambda x. I :: x :: \text{unit} \rightarrow \text{div}\) reduces this to part (b).
- (f) For hardness, suppose \(\phi\) is a \(\Delta_1^1\) statement. Then \(\mathcal{O}\) and its negation can both be posed as \(\Pi_1^1\) problems to \(\mathcal{O}\), say as if\(_\phi\), if_not_\(\phi\):: \(\text{semi} :: \text{unit}\). Now define \([\phi] = \text{if___\phi} K \mid \text{if_not__\phi} F\). Then \([\phi] :: \text{test_bool}\) as in case (c).

 For \(\mathcal{O}\), observe that for \(x: \text{bool} :: \text{test_bool}\), we know \(x \in \{\text{K, F}\}\). Then \(x = K\) iff \(\text{div}(x \perp \top) = \bot\).

\(\blacksquare\)

Basic relations

We can tests for basic equality and ordering between \(\mathcal{SKJ}\) terms using the proof theory of \(\mathcal{H}^*\) demonstrated in \[6.1\]. First we define the semi-valued testing versions

\[
\text{lift_term} := (\text{Test term} \rightarrow \text{Test skj}) (\lambda t. x:: \text{code}. \text{code_to_term} \times t).
\]

\[
\begin{align*}
\text{if_conv} := & (\text{skj} \rightarrow \text{semi}) (\text{lift_term if_conv_term}). \\
\text{if_div} := & (\text{skj} \rightarrow \text{semi}) (\\
& \text{lift_term} \lambda x. \{x\} := \text{quote_term} x. \mathcal{O} \{\text{test_Conv} x\} \{\bot\} \\
).
\end{align*}
\]

\(^7\)Recall from \[3.9\] our notation for contexts corresponding to binding of universally quantified variables:

\[
\begin{align*}
(x:a & \vdash f x = g x) \iff \text{foo} x = \text{goa} x \\
(x:t & \vdash f x = g x) \iff (t x)(f x) = (t x)(g x) \\
(x:a:: t & \vdash f x = g x) \iff (\text{toa} x)(\text{foo} x) = (\text{toa} x)(\text{foa} x)
\end{align*}
\]
Next we package (positive, negative) pairs together as boolean valued predicates.

\[
\begin{align*}
\text{conv} & := (skj \to bool) (\lambda x. \text{if}_\text{conv} x \text{ true} \mid \text{if}_\text{div} x \text{ false}) . \\
\text{less} & := (skj \to bool) (\lambda x, y. \text{if}_\text{less} x y \text{ true} \mid \text{if}_\text{nless} x y \text{ false}) . \\
\text{equal} & := P C (skj \to skj \to bool) (\lambda x, y. \text{if}_\text{equal} x y \text{ true} \mid \text{if}_\text{nless} x y \text{ false} \mid \text{if}_\text{nless} y x \text{ false}) .
\end{align*}
\]

These relate to the semidecidable versions as expected.

\[
\begin{align*}
\text{check if}_\text{conv} x & = \text{if} (\text{conv} x) . \\
\text{check if}_\text{div} x & = \text{if} \circ \text{not} (\text{conv} x) . \\
\text{check if}_\text{less} x y & = \text{if} \circ \text{not} (\text{less} x y) . \\
\text{check if}_\text{equal} x y & = \text{if} (\text{equal} x y) . \\
\text{check equal x y} & = \text{and} (\text{less} x y) (\text{less} y x) .
\end{align*}
\]

Finally, we give an alternative definition of provable equality, exploiting the fact that code is at any time SKJ-definable, hence quoted terms are SKJ-definable, hence quoted terms are separable by a boolean predicate. That is, two terms are provably equal iff their codes are provably equal.

\[
\text{check pr_equal} = P C (\text{code} \to \text{code} \to bool) (\lambda \{x\}, \{y\}. \text{equal}\{\{x\}\}\{\{y\}\}).
\]

Quantification

In \[\ref{3.9}\] we defined logical connectives and, or for booleans and and_semi, or_semi for semibooleans. In SKJ we can even eliminate semiboolean existential quantifiers over flat domains with a semiset of total terms. For example from \texttt{num:V} and \texttt{Join_num:Set \texttt{num}} we can define\(^8\)

\[
\begin{align*}
\text{if}_\text{exists_num} & := \text{Test} (\text{Test_num}) (\lambda \phi. \text{Join_num } \lambda n. \phi n) . \\
\text{check if}_\text{exists_num} & = \text{semi} \circ \text{Join_num}.
\end{align*}
\]

Now in \texttt{SKJO}, the oracle \texttt{O} allows us to eliminate also semiboolean universal quantifiers over flat domains with totality tests. For example, given \texttt{num:V} and a code \{test_num\} : Code\{Test_num\} for the totality test

\[^8\text{Recall Test } a = a \to \text{semi}, \text{and Pred } a = a \to \text{bool.}\]
we can eliminate quantifiers of \textit{quoted} tests with

\[
\text{if_forall_num := Test \circ Code\{Test\ num\} \ (\lambda\{\phi\}. \ O\{test_num\}\{\lambda n. \ \phi \ m\ n\}).}
\]

To iterate these universal quantifiers requires a little extra structure, however, since an outer bound variable must be quoted to appear in an inner quantified predicate, e.g.

\[
\text{if_forall_num\{\lambda n. \ \text{if_forall\{\lambda m. \ \phi \ m \ n\}}\} \quad \text{error: n cannot be quoted!}
\]

We can work around this in our typical flat domains, by using a quoter quote_n : a \rightarrow Code\{a\}, as e.g.

\[
\text{if_forall_num\{\lambda n. \ \text{let\{n := quote_num\ n\}. \ \text{if_forall\{\lambda m. \ \phi \ m \ n\}}\} \quad \text{well-defined}
\]

But it would be more convenient to wrap the quoter into the quantifier, so that we could simply bind quoted terms. This motivates an improved definition

\[
\text{if_forall_num’ := Test \circ Code\{Test\ \circ Code\{num\}\} \ (\lambda\{\phi\}. \ O\{test_num\}\{\lambda n. \ \phi \circquote_num\ n\}).}
\]

which we can iterate using the easier notation

\[
\text{if_forall_num\{\lambda n. \ \text{if_forall\{\lambda m. \ \phi \ m \ n\}}\}
\]

Now given any flat domain a with a semiset Join_a : Sset a of total terms, a totality test tests : Test a, and a quoter quote_a : Quoter a, we can package up an (existential,universal) pair of semiboolean quantifiers to eliminate boolean quantifiers. We will do this uniformly, defining a polymorphic type

\[
\text{Quantifier := \ (Code\{V \} \rightarrow V) \ (\lambda a. \ Pred \circ Code\{Pred \circ Code\ a\}).}
\]

and functions to build semiboolean quantifiers and package them into boolean pairs

\[
\text{Exists_ := ((\forall\{a:V\}. \ Sset a \rightarrow Code\{Test\ a\} \rightarrow Code\{Quoter\ a\} \rightarrow Quantifier\ a)) ((\lambda\{a, b, c\}. \ j \ \text{if_exists_true} \ | \ O\{t\}\{\text{if_not_exists_false}\) false)).}
\]

\[
\text{Forall_ := ((\forall\{a:V\}. \ Sset a \rightarrow Code\{Test\ a\} \rightarrow Code\{Quoter\ a\} \rightarrow Quantifier\ a)) ((\lambda\{a, b, c\}. \ O\{t\}\{\text{if_exists_false}\) true \ | \ j \ \text{if_not_exists_false}\) false)).}
\]

\[
\text{exists_ := Exists_ \bot.}
\]

\[
\text{forall_ := Forall_ \bot.}
\]

For example we can define quantifiers over our standard flat domains.

\textbf{Example 5.6.2.} Quantifying over numerals.

\[
\text{exists_num := Exists_\{num\} \ Join_num\{test_num\}\{quote_num\).}
\]

\[
\text{forall_num := Forall_\{num\} \ Join_num\{test_num\}\{quote_num\).}
\]

\[
\text{\text{\check{\forall}\{\phi:\text{Pred\ num}\}. \ \text{not_forall_num\{\phi\} = \text{exists_num\{not_\phi\}.}}
\]

\[
\text{\text{\check{\forall}\{\phi:\text{Pred\ num}\}. \ \text{not_exists_num\{\phi\} = \text{forall_num\{not_\phi\}.}}
\]

120
We can use this to state a structure decomposition theorem for total inhabitants

\[
\text{!check true = forall_num \{\lambda(n).} \\
\text{or (eq_num none n). exists_num \{\lambda(n'). eq_num n. some n'}
\]

Example 5.6.3. Quantifying over SKJ terms.

\[
\text{forall_term := Forall_ \{term\} Join_term \{test_term\} \{quote_term\}.} \\
\text{exists_term := Exists_ \{term\} Join_term \{test_term\} \{quote_term\}.} \\
\text{!check (\forall\phi:Pred_term). not\circ forall_term \{\phi\} = exists_term \{not\circ \phi\}.} \\
\text{!check (\forall\phi:Pred_term). not\circ exists_term \{\phi\} = forall_term \{not\circ \phi\}.}
\]

Example 5.6.4. Quantifying over SKJ codes.

\[
\text{exists_skj := Exists_ \{skj\} Join_skj \{test_skj\} \{Q\}.} \\
\text{forall_skj := Forall_ \{skj\} Join_skj \{test_skj\} \{Q\}.} \\
\text{!check (\forall\phi:Pred_skj). not\circ forall_skj \{\phi\} = exists_skj \{not\circ \phi\}.} \\
\text{!check (\forall\phi:Pred_skj). not\circ exists_skj \{\phi\} = forall_skj \{not\circ \phi\}.}
\]

As an example application, we can check that SKJ has binary meets, using three levels of binding

\[
\text{!check true =} \\
\text{forall_skj \{\lambda(x).} \\
\text{forall_skj \{\lambda(y).} \\
\text{below_xy := (skj \rightarrow bool) (\lambda z and (less z x) (less z y)).} \\
\text{exists_skj \{\lambda(z).} \\
\text{and (below_xy x).} \\
\text{forall_skj \{\lambda(z'). impiles (below_xy z') (less z' z) } \\
\text{}} \}
\]

and check the equivalence of the skj and term quantifiers

\[
\text{!check forall_term\{\phi\circ to_code\circ E\} = forall_skj\{\phi\circ E\}.}
\]

Example 5.6.5. Quantifying over SKJO codes.

\[
\text{exists_code := Exists_ \{code\} Join_code \{test_code\} \{Q\}.} \\
\text{forall_code := Forall_ \{code\} Join_code \{test_code\} \{Q\}.} \\
\text{!check (\forall\phi:Pred_code). not\circ forall_code \{\phi\} = exists_code \{not\circ \phi\}.} \\
\text{!check (\forall\phi:Pred_code). not\circ exists_code \{\phi\} = forall_code \{not\circ \phi\}.}
\]

Example 5.6.6. Quantifying over indexed Codes.

\[
\text{exists_Code := (\forall[a:V]. Quanti fier\{Code(a)\}) (} \\
\text{\lambda[a:V]. Exists_ \{Code(a)\} (Join_Code[a]) \{test_code\} \{Quote[a]\}} \\
\text{).} \\
\text{forall_Code := (\forall[a:V]. Quanti fier\{Code(a)\}) (} \\
\text{\lambda[a:V]. Forall_ \{Code(a)\} (Join_Code[a]) \{test_code\} \{Quote[a]\}} \\
\text{).} \\
\text{!check (\forall[a:V],\{\phi:Pred_Code[a]\}).} \\
\text{not (forall_Code[a]\{\phi\}) = exists_Code[a]\{not\circ \phi\}} \\
\text{).} \\
\text{!check (\forall[a:V],\{\phi:Pred_Code[a]\}).} \\
\text{not (exists_Code[a]\{\phi\}) = forall_Code[a]\{not\circ \phi\}} \\
\text{).}
\]

In [62] we present an extended example using quantifiers over a variety of flat domains.
5.7 Types using reflection

Our main tools in SKJ were types-as-closures (in 3.7) and tests (in 3.10). In SKJO we have already studied a variety of newly definable tests (in 5.6). In this section we define new types-as-closures that we could not define in SKJ.

Principle types

Recall from 3.7 that

Definition 5.7.1. The principle type unit\(_M\) of a term \(M\) is the closure with two inhabitants \(\{M, \top\}\).

Theorem 5.7.2. All principle types of SKJ-terms are definable in SKJO. Moreover, principle types are uniformly definable by a type constructor Unit: code\(_{SKJ}\) → V with inhab(Unit\(_x\)) = \(\{x, \top\}\).

Proof. Let \(x\) be a SKJ-term. Since \(a \sqsubseteq x\) is uniformly semidecidable in SKJO, we can join over \(\{a | a \sqsubseteq x\}\). □

\[
\text{Unit} := (\text{skj} \to \text{V}) (\lambda\{x\}::\text{test_skj}. \ \text{Join_skj} \ \lambda\{a\}. \ \text{if_less}\{a \ x\}\{x\} \ a).
\]

\[
!\text{check} (\forall\{x\}::\text{test_skj}. x:\text{Unit}\{x\} \ \text{AND} \\
\forall\{y\}::\text{test_skj}. \ \text{Unit}\{x\}\{y\} = x \ \text{OR} \ \text{Unit}\{x\}\{y\} = \top)
\]

For example,

\[
!\text{check} \ \text{unit} = \text{Unit}\{\text{I}\}.
\]

\[
!\text{check} \ \text{nil} = \text{Unit}\{\top\}.
\]

\[
!\text{check} \ \text{div} = \text{Unit}\{\bot\}.
\]

Question 5.7.3. Which principle types of SKJO-terms are SKJO-definable?

Quotient types

Recall from 3.7 that we can define quotient types modulo \(\Sigma_0^1\) equational theories. Now with O in our language, we can extend this to \(\Pi_1^1\) theories. E.g. we can define a quotient of SKJ terms modulo the \(\Pi_2^0\) theory \(\mathcal{H}^*\).

\[
\text{skj_Hstar} := \text{P code} (\lambda x. \ \text{Join_skj} \ \lambda y. \ \text{if_equal} \ x \ y).
\]

\[
!\text{check} (\text{skj_Hstar}) :: \text{test_skj}.
\]

However this is not as useful as our SKJO-codes modulo Johann’s equality, since Johann also has a theory of how O behaves.
Chapter 6

Examples and Applications

6.1 Proving properties of reduction in SKJ

This section is a case study illustrating the use of join in proving theorems, under the Curry-Howard interpretation of theorems as closure, test pairs. The main tool being illustrated is the use of proof sketching, a form of type-inference whereby a theorem-as-closure can raise a proof sketch without indices to a total proof with indices.

To see how type inference works, consider a simple theorem "K K S J J → K J J", which follows from the proof sketch "follows from transitivity: apply the K rule to the LHS, then the K rule again" A more thorough proof would mention the intermediate terms

1. K K S → K
2. K K S J → K J
4. K J J → J
5. K K S J J → J

Let us abbreviate terms using quotation marks for a moment, so that "K K S" = ap(ap K K S). Formally, we want to prove a theorem

thm := Red "K K S J J" "J".

with a proof sketch

pf := trans (lhs (lhs K)) K.

Now the join operation allows the theorem-as-closure to raise the proof to

thm pf = Trans (Lhs "K K S J J" "J"
(Lhs "K K S J" "K J" "J"
(K "K S" "K" "J"
(K, "J" "J")

(we will not use this quotation mark notation again).

Reduction theorems for derived terms

From the reduction axioms for S, K, J, T in 3.14 we can derive reduction theorems for other defined combinators, e.g., I, B, C, W, Y.
The identity $I = S \ K \ K$ reduces via $I \ x \rightarrow x$.

$$
\begin{align*}
I & := ap \ (ap \ S \ K) \ K. \\
I_R & := (\\
& \forall x. \ Red \ (ap \ I \ x) \ x \\
) \ (\lambda _ _ . \ \\
& \text{trans}_r \ S_r. \ \\
& \text{K}_r) \ \\
S \ K \ K \ x \rightarrow K \ x(K \ x) \rightarrow x. \\
I_r & := I_R \ \bot.
\end{align*}
$$

Right projection $F = K \ I$ reduces via $F \ x \ y \rightarrow y$.

$$
\begin{align*}
F & := ap \ K \ I. \\
F_R1 & := (\\
& \forall x. \ Red \ (ap \ F \ x) \ I \\
) \ (\lambda _ _ _ . \\
& \text{K}_r) \ \\
K \ I \ x \rightarrow I. \\
F_{e1} & := F_R1 \ \bot. \\
F_R & := (\\
& \forall x, y. \ Red \ (ap(ap \ F \ x)y) \ y \\
) \ (\lambda _ _ _ _ . \\
& \text{trans}_r \ (\text{lhs}, \ F_{e1}). \ \\
& \text{I}_r) \ \\
& \text{K} \ I \ y \rightarrow I \ y \rightarrow y. \\
F_r & := F_R \ \bot \ \bot.
\end{align*}
$$

Composition $B = S(K \ S)K$ reduces via $B \ x \ y \ z \rightarrow x(y \ z)$.

$$
\begin{align*}
B & := ap \ (ap \ S \ (ap \ K \ S)) \ K. \\
\text{compose} & := (\text{term} \rightarrow \text{term} \rightarrow \text{term}) \ (\lambda f, g. \ ap \ (ap \ B \ f) \ g).
\end{align*}
$$

$$
\begin{align*}
\text{B}_R & := (\\
& \forall x, y, z. \ Red \ (ap(ap(ap \ B \ x)y)z) \ (ap \ x(ap \ y \ z)) \\
) \ (\lambda _ _ _ _ _ . \\
& \text{trans}_r \ (2 \ \text{lhs}_r, \ \\
& \text{trans}_r \ S_r. \ \\
& \text{K}_r) \ \\
& B \ x \rightarrow K \ S \ x(K \ x) \rightarrow S(K \ x) \\
& \text{B}_r := \text{B}_R \ \bot \ \bot \ \bot.
\end{align*}
$$

Transposition $C = S(B \ B \ S)(K \ K)$ reduces via $C \ x \ y \ z \rightarrow x \ z \ y$.

$$
\begin{align*}
C & := ap \ (ap \ S \ (ap \ ap \ B \ B) \ S) \ (ap \ K \ K). \\
\text{transpose} & := ap \ C.
\end{align*}
$$
\(C_R := (\forall x, y, z. \text{Red}(\text{ap}(\text{ap}(C)x)y)z)(\text{ap}(ap \times z)y) \)

\[
\begin{align*}
\lambda &, -, -.
\text{trans}_r (\text{lhs}_r.
\text{trans}_r (\text{lhs}_r.
\text{trans}_r S_r.
\text{trans}_r (\text{lhs}_r B_r).
\text{rhs}_r K_r.
\).).
B_r.
\text{trans}_r S_r.
\text{rhs}_r K_r.
\).
C_r := C_R \perp \perp \perp.
\end{align*}
\]

The diagonal \(W = C \cdot S \cdot I \) reduces via \(W \times y \rightarrow x \cdot y \cdot y \).

\[
\begin{align*}
W &:= \text{ap}(\text{ap}(C \cdot S) \cdot I).
W_R &:= (\forall x, y. \text{Red}(\text{ap}(\text{ap}(W \cdot x)y)(\text{ap}(ap \times y)y))
\lambda &, -, -.
\text{trans}_r (\text{lhs}_r.
\text{trans}_r B_r.
\text{trans}_r S_r.
\text{trans}_r (\text{lhs}_r W_r).
\text{rhs}_r K_r.
\).).
\text{trans}_r S_r.
\text{rhs}_r K_r.
\).
W_r := W_R \perp \perp.
\end{align*}
\]

Turing’s fixed-point combinator \(Y = B(S \cdot I)(W \cdot I)(B(S \cdot I)(W \cdot I)) \) satisfies the fixed-point equation \(Y \ f \rightarrow f(Y \ f) \). (note that this is more often denoted \(\Theta \)).

\[
\begin{align*}
Y &:= W \text{ap}(\text{ap}(B(\text{ap}(S \cdot I))(\text{ap}(W \cdot I))).
rec &:= \text{ap} \ Y.
Y_R &:= (\forall f. \text{Red}(\text{ap}(Y \ f)(\text{ap}(f(\text{ap}(Y \ f))))
\lambda &, -.
\text{trans}_r (\text{lhs}_r.
\text{trans}_r B_r.
\text{trans}_r S_r.
\text{trans}_r (\text{lhs}_r W_r).
\text{rhs}_r K_r.
\).).
\text{trans}_r S_r.
\text{rhs}_r K_r.
\).
Y_r := Y_R \perp.
\end{align*}
\]

A bottom element \(\perp = Y \cdot K \) is constant \(\perp \rightarrow \perp \).

\[
\begin{align*}
\text{Bot} &:= \text{rec} \ K.
\text{Bot}_r &:= (\forall x. \text{Red}(\text{ap} \text{Bot}_r \times x)(\text{Bot}_r) \lambda &, -. \text{trans}_r (\text{lhs}_r Y_r) K_r.
\text{bot}_r &:= \text{Bot}_r, \text{Bot}.
\end{align*}
\]
Although we added a top element to the basis in \textit{3.14}, a top element $\top = Y J$ with the same reduction rule $\top x \rightarrow x$ is now definable.

The probe $\text{div} = Y (J F(C C \top))$ can reduce in either of the two ways: $\text{div} x \rightarrow \text{div} x \top$ or $\text{div} x \rightarrow x$.

Convergence proofs

Convergence proofs (see \textit{3.14}) generally take the form of feeding some term some number of \top's as arguments, and then showing the result reduces to \top.

For example

- $\text{top}_c := \text{Conv } \top (\text{feed } 1. \ t_v)$. $\top t \rightarrow t$
- $k_c := \text{Conv } K (\text{feed } 2. \ k_v)$. $k t t \rightarrow t$
- $j_c := \text{Conv } \text{J} (\text{feed } 2. \ j_v)$. $j t t \rightarrow t$
- $i_c := \text{Conv } \text{I} (\text{feed } 1. \ i_v)$. $i t \rightarrow t$

126
We can also prove the handy lemmas: reduction respects convergence

\[
\forall x, y: \text{term}. \text{Red } x \rightarrow y \rightarrow \text{Conv } y \rightarrow \text{Conv } x
\]

\[
\begin{aligned}
y \lambda x. y, x, y. (\text{trans}_r, x y; \text{done, } x \rightarrow y!)
\end{aligned}
\]

\[
\begin{aligned}
t (\text{ap } x \top) (\text{ap } y \top) (\text{lhs } xy); \text{next } x t \rightarrow y t!
\end{aligned}
\]

Proofs for information ordering

Scott’s information order is defined by the principle

\[
\forall c: \text{context}. \text{Conv}(c x) \Rightarrow \text{Conv}(c y) \quad (\mathcal{H}^*)
\]

To encode proofs of information ordering, we thus need a notion of context.

context := V (Y \lambda c. \text{Or } (\text{Prod } c c). \text{Maybe } \text{term})

ap_c := (\text{context } \rightarrow \text{context } \rightarrow \text{context}) (\lambda c_1, c_2. \text{inl } (c_1, c_2)).

id_c := \text{context } (\text{inr } \text{none}).

term_c := (\text{term } \rightarrow \text{context}) (2 \text{inr}).
compose _ := (context \rightarrow context \rightarrow context) (\lambda c. Y \lambda \text{comp}. (\lambda (c1,c2). \text{ap}_c (\text{comp} c1) (\text{comp} c2), c, \text{term}_c)).

at := (context \rightarrow \text{term} \rightarrow \text{term}) (\lambda x. Y \lambda \text{e}. (\lambda (c1,c2). \text{ap} (\text{e} c1) (\text{e} c2), x, I)).

The type of information ordering proof is thus

Ord := (\text{term} \rightarrow \text{term} \rightarrow V) (\lambda x,y. \forall c. (\text{Conv. at} c y) \rightarrow (\text{Conv. at} c x)).

Resp := (\forall x,y. \text{Red} x y. \text{Ord} x y)(\lambda x. Y \lambda \text{e}. (\lambda (c1,c2). \text{ap} (\text{e} c1) (\text{e} c2), x, I)(\text{resp}_c (\text{rhs} xy) cy c x) : c y!).

resp := Resp \perp \perp.

Finally we can show that terms and information ordering proofs between them form a monadic category (i.e. whose skeleton is a poset).

Refl := (\forall x. \text{Ord} x x)(\lambda x. \text{Ord} x x).refl := Refl \perp.

Trans := (\forall x,y,z. \text{Ord} x y. \text{Ord} y z. \text{Ord} x z)(\lambda x, y, z. \text{Ord} x y. \text{Ord} y z. \text{Ord} x z)(\lambda x, y, z. \text{Ord} x y. \text{Ord} y z. \text{Ord} x z).trans := Trans \perp \perp \perp.

We leave to the reader the proofs of monotonicity.

Rhs : (\forall f,x,y. \text{Ord} x y. \text{Ord} (\text{ap} f x) (\text{ap} f y))(\forall f,x,y. \text{Ord} x y. \text{Ord} (\text{ap} f x) (\text{ap} f y)).

Lhs : (\forall f,g,x. \text{Ord} f g. \text{Ord} (\text{ap} f x) (\text{ap} g x)).

6.2 Type inference and termination in Gödel’s T

Our main theorem in this section will be a proof of termination in Gödel’s T (more precisely, weak termination at base type, which is still enough to prove consistency of peano arithmetic). Although we have not implemented this level of reasoning in SKJO, the example demonstrates the potential for expressing complicated logical statements in SKJO, even beyond first-order logic.
Our development of the language of Gödel’s T also illustrates the power of join as a type inference mechanism. Here terms will be Church-style combinators annotated with types at each term and subterm. The type-as-closure term has a baked-in type inference algorithm, so that partially-annotated terms are automatically raised to the most-annotated possible terms, given the partial information. This is done by propagating type information among occurrences of each type, using the join operation.

Primitive recursion over natural numbers

We will prove the termination of well-typed terms using primitive recursion over natural numbers.

- \(\text{zero} : \text{num} \)
- \(\text{succ} : \text{num} \rightarrow \text{num} \)
- \(\text{rec} : \forall a : V. \text{num} \rightarrow (\text{num} \rightarrow a \rightarrow a) \rightarrow a \rightarrow a \)

Recall that most of this has been defined already.\(^1\)

\[\text{!check num = } V (Y \lambda a. \text{Maybe} a). \]
\[\text{!check zero := num none.} \]
\[\text{!check succ := (num \rightarrow num) some.} \]
\[\text{!check rec := (\forall a : V. \text{num} \rightarrow (a \rightarrow \text{num} \rightarrow a) \rightarrow a \rightarrow a) (} \]
\[\text{\quad Y } \lambda \rho. \lambda n, f, x. \text{ n } x \lambda n'. \rho n' (f \circ \text{succ}) (f \text{ zero } x) \]
\[\text{)} \]
\[\text{!check succ = } \text{Some num.} \]

Now we can, for example, add

\[\text{!check add zero zero = zero.} \]
\[\text{!check } (\forall m :: \text{test num}, n :: \text{test num}. \text{add}(\text{succ } m)n = \text{add } m(\text{succ } n)). \]

Now to represent proofs of totality, we need simple types over num

\[\text{pre ty := } V (Y \lambda a. \text{Maybe. Prod a a}). \]
\[\text{check ty := Check ty } (Y \lambda \tau. \text{check Maybe. check Prod } \tau \tau). \]
\[\text{!define ty := Checked pre ty check ty.} \]
\[\text{!check check ty : Check ty.} \]
\[\text{!define test ty := Test ty } (Y \lambda \tau. \text{test Maybe. test Prod } \tau \tau). \]

with introduction forms

\[\text{num ty := ty none.} \]
\[\text{exp ty := (ty \rightarrow ty \rightarrow ty) } (\lambda \sigma, \tau. \text{some}(\sigma, \tau)). \]
\[\text{!check num ty :: test ty.} \]
\[\text{!check } (\forall \sigma :: \text{test ty}, \tau :: \text{test ty}. \text{exp ty } \sigma \tau :: \text{test ty}). \]

and checked elimination forms

\[\text{case num := (ty \rightarrow \text{unit}) } (I, T). \]
\[\text{case exp := (ty \rightarrow W \text{ Prod ty)} } (T, I). \]
\[\text{!check case num num ty = I.} \]
\[\text{!check case exp num ty = error.} \]
\[\text{!check } (\forall \sigma :: \text{test ty}, \tau :: \text{test ty}. \] \[\text{\quad case exp } (\text{exp ty } \sigma \tau) = (\sigma, \tau) \AND \]
\[\text{\quad case num } (\exp ty \sigma \tau) = \text{error} \] \[\text{).} \]

\(^1\) The definitions in this section conflict with those in earlier sections. This conflict could be averted using a module system or some namespace management, which we have not implemented. Thus this section serves as an example of what could be described in the system SKJO, but what has never been parsed by Johann.
We can evaluate these type codes to types-as-closures with

\[
\text{ty_eval} := (\text{ty} \to \text{V}) (Y\lambda e. (\text{num}, \lambda \sigma, \tau. e \sigma \to e \tau)).
\]

\text{!check eval_ty num_ty = num.}

\text{!check (}
\begin{align*}
&\forall \sigma::\text{test_ty}, \tau::\text{num_ty}. \\
&\text{eval_ty (exp_ty} \sigma \tau) = \text{eval_ty} \sigma \to \text{eval_ty} \tau
\end{align*}
\text{).}

We can also discriminate between total types, with truth values bool, semi, and unit.

\[
\text{eq_ty} := \mathbf{P} C (\text{ty} \to \text{ty} \to \text{bool}) (Y\lambda e. ((\text{true}, K \text{false}), \lambda a, b.(\text{false}, \lambda a', b'. \text{and} (e a a') (e b b'))) \).
\]

\text{!check W eq_ty num_ty = K.}

\text{!check eq_ty} \tau \tau = \text{test_ty} \tau K.

\text{!check (}\forall \sigma::\text{test_ty}, \tau::\text{test_ty}. \text{eq_ty num_ty (exp_ty} \sigma \tau) = F).\text{!check (}\forall \sigma::\text{test_ty}, \tau::\text{test_ty}. \text{eq_ty (exp_ty} \sigma \tau) (\text{exp_ty} \sigma \tau) = K).\text{!check (}
\begin{align*}
&\forall \sigma::\text{test_ty}, \sigma'::\text{test_ty}, \tau::\text{test_ty}. \\
&\text{eq_ty (exp_ty} \sigma \tau) (\text{exp_ty} \sigma' \tau') = (\text{eq_ty} \sigma \sigma') (\text{eq_ty} \tau \tau')
\end{align*}
\text{).}

\text{if_eq_ty} := \mathbf{P} C (\text{ty} \to \text{ty} \to \text{semi}) (Y\lambda e. ((\mathbf{I}, \bot), \lambda a, b. (\bot, \lambda a', b'. \text{and_semi} (e a a')(e b b'))) \).

\text{!check if_eq_ty} \sigma \tau = \text{if (eq_ty} \sigma \tau).\text{!check if_eq_ty} \tau \tau = \text{test_ty} \tau.

\text{assert_eq_ty} := \mathbf{P} C (\text{ty} \to \text{ty} \to \text{unit}) (\lambda \sigma, \tau. \text{check_ty} (\sigma | \tau)).\text{!check assert_eq_ty} \sigma \tau = \text{assert (eq_ty} \sigma \tau).\text{!check assert_eq_ty} \tau \tau = \text{check_ty} \tau.

Below we will often have to assert the equality of three or four terms at once. Thus it is convenient to use the shorthand

\text{!check check_ty (}\sigma | \tau\text{) = assert_eq ty} \sigma \tau.\text{!check check_ty (}\rho \sigma | \tau\text{) = assert_eq ty} \rho \sigma | \text{assert_eq ty} \sigma \tau.

The equality assertion also gives us an alternate representation for case_num.

\text{!check case_num = assert eq ty num ty.}

Finally we will need to join over types in proof search, so we define

\text{Join ty := Sset ty (Y j. (num ty) | j}\lambda \sigma. j\lambda \tau. (exp ty} \sigma \tau)).\text{!check Join ty test ty = I.}

Well-behaved terms are well-typed combinators

\[
\begin{array}{c|cc|c}
\text{M}:\sigma \to \tau & N:\sigma & \text{ap} \\
\hline
\text{M N:}\tau & S:(\rho \to \sigma \to \tau) & (\rho \to \sigma) \to \rho \to \tau & K:\sigma \to \tau \to \sigma \\
\text{succ:}\text{num} \to \text{num} & \text{rec:}\text{num} \to (\text{num} \to \tau \to \tau) \to \tau \to \tau
\end{array}
\]

130
which are coded as Church-style (type,term) pairs that typecheck. In contrast to the cut-free case of reduction proofs in Section 3.14 typability allows cut via the (ap) rule; thus we need to annotate the types of subterms.

We begin with terms with possibly-incorrect typing annotations

\[
\begin{align*}
\text{pre} \text{term} & := \mathbf{V} \ (\mathbf{Y} \lambda a. \\
& \quad \text{Prod ty.} \\
& \quad \text{Sum (Prod a a).} \\
& \quad \text{3 Maybe bool}
\end{align*}
\]

\[
\begin{align*}
\text{test} \text{pre} \text{term} & := \text{Test pre} \text{term} (\mathbf{Y} \lambda \tau. \\
& \quad \text{test} \text{Prod test} \text{ty.} \\
& \quad \text{test} \text{Sum (test} \text{Prod} \ \tau \ \tau). \\
& \quad \text{3 test} \text{Maybe test} \text{bool}
\end{align*}
\]

\[
\begin{align*}
\text{check} \text{pre} \text{term} & := \text{Check pre} \text{term} (\mathbf{Y} \lambda c. \\
& \quad \text{check} \text{Prod check} \text{ty.} \\
& \quad \text{check} \text{Sum (check} \text{Prod} \ c \ c). \\
& \quad \text{3 check} \text{Maybe check} \text{Bool}
\end{align*}
\]
We define the type of well-typechecked terms as a closure under the simple back-and-forth type-inference algorithm

| define term := P (Checked pre_term check_term) (|
| ce := case_exp. e := exp_ty. n := num_ty. |

Y λa, (τ, u). (u) (|
Case: ap(f:σ→τ)(x:σ) : τ |
| λ(st, −):a, (σ, −):a. ce st λσ′, τ′. |
| σ := σ | σ′. τ := τ | τ′. |
| (τ, inl ((e σ τ, ⊥), (σ, ⊥))), |

Case: S:(ρ→σ→τ)→(ρ→σ)→ρ→τ |
| ce τ λrst, rs.rt. ce rst λρ, st. ce st λσ, τ. |
| ce rs.rt λrs, rt. ce rs λρ′, σ′. ce rt λρ′′, τ′. |
| ρ := ρ | ρ′ | ρ′′. σ := σ | σ′ | σ′′. τ := τ | τ′ | τ′′. |
| (e (e ρ, e σ τ). e (e ρ σ). e ρ τ, ⊥), |

Case: K:ρ→σ→ρ |
| ce τ λρ, sr. ce sr λσ, ρ′. |
| ρ := ρ | ρ′. sr := sr | e σ ρ. |
| (e ρ sr, ⊥), |

Case: zero:num |
| τ := τ | n. |
| (τ, ⊥), |

Case: succ:num→num |
| ce τ λn′, n′′. |
| τ := n | n′ | n′′. |
| (τ, ⊥), |

Case: rec:num→(num→σ→σ)→σ→σ |
| ce τ λn′, nss.ss. ce nss.ss λns, ss. |
| ce ns λss, ss′. ce ss′ λσ, σ′. ce ss λσ′, σ′′. ce ss λσ′′, σ′′′. |
| n := n | n′ | n′′ | n′′′. σ := σ | σ′ | σ′′ | σ′′′. ss := e σ σ. |
| (e n. e (e n ss) ss, ⊥) |
|). |

In each case, we propagate type information by
(1) splitting type annotations using ce = case_exp,
(2) join together all types that should be the same, and
(3) building a better-typed term with the joined annotations.

The ap case also reconstruct better-typed subterms, so that typing information can pass across subterms. This form of type inference allows type sketching in proofs below.
Theorem 6.2.1. (type inference) The closures term raises partially-annotated terms as follows

Inferring \(\text{ap}(\rho \to \sigma) \to \rho \to \tau \)

\[
\begin{align*}
\text{check } & (\forall \sigma : \text{ty}::\text{check_ty}, \tau : \text{ty}::\text{check_ty}). \\
& e := \text{exp_ty} \\
& \text{term } (\bot, \text{ap } \bot) = \\
& \quad (\bot, \text{ap} (e \bot \bot) (\bot, \bot)) \quad \text{AND}
\end{align*}
\]

\[
\begin{align*}
\text{term } & (\bot, \text{ap}(e \rho \bot \bot) (\bot, \bot)) = \\
\text{term } & (\bot, \text{ap}(e \rho \bot \bot) (\sigma, \bot)) = \\
& \quad (\bot, \text{ap}(e \rho \bot \bot) (\sigma, \bot)) \quad \text{AND}
\end{align*}
\]

\[
\begin{align*}
\text{term } & (\tau, \text{ap}(e \bot \bot \bot) (\bot, \bot)) = \\
\text{term } & (\bot, \text{ap}(e \bot \bot \bot) (\tau, \bot)) = \\
& \quad (\tau, \text{ap}(e \bot \bot \bot) (\tau, \bot)) \quad \text{AND}
\end{align*}
\]

Inferring \(\text{SS} : (\rho \to \sigma) \to (\rho \to \sigma) \to \rho \to \tau \)

\[
\begin{align*}
\text{check } & (\forall \rho : \text{ty}::\text{check_ty}, \sigma : \text{ty}::\text{check_ty}, \tau : \text{ty}::\text{check_ty}). \\
& e := \text{exp_ty}. \quad \text{ss} := \text{inr } \text{none}. \\
& \text{term } (\bot, \text{ss}) = \\
& \quad (e (e \bot e \bot), e (e \bot), e \bot, \text{ss}) \quad \text{AND}
\end{align*}
\]

\[
\begin{align*}
\text{term } & (e (e \rho e \bot, e (e \bot, e \bot, \text{ss}) = \\
\text{term } & (e (e \rho e \bot, e \rho \bot, \text{ss}) = \\
& \quad (e (e \rho e \bot, e \rho \bot, \text{ss}) \quad \text{AND}
\end{align*}
\]

\[
\begin{align*}
\text{term } & (e (e \bot e \sigma), e (e \bot), e \bot, \text{ss}) = \\
\text{term } & (e (e \bot e \sigma), e (e \bot), e \bot, \text{ss}) = \\
& \quad (e (e \bot e \sigma), e (e \bot), e \bot, \text{ss}) \quad \text{AND}
\end{align*}
\]

\[
\begin{align*}
\text{term } & (e (e \bot e \tau), e (e \bot), e \bot, \text{ss}) = \\
\text{term } & (e (e \bot e \tau), e (e \bot), e \bot, \text{ss}) = \\
& \quad (e (e \bot e \tau), e (e \bot), e \bot, \text{ss}) \quad \text{AND}
\end{align*}
\]

Inferring \(\text{K} : \rho \to \sigma \to \rho \)

\[
\begin{align*}
\text{check } & (\forall \sigma : \text{ty}::\text{check_ty}, \tau : \text{ty}::\text{check_ty}). \\
& e := \text{exp_ty}. \quad \text{kk} := \text{inr } \text{none}. \\
& \text{term } (\bot, \text{kk}) = \\
& \quad (e \bot e \bot, \text{kk}) \quad \text{AND}
\end{align*}
\]

\[
\begin{align*}
\text{term } & (e \sigma e \bot, \text{kk}) = \\
\text{term } & (e \bot e \sigma, \text{kk}) = \\
& \quad (e \sigma e \bot, \text{kk}) \quad \text{AND}
\end{align*}
\]

133
Inferring zero: \texttt{num} and \texttt{succ}: \texttt{num} → \texttt{num}

\begin{verbatim}
!check (zz := 2 inr none. term (⊥, zz) = (\texttt{num} ty, zz)).
!check (ss := 3 inr true. term (⊥, ss) = (\texttt{W exp} ty \texttt{num} ty, ss)).
\end{verbatim}

Inferring \texttt{rec}: \texttt{num} → (\texttt{num} → \sigma) → \sigma → \sigma

\begin{verbatim}
!check (\forall \tau::check ty. e := \texttt{exp} ty. n := \texttt{num} ty. rr := 3 inr false.
 term (⊥, rr) = (e n. e (e n. e ⊥ ⊥). e ⊥ ⊥, rr) AND
 term (e n. e (e n. e τ ⊥). e ⊥ ⊥, rr) =
 term (e n. e (e n. e ⊥ ⊥). e τ ⊥, rr) =
 term (e n. e (e n. e ⊥ ⊥). e ⊥ τ, rr) =
 (e n. e (e n. e τ τ). e τ τ, rr).
).
\end{verbatim}

Proof. Left as exercise for Johann. \qed

Now we can define types of typechecked terms of both general and specific types

\begin{verbatim}
check_term := Check term check pre_term.
!define test_term := Test term test pre_term.
!check check_term = test2check test_term.
\end{verbatim}

\begin{verbatim}
!define Term := (ty → P term) (λτ. Above (τ, ⊥)).
!check term = Term ⊥.
!check Term τ <: term.
\end{verbatim}

\begin{verbatim}
!define test_Term := (∀τ:ty. Test. Term ty) test pre_term.
!check test_term = test_Term ⊥.
!check test_Term τ <: test_term.
\end{verbatim}

with intro forms parametric parametric in types.

\begin{verbatim}
ap := (term → term → term) (λf, x. (⊥, inl(f, x))).
S := (ty → ty → ty → term) (λρ, σ, τ. (e := \texttt{exp} ty. e (e ρ. e σ τ). e (e ρ σ). e ρ τ. inr none)).
K := (ty → ty → term) (λσ, τ. (\texttt{exp} ty ρ. \texttt{exp} ty σ ρ, 2 inr none)).
zero := term (\texttt{nat} ty, 3 inr none).
succ := term (\texttt{W exp} ty \texttt{nat} ty, 4 inr true).
rec := (ty → term) (λτ. (e := \texttt{exp} ty. e \texttt{num} ty. e (e \texttt{num} ty. e τ τ). e τ τ, 4 inr false)).
\end{verbatim}

134
We also define compound intro forms for convenience

\[
\begin{align*}
\mathcal{B} & := \lambda \text{ap}(\text{ap}(S(\text{ap} \ K \ S)))K, \\
\text{compose} & := (\lambda f, g. \text{ap}(\text{ap} \mathcal{B} \ f \ g)), \\
\text{recurse} & := (\lambda n, f, x. \text{ap}(\text{ap}(\text{rec} \ \bot) \ n) \ f \ x)
\end{align*}
\]

where the type of \text{rec} in \text{recurse} is inferred from \(f\)'s or \(x\)'s type.

Lemma 6.2.2. \(\text{inhab}(\text{term}) = \{\top\} \cup \text{"well-typed partial terms"}\).

Proof. By typechecking, all type errors are raised to \(\top\). \(\blacksquare\)

We can also evaluate terms to their proper types

\[
\begin{align*}
\text{eval} & := \{(\text{term} \rightarrow \text{any}) \ (\\
\text{Y} \lambda e, (\tau, x). \text{eval}_\text{ty} \ \tau \times (\lambda y, z. \ (e \ y)(e \ z), \ S, \ K, \ zero, \ succ, \ rec)
\}
\end{align*}
\]

\[
\begin{align*}
\text{Eval} & := (\forall \tau : \text{ty}. \ \text{Term} \ \tau \rightarrow \text{any}) \ (\lambda - . \ \text{eval}). \\
\text{!check eval} & = \text{Eval} \ \bot.
\end{align*}
\]

Lemma 6.2.3. (reduction) Evaluation respects application and the reduction rules

\[
\begin{align*}
S \ x \ y \ z & = x \ z(y \ z) \\
K \ x \ y & = x \\
\text{rec zero} \ f \ x & = x \\
\text{rec} \ (\text{succ} \ n) \ f \ x & = \text{rec} \ n \ (f \circ \text{succ}) \ (f \ \text{zero} \ x)
\end{align*}
\]
Formally checking,

\[
\begin{align*}
! \text{check} & \quad (\forall \sigma :: \text{test ty}, \tau :: \text{test ty}.
\forall f :: \text{test Term}(\text{exp ty} \sigma \tau), x :: \text{test Term} \sigma.
\quad \text{eval}(\text{ap} f x) = (\text{eval} f)(\text{eval} x)) \\
\forall \rho :: \text{test ty}, \sigma :: \text{test ty}, \tau :: \text{test ty}.
\forall x :: \text{test Term}(\text{exp ty} \rho \text{ exp ty} \sigma \tau).
\quad \text{eval}(\text{ap}(\text{ap}(\text{ap}(\text{S} \rho \sigma \tau)x)y)z) =
\quad \text{eval}(\text{ap}(x z)(\text{ap} y z)) \\
\forall \sigma :: \text{test ty}, \tau :: \text{test ty}.
\forall x :: \text{test Term} \sigma,
\quad \text{eval} \text{rec} \tau \text{ zero } f x =
\quad \text{eval x} \\
\forall \tau :: \text{test ty}.
\forall n :: \text{test Term} \text{ num ty}, f :: \text{test Term}(\text{e n. e} \tau \tau), x :: \text{test Term} \sigma.
\quad \text{eval}(\text{ap}(\text{ap}(\text{ap rec} \tau)(\text{ap succ} n)f)x) =
\quad \text{eval}(\text{ap}(\text{ap rec} \tau)\text{ n} \text{ (compose f succ}) (\text{ap} (\text{ap f zero}) x))
\end{align*}
\]

Proving termination

The main theorem of this system is termination (weak normalization): any well-typed total term of type \text{num} \tau evaluates to a total numeral, expressed as the equivalence of testing code before and after evaluation.

Theorem 6.2.4. (termination)

\[
! \text{check} \quad (\forall n :: \text{test Term} \text{ num ty}. \quad \text{eval n :: test num}).
\]

or simply

\[
! \text{check test Term num ty} \quad <:: \quad \text{test num o(Eval num ty}).
\]

Proof. By a hereditary termination argument/Tait's method/logical relations...

Definition 6.2.5. (hereditary termination) We say a well-typed term \(m : \tau \) is reducible in case

- \(\tau = \text{num} \) and \(m \) evaluates to a total numeral (i.e. \(\text{eval} m \in \text{nums} \)), or
- \(\tau = \rho \rightarrow \sigma \) and for every reducible term \(x : \rho \), also \(x : \sigma \) is reducible.

Lemma 6.2.6. Every well-typed term is reducible.
Proof. By induction on term structure:

Case: ap: u : v : τ, where u, v are reducible. By inversion, u : σ → τ and v : σ for some σ, whence u, v are reducible by hypothesis. Hence u v is reducible.

Case: S: Let x : ρ → σ → τ, y : ρ → σ, z : ρ be reducible. Then x z and y z are reducible, so x z(y z) = S x y z is reducible. Hence S x y, hence S is reducible.

Case: K: Let x : σ, y : τ be reducible. Then K x y = x, hence K x, hence K is reducible.

Case: zero, succ: trivial.

Case: rec: Suppose n : num, fs : num → τ → τ, x : τ are reducible. By hypothesis n reduces to a number n’. We show by strong induction on n’ that rec n fs x is reducible, whence rec n fs, whence rec n, whence rec is reducible.

Subcase: n’ = zero: rec zero f x = x which is reducible by hypothesis.

Subcase: n’ = succ n’’: rec(succ n’’)(f x) = rec n’’(f (succ)(f zero x)). By outer hypothesis and assumption, fs (succ) and fs zero x are reducible; hence by inner hypothesis also rec n’’(f (succ)(f zero x)) is reducible.

\[\square \]

Expressing termination in SKJO

The logical relations proof relies on induction over types, terms, and numerals, so we begin with the three induction lemmas. Letting φ be an arbitrary predicate, the induction schemata are

\[
\begin{align*}
\phi \ zero & \quad \phi \ n \quad \Rightarrow \quad \phi(\text{succ}\ n) \quad (\text{ind} - \text{num}) \\
\forall n. \quad \phi \ n
\end{align*}
\]

\[
\begin{align*}
\phi \ num_{\text{ty}} & \quad \phi \ \sigma \quad \Rightarrow \quad \phi \ \tau \quad \Rightarrow \quad \phi(\sigma \rightarrow \tau) \quad (\text{ind} - \text{ty}) \\
\forall \sigma. \quad \phi \ \sigma
\end{align*}
\]

\[
\begin{align*}
\phi(\text{zero}) & \quad \phi(\text{succ}) \\
\forall r. \quad \phi(\text{rec}\ r) \\
\forall s. \quad \phi(\text{ind}\ s)
\end{align*}
\]

where the universally quantified results simply assert that φ is true for all total numerals, types, and terms, respectively. All three lemmas rely on the Simple type theorem. We need totality testers and universal quantifiers over terms and types

\[
\begin{align*}
\text{total}_\text{pred}_{\text{num}} & := (\lambda \phi: \text{num} \rightarrow \text{bool}. \ O\{\text{test}_{\text{num}}\}{\text{test}}_{\text{bool}}\phi). \\
\text{total}_\text{pred}_{\text{ty}} & := (\lambda \phi: \text{ty} \rightarrow \text{bool}. \ O\{\text{test}_{\text{ty}}\}{\text{test}}_{\text{bool}}\phi). \\
\text{total}_\text{pred}_{\text{term}} & := (\lambda \phi: \text{term} \rightarrow \text{bool}. \ O\{\text{test}_{\text{term}}\}{\text{test}}_{\text{bool}}\phi).
\end{align*}
\]

\[
\begin{align*}
\text{forall}_{\text{ty}} & := \\text{Forall}_{\{\text{ty}\}}(\text{O}\{\text{test}_{\text{ty}}\})\ \text{join}_{\text{ty}}. \\
\text{forall}_{\text{term}} & := \\text{Forall}_{\{\text{term}\}}(\text{O}\{\text{test}_{\text{term}}\})\ \text{join}_{\text{term}}. \\
\text{forall}_{\text{Term}} & := (\forall \{\text{ty}\}. \ \text{Quantifier}(\text{Term}\ \tau))\ (\\
& \quad \lambda \tau. \ \text{Forall}_{\{\text{Term}\ \tau\}}(\text{O}\{\text{test}_{\text{Term}}\ \tau\})\ \text{join}_{\text{Term}\ \tau}).
\end{align*}
\]

Lemma 6.2.7. (induction over numerals)

\[
\text{check} (\\
\forall \phi: \text{num} \rightarrow \text{bool}::\text{total}_\text{pred}_{\text{num}}. \\
\text{implies } (\phi \ \text{zero}). \\
\text{implies } (\text{forall}_{\text{num}}\{\lambda \{n\}. \ \phi(\text{succ}\ n)})\}. \\
\text{forall}_{\text{num}}\{\lambda \{n\}. \ \phi\ n} \\
)\).
\]

137
Lemma 6.2.8. (induction over types)

\[
\forall \phi : \text{ty} \rightarrow \text{bool} :: \text{total_pred_ty}.
\implies (\phi \text{ num_ty}).
\implies (\forall \sigma. \forall \tau. \phi \text{ exp_ty } \sigma \tau)).
\forall \tau. \phi \text{ ty } \tau
\]

Lemma 6.2.9. (induction over terms)

\[
\forall \phi : \text{term} \rightarrow \text{bool} :: \text{total_pred_term}.
\implies (\forall \sigma. \forall \tau. \forall \rho. \forall \sigma'. \forall \tau'. \phi \text{ exp_term } \rho \sigma \sigma' \tau \tau').
\implies (\forall \rho. \forall \sigma. \forall \tau. \phi \text{ zero } \rho \sigma \tau).
\implies (\forall \rho. \forall \sigma. \forall \tau. \phi \text{ succ } \rho \sigma \tau).
\implies (\forall \rho. \forall \sigma. \forall \tau. \phi \text{ rec } \tau).
\]

Next we need to formalize convergence and reducibility. At base type, the reducibility is just convergence (modulo β-η) However, since reducibility at exponential types has high complexity, we need to move to SKJO to define it.

Definition 6.2.10. The reducibility predicate is

\[
\text{Red} := (\forall \sigma. \text{ Term } \sigma \rightarrow \text{ bool}) (\text{Y'} (\lambda \text{Red})).
\]

\[
\text{Y'} (\lambda \text{Red}). (\lambda \sigma. \text{ num } \text{ is just convergence under evaluation})
\]

\[
\lambda \text{n} : \text{ Term } \text{ num } \text{ let } \{ n \} := \text{ quote_term } n \text{ conv } \{ \text{ eval } n \},
\]

\[
\text{Case: } \sigma \rightarrow \tau \text{ is hereditary convergence}
\]

\[
\lambda \sigma : \text{ Term } \text{ quote } \sigma \text{ quote } \text{ ty } \sigma \text{ ty } \text{ quote } \text{ ty } \tau \text{ ty } \text{ quote } \text{ ty } \text{ Exp } \sigma \tau \text{ ty } \text{ quote } \text{ ty } \text{ rec } \tau.
\]

\[
\forall \text{ Term } \sigma \{ \lambda \text{x}. \phi \text{ exp_term } \rho \sigma \sigma' \tau \tau' \}
\]

\[
(\forall \rho. \forall \sigma. \forall \tau. \phi \text{ zero } \rho \sigma \tau).
\]

\[
(\forall \rho. \forall \sigma. \forall \tau. \phi \text{ succ } \rho \sigma \tau).
\]

\[
(\forall \rho. \forall \sigma. \forall \tau. \phi \text{ rec } \tau).
\]

\[
\text{implies } (\text{Red } \sigma \text{ x }). (\text{Red } \tau . \text{ ap f x})
\]

\[
\forall \sigma. \forall \tau. \phi \text{ ty } \sigma \tau.
\]

\[
\text{implies } (\phi \text{ f }). \text{ implies } (\phi \text{ x }). \phi \text{ ap f x}
\]
Our goal now is to show true = forall_term{red}, or equivalently, if ◦ red = test term.

Expressing the termination proof in SKJO

The induction proof that each typeable term is reducible relies on reducibility being preserved under β-η equality, which follows from an induction on types.

Definition 6.2.11. The invariance predicate of reducibility at various types is

\[\text{eval_eq} := (\text{term} \rightarrow \text{term} \rightarrow \text{bool}) \]
\[\quad e := \text{quote_term}; A\{\text{eval}\}. \lambda x, y. \text{equal}(e x)(e y) \]

\[\text{Inv} := (\text{Code}[\text{ty}] \rightarrow \text{bool}) \]
\[\quad \lambda \{\tau :: \text{test ty}\}. \]
\[\quad \forall \text{Term}\{\tau\}\{\lambda x\}. \forall \text{Term}\{\tau\}\{\lambda y\}. \]
\[\quad \text{implies}(\text{eval_eq} x y). \iff (\text{red} x) (\text{red} y) \]

!check test_bool ◦ Inv = test_Code {ty} test_ty.

Lemma 6.2.12. (invariance of reducibility under β-η equality)

!check true = forall_ty {Inv}. !check if ◦ Inv = test_Code {ty} test_ty.

Proof. By induction on type structure.

Case: Numerals.

!check true =
\[\forall \text{Term}\{\text{num ty}\}\{\lambda x\}. \forall \text{Term}\{\text{num ty}\}\{\lambda y\}. \]
\[\quad \text{implies}(\text{eval x} = \text{eval y}). \iff (\text{red} x) (\text{red} y) \]
\[\text{Inv}\{\text{num ty}\}. \text{true} = \text{forall}\{\text{num ty}\}. \]

Case: Exponentials. Equality of functions

!check true =
\[\forall \text{ty}\{\lambda \{\sigma\}. \forall \text{ty}\{\lambda \{\tau\}. \}
\[\quad \text{st} := \text{exp ty}\{\sigma \tau\}. \forall \text{Term}\{\text{st}\}\{\lambda f\}. \forall \text{Term}\{\text{st}\}\{\lambda f'\}. \]
\[\quad \text{and} \{ \]
\[\quad \quad \text{implies}(\text{eval_eq} f f'). \forall \text{Term}\{\sigma\}\{\lambda x\}. \]
\[\quad \quad \text{fx} := \text{ap f x}. \text{fx'} := \text{ap f' x}. \]
\[\quad \quad \text{and} (\text{eval_eq} \text{fx} \text{fx'}). \]
\[\quad \quad \iff (\text{red} \text{fx}) (\text{red} \text{fx'}) \} \}
\[\quad \text{iff} (\text{red} f) (\text{red} f') \]
\[\text{Inv}\{\text{exp ty}\{\sigma \tau\}\}. \text{true} = \text{forall}\{\lambda \{\sigma\}. \text{forall}\{\lambda \{\tau\}. \text{Inv}\{\text{exp ty}\{\sigma \tau\}\}\}}. \]
Finally, we combine using the induction schema

\[\text{!check \ true = forall \ ty \ \{Inv\}.} \]
\[\text{!check \ if \ \circ \ Inv \ = \ test _Code \ \{ty\} \ test_ty.} \]

Finally we verify the induction proof of hereditary termination

Theorem 6.2.13. *(hereditary termination)*

\[\text{!check \ true = forall \ term \ \{red\}.} \]
\[\text{!check \ if \ \circ \ red \ = \ test_term.} \]

Proof. By induction on term structure.

Case: ap: u \ v: \tau, where u: \sigma \rightarrow \tau and v: \sigma are reducible. Hence u \ v is reducible.

\[\text{!check \ true = forall \ ty \ \{\lambda \\{\sigma\}. \ forall_ty\{\lambda\\{\tau\}.} \]
\[\text{forall_Term\{exp_ty \ \sigma \ \tau\}\{\lambda\\{u\}. \ implies \ (red \ u).} \]
\[\text{forall_Term\{\sigma\}\{\lambda\\{v\}. \ implies \ (red \ v).} \]
\[\text{red(\circ \ ap \ u \ v) \}}} \}

Case: S: Let x: a \rightarrow b \rightarrow c, y: a \rightarrow b, z: a be reducible. Then x \ z and y \ z are reducible, and hence x \ z(y \ z) is reducible, hence S \ x \ y hence S \ x hence S is reducible.

\[\text{!check \ true = (} \]
\[\text{e := exp_ty.} \]
\[\text{forall_ty\{\lambda\\{\rho\}. \ forall_ty\{\lambda\\{\sigma\}. \ forall_ty\{\lambda\\{\tau\}.} \]
\[\text{S_{_L} := S \ \rho \ \sigma \ \tau.} \]
\[\text{and \ (forall_Term\{e \ \rho \ e \ \sigma \ \tau\}\{\lambda\\{x\}. \ implies \ (red \ x).} \]
\[\text{S_{x} := S_{_L} \ x.} \]
\[\text{and \ (forall_Term\{e \ \rho \ \sigma\}\{\lambda\\{y\}. \ implies \ (red \ y).} \]
\[\text{S_{xy} := S_{x} \ y.} \]
\[\text{and \ (forall_Term\{\rho\}\{\lambda\\{z\}. \ implies \ (red \ z).} \]
\[\text{S_{xyz} := S_{xy} \ z.} \]
\[\text{and \ (}\]
\[\text{xz := ap \ x \ z. \ and \ (red \ xz).} \]
\[\text{yz := ap \ y \ z. \ and \ (red \ yz).} \]
\[\text{xz _yz := ap \ xy \ xz. \ and \ (red \ xz_yz).} \]
\[\text{eval_eq \ xz_yz \ S_{xyz}} \]
\[\text{). \ red \ S_{xyz} \]
\[\text{)). \ red \ S_{xy} \]
\[\text{}). \ red \ S_{x} \]
\[\text{)). \ red \ S_{_L} \]
\[\text{)}} \}

Case: K: Let x: \rho, y: \sigma be reducible. Then K \ x \ y = x is reducible, hence K \ x, hence K is reducible.

\[\text{!check \ true = (} \]
\[\text{forall_ty\{\lambda\\{\sigma\}. \ forall_ty\{\lambda\\{\tau\}.} \]
\[\text{K_{_L} := K \ \sigma \ \tau.} \]
\[\text{and \ (forall_Term\{\lambda\\{x\}. \ implies \ (red \ x).} \]
\[\text{and \ (forall_Term\{\lambda\\{y\}. \ implies \ (red \ y).} \]
\[\text{and \ (eval_eq \ K_{xy} \ x).} \]
\[\text{red \ K_{xy}} \]
\[\text{)). \ red \ K_{x} \]
\[\text{)). \ red \ K_{_L} \]
\[\text{)}} \}

Hence I is reducible.

140
Case: zero: trivial.

!check true = red zero.

Case: succ:

!check true =

forall_Term\{num_ty\}{\lambda n}. implies (red n). red(succ n).

Case: rec: We show by induction on n::num that rec n is reducible for each n.

!check true =

forall ty {\lambda \tau}. rec_\tau := rec _\tau.

forall n := forall_Red num_ty.

forall f := forall_Red(exp_ty num_ty(exp_ty \tau \tau)).

forall x := forall_Red \tau.

Case: zero

and (rz := ap rec_\tau zero.

and (forall f {\lambda f}. rfz := rz f.

and (forall x {\lambda x}. rxf := ap rxf x.

and (eval_eq rxf x) (red rxf).

}). red rxf.

}). red rz)

).

Case: successor

and (forall n {\lambda n}. n' := ap succ n. and (red n')..

rn := ap rec_\tau n.

rN := ap rec_\tau n'.

and (forall f {\lambda f}. f' := ap(ap B succ)f. and (red f')..

rnF := ap rn f'.

rNF := ap rN f.

and (forall x {\lambda x}. x' := ap(ap f zero)x. and (red x')..

rnFX := ap rNF x'.

rNFX := ap rNF x.

and (eval_eq rNF x) (red rNFX).

}). implies (red rnF) (red rNF).

}). implies (red rn) (red rN)

}).

Finally, conclude

red rec_\tau.

}).
Chapter 7

Implementation of the Johann system

This chapter details some aspects of the Johann system. Most of the syntactic algorithms have already been described in 2 or elsewhere. Now we will focus on Johann’s database in 7.2 and the AI algorithms behind randomized proofs search in 7.3, automated conjecturing in 7.4, and numerical basis optimization in 7.5. These three AI algorithms all make use of statistical calculations on the Johann’s database, essentially approximations to Kolmogorov complexity.

7.1 Background and related work

Forward-Chaining with Equations

Perhaps the first use of forward-chaining in equational theories was the algorithm of Todd and Coxeter [TC56] (more recently [CDHW73]) for enumerating the cosets of a finitely presented finite group. Given a finitely presented group, say

\[\langle r, s \mid rr = 1, rsrs^{-1} = 1, s^4 = 1 \rangle \]

the Todd-Coxeter algorithm starts with a database of relations of the form \(x \cdot y = z \):

\[\{ r.r = 1, rsrs^{-1} = 1, s^4.s = 1, r.r^{-1} = 1, r^{-1}.r = 1, s.s^{-1} = 1, s^{-1}.s = 1 \} \]

This database is then EXTENDed by inference rules for each pair \((g, g')\) of generators or inverses (e.g. a pair \((r^{-1}, s^{-1})\)):

\[
\frac{x \cdot g = xg}{xg \cdot g' = xgg} \quad (\text{Extend } - g, g')
\]

It is also necessary to backward-subsume equations following from the rules

\[
\frac{y = y'}{xy = xy} \quad (\text{Reduce } - \nu)
\]

\[
\frac{x = x'}{xy = x'y} \quad (\text{Reduce } - \mu)
\]

Here it is assumed that substitution and string pattern-matching is automatic. If the presented group is finite, and the database is extended “sufficiently uniformly” (e.g., by breadth-first search), then the database will saturate to have \(2|P||G| \) equations, where \(|G|\) is the order of the group and \(|P|\) is the number of generators.

The Todd-Coxeter algorithm is more natural in the setting of semigroups, and has many generalizations to equational theories of other algebraic structures, e.g., nonassociative- and many-sorted algebras, and even categories ([CW91], [BLW03]). For our interests, we will generalize to nonassociative algebras with a
join operation (thus single-sorted semilattices). Although the join operation $x \lor y$, and thus the ordering relation $x \leq y$ and its negation $x \not\leq y$, is definable ($x \leq y \iff x \lor y = y$), it is much more practical to introduce extra logical inference rules relating the ordering to the equational fragment, as in the term ordering rules below.

A major limitation of the Todd-Coxeter algorithm is the restriction to finite groups (or other structures). An often-used alternative to Todd-Coxeter is Knuth-Bendix completion based on reduction strategies ([KB70], [BN99]). Our application is concerned with algebraic structures which are not only infinite but also uncomputable in a sense that thwarts also the Knuth-Bendix algorithm, thus we use a probabilistic version of the Todd-Coxeter algorithm as a workaround.

Kolmogorov-Solomonoff-Chaitin Complexity

In the early 1960’s, Ray Solomonoff (in [Sol64]), Andrey Kolmogorov (in [Kol65]), and Gregory Chaitin (in [Cha66]) all independently defined a notion of complexity of binary strings and streams that was based on the size of computer program generating them. In their definition, one assigns a length to each computer program in some model of computation, and defines the complexity $K(x)$ of a binary string x as the length of the smallest program generating it. The resulting field of Algorithmic Complexity is surveyed in V’Yugin’s paper [Yug99] and detailed in Li and Vitanyi’s comprehensive reference [LV97].

The main theorems about algorithmic complexity come from the three inventors different perspectives.

Theorem 7.1.1. (Kolmogorov) $K(x)$ is independent of machine model, up to additive and multiplicative constants.

Proof. By Church’s Thesis, there is a universal virtual machine and a translator between any two machines. The additive factor accounts for the size of the virtual machine, and the multiplicative factor accounts for the translation blow-up.

Theorem 7.1.2. (Chaitin) $K(x)$ is computable from below, but not from above.

Proof. From below, simply enumerate programs, and add to result when a program converges. From above, we could solve the halting problem by computing Kolmogorov complexity of all binary strings to a given precision.

Chaitin used this result to define a real number whose value was provably uncomputable.

Theorem 7.1.3. (Solomonoff, [Sol78]) among all computable Bayesian priors for predicting future values of a binary stream, $\exp(-K(x))$ is Pareto optimal w.r.t., say, a zero-one loss loss function.

Proof. Follows from machine independence.

Our interest is mostly in Solomonoff’s result, as it motivates our proof search and complexity definition. Solomonoff’s original interest was in optimally estimating and predicting values in a binary stream. He defined a pseudo-algorithm to do this prediction by running all programs at once, a process now known as Solomonoff Induction. This idea has been generalized to agent systems by Hutter [Hut05], who extends Solomonoff’s theorem in many directions.

One of the problems in applying standard Kolmogorov complexity to our problems is the non-differentiability caused by minimizing over programs. The solution lies in Solomonoff’s original application, where the probability of a string was not a minimum of anything, but rather a sum over all program probabilities, where program probabilities are roughly $\exp(-\text{program length})$. This is exactly what motivates our definition of complexity in 7.3.

Simulated Annealing and The Metropolis-Hastings Algorithm

Consider the Monte Carlo problem of sampling a complicated data structure with complicated constraints from a probability distribution. A naive attempt might try to randomly generate such data structures until one satisfying the constraint is found, however for complicated constraints this is often infeasible due to the low probability of satisfaction.
One class of algorithms to solve this problem are Markov-Chain Monte Carlo (MCMC) algorithms ([JS96]). MCMC algorithms have been studied since 1950’s, when they were used to compute solutions to integral equations for nuclear devices. The general MCMC approach is to start with an example such feasible data structure, and randomly perturb it over time, effectively randomly walking around a state graph of feasible structures. As one walks farther and farther, the distribution over states asymptotically approaches a steady state distribution.

The relationship between the “microscopic” perturbation likelihoods and the “macroscopic” steady state distribution is called detailed balance ([JS96]), and can be considered the “correctness” statement of such an algorithm. Subject to correctness, it is also important to define the microscopic perturbations and likelihoods so that the mixing rate is high; that is, so that the initial distribution quickly diffuses and converges to the steady state distribution.

The MCMC algorithm closest to that employed in the Johann system is the Metropolis-Hastings algorithm ([CG95]). This algorithm is characterized by a pair of probability distributions governing perturbation: one to randomly choose a candidate perturbation, and one to decide whether to reject the candidate or proceed. The advantage afforded by the second step is that constraints that are difficult to predict ahead of time may be easy to check given a candidate (think P vs. NP).

Johann uses an MCMC algorithm to randomly generate a database of theorems in combinatory algebra, where the database is constrained to be saturated, and the database should be relevant to a specified goal, on average. (This will be explained in more detail below.) The point of divergence from the pure Metropolis-Hastings algorithm is that the database is expanded by a randomly chosen term, but the rejection step is allowed to remove any existing term, not just the latest-added.

The MCMC method can be applied to a maximization problem by treating the objective function as a likelihood distribution and randomly sampling from the distribution. The resulting sample will thus likely have a large value of the objective function. More generally, given an objective function \(f: X \rightarrow [0, 1] \) on the space of structures \(X \), we can define a temperature-parameterized family \(f^\beta(-) \) of likelihood distributions (where \(\beta = 1/\tau \) is the inverse temperature). The higher the temperature, the more \(f \) is smoothed-out, and the easier it is to randomly walk around the space. The lower the temperature, the sharper \(f \) is, and the more likely a random sample \(x \) will have a high value of \(f(x) \). To achieve a large value of \(f \), one strategy is to walk around from the starting position at high temperature (to mix), and slowly decrease the temperature until a large value of \(f \) is found (to maximize). This strategy is called simulated annealing, in analogy to the process of slowly cooling metals to achieve a solid which maximizes grain size.

7.2 Saturating a database

In this section we overview Johann’s database and the deterministic forward-chaining algorithms that exhaustively search for proofs within the database. The remaining sections in this chapter will discuss the artificial intelligence algorithms behind shaping this database: how randomly add and remove terms from the database, how to conjecture or find missing equations, and how to fine-tuning the probabilistic basis.

Formally, Johann’s database consists of the following data:
- a finite set of obs (equivalence classes of terms), called the support;
- a small set of labelled obs, for atoms (e.g., S, K, J);
- a set of application equations \(\text{app} = \text{lhs rhs} \), for \(\text{app}, \text{lhs}, \text{rhs} \) in the support;
- a set of ordered pairs \(x \sqsubseteq y \) known to be true, for \(x, y \) in the support;
- and a similar set for the negated relation \(x \not\sqsubseteq y \).

We would like databases to satisfy a set of inference rules, e.g., simple constraints like \(x = y \) for maintaining well-definedness of the application function, and more complicated rules like \(x \sqsubseteq z \quad y \sqsubseteq z \quad J \quad x \not\sqsubseteq y \) for

\(^1\)This set of constants is independent of the probabilistic basis; these constants let Johann know which inference rules to enforce, whereas the terms in the basis determine what obs to add to the database.
the join operation J of 3.1. A variety of such inference rules will be developed throughout this thesis, as we axiomatize various extensions of untyped λ-calculus.

Each rule concludes with an equation or an order relation between an application of obs. Because there are only finitely many obs, there can be only finitely many rule-firings until all possible inference rules have been enforced. When all applicable inference rules have been fired in a database, we say the database is saturated. Everywhere outside of this section, we will assume that the database is saturated. In the remainder of this section we briefly describe how Johann saturates the database w.r.t. a given set of rules.

Each time a new ob (equivalence class) is added to the support, rules for equality and order relations must all be enforced until saturation. Since combining equivalence classes may decrease the number of order rules need to be enforced (a smaller support means fewer pairs to check), it saves time to enforce first those rules most likely to induce new equations, only checking positive order rules once the database is saturated w.r.t. equations, and only checking negative rules once the database is saturated w.r.t. positive order. The inference rules roughly stratify into

1. merger of equivalence classes, subject to database constraints like functionality application,
2. equational rules (β conversion, etc.),
3. positive order $x \sqsubseteq y$, and
4. negative order $x \not\sqsubseteq y$,

where lower conclusions seldom fire higher rules. Some exceptions are the antisymmetry rule when (2) induces a merger (0), and the div typing rules in 3.5 where apartness (3) can lead to mergers (0) or new equations (1).

Saturation of (0) is a generalization of the Todd-Coxeter algorithm of groups, where we relax associativity and do not require inverses. This involves merging of equivalence classes, which in turn requires merging of the order relations. The main rule being enforced is functionality of application, so that each lhs, rhs pair defines at most one application.

Saturation of (1) generalizes enforcement of group relations in the Todd-Coxeter algorithm, where in our setting, equations hold between nonassociative terms. The relevant inference rules are all hard-coded and hand-optimized in C++.

Saturation of (2) and (3) is similar, and simply involves keeping track of newly added hypotheses and checking for applicable rules. Together the positive and negative tables define a partially-known table with truth values true, false, unknown. Whenever it is proved that both $x \sqsubseteq y$ and $x \not\sqsubseteq y$ (i.e. inconsistency), then Johann aborts and we begin debugging to look for a bad assumption.

Empirically, saturating equations (1) is the most expensive, negative order (3) is the second most expensive, and positive order (2) is very cheap (since not much is known). Let O, E, P, N be the numbers of Obs (equivalence classes) in the support, application Equation triples, Positive order relations, and Negative order relations, respectively. We have observed that after annealing a large database (as described in 7.3), the following density relations hold independently of database size:

$$E/O^2 \approx 0.05 - 0.3$$
$$P/O^2 \approx 0.05$$
$$N/O^2 \approx 0.85 - 0.95$$

where the variation in density is generally across theories or fragments.\(^2\) Thus all three relations require space quadratic in the size of the support. The worst-case time-complexity for saturation is cubic in the support size, and takes about one second per new equivalence class at $O \approx 4800$ equivalence classes on a 2.8GHz Intel Core Duo. Mcallester in [McA99] discusses complexity analysis techniques for forward-chaining algorithms in logic programming.

In annealing a database, obs are randomly added to and removed from the database support w.r.t. sampling distributions that take quadratic time to compute. What makes randomization possible here, despite the high cost of calculating sampling distributions, is the unusually large amount of work done between random choices, in saturating the database, i.e., cubic versus quadratic.

\(^2\)For example in SKJ, $E/O^2 \approx 0.05 - 0.1$, whereas in SK, $E/O^2 \approx 0.2 - 0.3$.

146
Implementation details

Our cache-conscious implementation uses lookup tables for the main data structures, with some auxiliary data structures to optimize for reading. The equation table is stored as an $O \times O$ array, partitioned into 8x8 blocks of 32-bit words, to reduce cache misses when traversing through both rows and columns. We also speed up traversal through this $\sim 5\%$ sparse table by keeping tables of bits recording whether there is an entry for a given lhs, rhs pair. We keep two such “sketches”, one oriented in each of row- and column-major, so that an entire cache line can be fetched at once (for, say, 512 table entries).

The negative and positive tables are similarly stored as pairs of bit arrays, one oriented in each of row- and column-major. Because there are far more table reads (hypothesis checks) than writes (rule-firings), it is cheaper to maintain consistency between two read-optimized tables, than keep a single write-optimized table. Storing order as bit-arrays also permits vectorized hypothesis checking, where an entire machine word (say 32 hypotheses) can be checked at once. We found that in our unvectorized version, negative order was the most expensive rule to enforce, and that after vectorization, it took only a small portion of the total time.

Finally, we need to be able to traverse through, for a given (app, lhs) pair, all rhs values that satisfy $\text{lhs} \cdot \text{rhs} = \text{app}$; and similarly for given (app, rhs) pairs. We implement these two data structures as sets of splay trees (ST85), each with one tree node per proved equation $a = l \cdot r$. We actually define a single node per equation, that participates in both trees but keeps only one copy of the lhs, rhs, app keys. By storing these nodes in an array, we can also easily traverse through all lhs, rhs, app triples. In practice, splay trees performed much better than an alternative ad hoc tree ordering we tried, possibly due to their probabilistic caching properties.

7.3 Annealing a database of interest

This section describes Johann’s algorithm for randomly annealing a database, when motivated to simplify a corpus of terms. The main theorem is a detailed balance theorem, relating the microscopic operations of adding and removing obs to the macroscopic fitness of the database. We have also looked at more precise motives to accumulate evidence for automated conjecturing, but these turned out to too computationally expensive for practical purposes. In defining the motive we do implement, we make some linearization approximations to achieve an easily computable sum-product representation.

At the core of Johann is a database of facts about combinators. The database represents knowledge in three main data structures: a support (a time-varying set of say 1K–12K obs or equivalence classes), a application table (a multiplication table for the function-value application operation), and true/false/unknown-valued order table for the partial order relation \preceq. The application table and partial order table both require space quadratic in the number of obs.

Johann acquires knowledge by randomly adding and removing obs from the support, saturating the database at each step. To specify what knowledge to accumulate we specify a motive, in the form of a pair of probability distributions $e(l, r), c(a)$, from which random lhs-rhs pairs are drawn to extend the support, and from which random obs are drawn for removal, to contract the support. This pair of distributions is chosen so that the steady-state distribution over databases favors interesting databases (depending on our notion of interesting).

Expanding and Contracting the Database

A database’s support consists of a few (~ 10) basic atoms (e.g., S, K, J), a small number ($\sim 200 – 2000$) of terms used in axiomatizing our theory, and a variable set of other terms ($\sim 1000 – 10000$). Following Lakatos’ terminology of the hard core of a scientific theory [Lak76], we call the fixed axiomatization portion of the database the core; all possible databases in a given theory extend the minimal core.

We consider two kinds of mutations to the database: expansion, by adding to the support random applications of existing terms, and contraction, by removing from the support randomly selected terms. Expansions and contractions are balanced to keep the database support within some size window. Because of
the equational theorem proving in forward-chaining, "expansions" may sometimes decrease the size of the support, by creating proofs that existing pairs of terms are equal, and should be merged.

Suppose we have a notion $R(db)$ of relevance of databases, and a corresponding notion of relevance of an object w.r.t. a database:

$$
\frac{R(db+x)}{R(db)} = \frac{R(db)}{R(db-x)}
$$

To specify mutation likelihoods w.r.t. relevance, we need a pair of distributions from which to sample, say $e(l, r)$ to expand and $1/c(x)$ to contract (we use the inverse so that c and e both increase with relevance):

- $e(l, r) = \text{"simple estimate of } R(l \ r; db)\text{"}$
- $c(x) = \text{"remainder of } R(x; db)\text{ not accounted for in } \sum_{l \ r = x} e(l, r)\text{"}$

The statement of correctness for random backward-chaining is now a detailed balance statement for the expansion and contraction mutations:

Definition 7.3.1. (Detailed Balance) An expansion-contraction pair $e(l, r), c(x)$ shows detailed balance iff state-transitions are proportional to relevance, i.e., for every db (extending the core) and term $x \in db$ (outside the core),

$$
\frac{R(db)}{R(db-x)} = c(x) \sum_{l \ r = x} e(l, r)
$$

Note that the restriction to databases extending the core is not a problem, as we can simply restrict and renormalize the steady-state distribution π. Our proofs for various e, c pairs will have the form

Proof Template: (Correctness) Let $x \in db$ be a term outside the core, and $db' := db - x$. Then

$$
c(x) \sum_{l \ r = x} e(l, r) = \text{...algebra...} = R(x)
$$

In constructing specific e, c pairs, we need to rewrite the macroscopic relevance ratio in two different microscopic forms:

- for expansion, where $l, r \in db$ but lr is not; and
- for contraction, where $x \in db$.

We prove correctness for a generic class of e, c-pairs as follows.

Theorem 7.3.2. (Generic Detailed Balance) Suppose an expansion-contraction pair $e(l, r), c(x)$ satisfies

1. $e(l, r)$ is positive for every $l, r \in db$;
2. $e(l, r)$ is independent of whether lr is in the database; and
3. $c(x)$ is defined by

$$
c(x) = \frac{R(x; db)}{\sum_{l, r \in db} \text{if } lr = x \text{ and } l! = x! = r \text{ then } e(l, r)}
$$

Then $e(l, r), c(l, r)$ shows detailed balance.

Proof. It is sufficient to show that

$$
\sum_{l, r \in db} \text{if } lr = x \text{ then } e(l, r) \#\text{evaluated in } db
$$

for some constant independent of the database. Here two sums and two values $e(l, r)$ are different, since they are evaluated in different databases, the numerator in the original db, and the denominator in the extended $db + x$.

Since this is a statement about steady-state databases, we may assume that no new theorems were found in expanding by x (besides those explicitly mentioning x. Under this assumption, the two sums indeed have the same domain.

Finally condition (2) guarantees that the two evaluations of $e(l, r)$ are within a constant factor.

148
Subject to correctness (i.e., that together \(e, c \) account for all of \(R \)) the more accurate \(e(l, r) \) is, the higher the mixing rate will be, and the faster proofs will be found; that is: it’s better to know how to look for a proof with \(e(l, r) \) than to only know one when you see it with \(c(x) \). But accuracy must not come at the expense of computability: \(e(l, r) \) must be easy to sample from; e.g., it would be nice if \(e \) factored into

\[
e(l, r) = e_L(l) e_R(r) (1-e_{rej}(l, r))
\]

where the rejection probability \(e_{rej} \) is usually not too close to one. We now examine a few versions of expansion-contraction pairs, exercising the freedom of the \(e - c \) tradeoff.

Subject to correctness (i.e., that together \(e, c \) account for all of \(R \)) the more accurate \(e(l, r) \) is, the higher the mixing rate will be, and the faster proofs will be found; that is: it’s better to know how to look for a proof with \(e(l, r) \) than to know one when you see it with \(c(x) \). But accuracy must not come at the expense of computability: \(e(l, r) \) must be easy to sample from; e.g., it would be nice if \(e \) factored into

\[
e(l, r) = e_L(l) e_R(r) (1-e_{rej}(l, r))
\]

where the rejection probability \(e_{rej} \) is usually not too close to one. We now examine a few versions of expansion-contraction pairs, exercising the freedom of the \(e - c \) tradeoff.

Annealing to simplify a corpus of terms

The motive we will examine for annealing a database is the motive to simplify a term, or more generally to simplify a corpus of terms. Let \(C \) denote a corpus, say a weighted set, or a probability mass function (pmf) over some set of terms. First we need a notion of complexity of obs in the database.

Definition 7.3.3. The syntactic probability \(P(M) \) of an intensional term \(M \) database is defined by the probabilistic inference rules

\[
\begin{align*}
\frac{x \in \text{basis}}{x \text{ term}} & (P_{\text{basis}}(x)) \\
\frac{x \text{ term} \quad y \text{ term}}{x y \text{ term}} & (P_{\text{app}})
\end{align*}
\]

so that, e.g., \(P(S \ K \ K) = P_{\text{app}}^2 P_{\text{basis}}(S) P_{\text{basis}}(K)^2 \). The semantic Solomonoff probability \(P(x) \) of an ob in the database is the sum over syntactic terms \(M \) in its equivalence class

\[
P(x) = \sum_{M=x} P(M)
\]

The sum-product form of Solomonoff probability allows us to efficiently compute it as the fixed-point of a contraction equation

\[
P(x) = P_{\text{basis}}(x) + P_{\text{app}} \sum_{l=r=x} P(l)P(r)
\]

Now given a corpus \(C \), we define the steady-state distribution \(\pi(db; C) \) of the database to be proportional to relevance:

Definition 7.3.4. The relevance of a database for simplifying a corpus is a real number

\[
R(db; C) = \prod_{c \in C} P(c; db)^{C(c)}
\]

where \(P(c; db) \) is the Solomonoff probability of the ob \(c \) as evaluated in a database \(db \) (\(c \) is assumed to be in the database), and \(C(c) \) is the weight given by the corpus \(C \) to the ob \(c \).
At steady-state we want the database to be relevant, so consider the transition probabilities of adding / removing a term x. We factor these probability ratio from a macroscopic function of the database to a mesoscopic product of sums of combinatorial expressions M and expressions $M[x]$ with specific occurrences of x, and finally into microscopic effects of single terms $R(x)$.

$$
\frac{R(db + x; C)}{R(db; C)} = \prod_{c \in C} \frac{P(c; db + x)^{C(c)}}{P(c; db)^{C(c)}}
$$

$$
= \prod_{c \in C} \left(\frac{\sum_{M=\in db+x} P(M)}{\sum_{M=\in db} P(M)} \right)^{C(c)} \quad \text{summing over expressions evaluating to } c
$$

$$
= \prod_{c \in C} \left(1 + \sum_{M=\in db+x} \sum_{x \in M} P(M) \right)^{C(c)} \quad \text{homogeneous corpus approximation}
$$

$$
\approx 1 + \sum_{c \in C} C(c) \sum_{M=\in db+x} P(M) \quad \text{extension/intensional approximation}
$$

$$
= 1 + \sum_{M=\in db+x} P(M[M[x]])C(M) \quad \text{factoring } P(M[x]) = P(x)P(M[]) \quad \text{in terms of relevance}
$$

We make two linearization assumptions here. The first assumes most terms in the corpus are of the same size, and tends to devalue the effect of large terms. The second approximation allows us to multiple-count as an approximation of intensional semantics of sum-product expressions as extensional semantics. This approximation allows us to compute $R(x)$ using a sum-product algorithm for evidence propagation (also discussed by Pearl).

The reverse sum-product computation of $R(x)$ is dual to the forward sum-product propagation of $P(x)$ in computing term probability. We thus calculate relevance as the fixed-point of a propagation equation

$$
R(x) = C(x) + \sum_{w} C(w x) \frac{P(w)P_{app}P(x)}{P(w x)} + \sum_{y} C(x y) \frac{P(x)P_{app}P(y)}{P(x y)}
$$

$$
= C(x) + P(x)P_{app} \sum_{z} P(z) \left[\frac{C(z x)}{P(z x)} + \frac{C(x z)}{P(x z)} \right]
$$

Now we can factor the transition probability as

$$
1 + P(x)R(x) = P(x) \left(R(x) + \frac{1}{P(x)} \right)
$$

and define an expansion/contraction pair of distributions

Theorem 7.3.5. (detailed balance) The expansion/contraction pair

$$
c(l, r) = P(l)P(r) \quad c(x) = R(x) + \frac{1}{P(x)}
$$
shows detailed balance for corpus simplification (up to the above approximations).

In practice, Johann ignores the $1/P(x)$ term in contraction, and contracts w.r.t. relevance alone. This is important, since some obs in the database may have been added for reasons other than random selection. For example, very complex obs are added during the process of checking theorems; these may have near zero probability, and hence would almost never be removed with the $1/P(x)$ term included. Another perspective is that we are factoring database relevance as

$$1 + P(x)R(x) = \left(\frac{1}{R(x)} + P(x)\right)R(x)$$

so that Johann randomly adds terms w.r.t. $P(x)$ and randomly removes terms w.r.t. $R(x)$, and assume that the user randomly adds terms w.r.t. the distribution $\frac{1}{R(x)}$.

7.4 Automated Conjecturing

In this section we develop theory whereby Johann can query a user for important but difficult problems that seem to be plausible. We call this procedure automated conjecturing because Johann will guess what’s true based on evidence, before a proof or disproof is known. Our theory starts by restricting the type of conjectures/assumptions that may be made to positive order relations $x \sqsubseteq y$. We then suggest a method to numerically quantify the evidence supporting conjectures, so that Johann can pose ranked conjectures to the user. Finally we demonstrate some theoretical limitations on what exactly can be conjectured in this way.

Sensible Assumptions

We attempt with Johann’s theory to approach the Π^0_2-complete theory \mathcal{H}^*, but this cannot be done with finite or even r.e. axioms or axiom schemata. Thus as we prove properties of more complicated programs, we must continually make new assumptions. What assumptions should we make? Can we statistically quantify this?

Let us start with the most basic statements $x \sqsubseteq y$. At any time, some of these will be unproven, and some of those will be unprovable even in principle. It is consistent to assume such an unprovable statement either way, but we will restrict to positive order relations $x \sqsubseteq y$. We then suggest a method to numerically quantify the evidence supporting conjectures, so that Johann can pose ranked conjectures to the user. Finally we demonstrate some theoretical limitations on what exactly can be conjectured in this way.

Definition 7.4.1. A statement $x \sqsubseteq y$ is sensible iff y converges whenever x does,

$$\forall f. f x \not\sqsubseteq \bot \implies f y \not\sqsubseteq \bot$$

and write in that case $x \sqsubseteq y$ sensible.

Remark. Sensibility is derived from Hyland’s and Wadsworth’s \mathcal{H}^* axiom

$$\forall C[], C[x] \text{ conv } \implies C[y] \text{ conv } (\mathcal{H}^*)$$

where $C[]$ ranges over contexts, and conv is an r.e. predicate (see [Bar84]). In our simpler combinatory setting, variable binding may be ignored, so $C[]$ may be restricted to combinators (even traces). Also, for symmetry, we use both left and right monotony axioms.

Here sensibility is Π^0_2; the outer-most quantifier is universal. Thus we can accumulate evidence in favor of $x \sqsubseteq y$ by enumerating contexts f in which it is known that $fx \text{ conv } \implies fy \text{ conv }$. Indeed this suggests a way to approach \mathcal{H}^* from η:

Theorem 7.4.2. By making only simple, sensible assumptions, we arrive after ω steps at \mathcal{H}^*.
Proof. Consider a chain $T(-)$ of such theories, with limit $T(\omega)$

$$\eta = T(0) \subseteq T(1) \subseteq \ldots \subseteq T(i) \subseteq \ldots \subseteq T(\omega) \overset{?}{=} \mathcal{H}^*$$

Since $T(0)$ is sensible, and each step $T(i+1) - T(i)$ is sensible, each $T(i)$ is sensible, and hence their limit $T(\omega)$ is sensible. Since \mathcal{H}^* is the unique \subseteq-complete sensible theory, it suffices to show that $T(i)$ is \subseteq-complete; thus consider any statement $x \subseteq y$. If $\eta \vdash x \subseteq y$ then we are done. If $x \not\subseteq y$ then $x \subseteq y$ is non-sense, and will not be assumed. Otherwise, let $n > |x| + |y|$ be a bound on the syntactic complexity of xy. Then after assuming the simplest $\exp(n)$-sensible statements, we must have assumed $x \subseteq y$. □

The proof requires all assumptions to be sensible, but sensibility is undecidable in general. Thus it would be more satisfying to prove a statement of probable approximate correctness (PAC, [Val84]), where correct means complete and consistent:

Conjecture 7.4.3. For any $\delta, \epsilon \in (0, 1)$, we can enumerate sufficiently much evidence to randomly generate a simple apparently sensible theory T such that

(i) averaging over T: $P(T \text{ sensible}) > 1 - \delta$

(ii) for each T, averaging over x, y: $P(T \text{ answers } x \subseteq y) > 1 - \epsilon$

However, even if provable, it likely cannot be proved constructively: given an amount of evidence E, we may be able to make random assumptions until $1 - \epsilon$ of all queries are known to be provable. Furthermore, it is likely to be uncomputable how much evidence $E(\epsilon, \delta)$ is necessary to achieve given bounds ϵ, δ:

Conjecture 7.4.4. The evidence function

$$E'(m, n) = \text{ceil}(- \log(1 - E(\exp(-m), \exp(-n))))$$

is not recursively bounded.

Propagating evidence

We now describe Johann’s algorithm for generating conjectures. Despite the severe limitations on the possibility of generating true conjectures, we have had considerable practical success generating useful conjectures, some of which were proven true by other means, and some of which were false but led to insight as to what axioms could improve Johann’s reasoning ability.

We generate conjectures by propagating evidence for questions $x \subseteq y$, and then collecting the best few conjectures, typically 10^2 out of 10^4 total. Evidence accumulates through four probabilistic inference rules for plausibility, the inverses of the monotonicity and transitivity rules of for order.

\[
\frac{f \text{ term } \quad fx \subseteq fy \text{ plaus}}{x \subseteq y \text{ plaus}} \quad (\mu) \quad \frac{f \subseteq g \text{ plaus } \quad x \text{ term } \quad x \subseteq z \text{ plaus}}{y \text{ term } \quad y \subseteq z \text{ plaus}} \quad (\tau)
\]

\[
\frac{f \subseteq g \text{ plaus } \quad x \text{ term } \quad x \subseteq z \text{ plaus}}{f \subseteq g \text{ plaus}} \quad (v) \quad \frac{x \subseteq y \text{ plaus } \quad y \text{ term } \quad y \subseteq z \text{ true}}{x \subseteq z \text{ plaus}} \quad (r')
\]

Now given a database of facts $u \subseteq v$ and $u \not\subseteq v$, a complexity pmf $P(x)$ on terms, and rule weights $P_\mu + P_\nu + 2 P_\tau = 1$, we iteratively propagate evidence $P(u \subseteq v)$ to find a fixedpoint of the contraction equation

$$P(u \subseteq v) = \begin{cases} 1 & \text{if } u \subseteq v \text{ then } 1 \text{ else } \\ 0 & \text{if } u \not\subseteq v \text{ then } 0 \text{ else } \\ \sum_f P(f) P(u \subseteq x \text{ } v) + P_\mu \sum_x P(u \subseteq v \text{ } x) P(x) + P_\nu \sum_y P(u \subseteq y \text{ } P(y) \text{ if } y \subseteq v \text{ then } 1 \text{ else } 0) \end{cases}$$

152
Note that normalization ensures \(P(u \sqsubseteq v) \in [0, 1] \).

Each propagation iteration takes time cubic in database size, since we need to examine each unproved questions \(u \sqsubseteq v \) (roughly \(0.05 \cdot O^2 \sim 5 \cdot 10^6 \) for \(O = 10^4 \) obs), and for each question, sum over all \(f \)'s, \(x \)'s, and \(y \)'s above. Because the \(\tau \) rule is significantly slower than either of the \(\mu, \nu \) rules, we often leave it out by setting \(P_{\tau} = 0 \).

7.5 Fitting a basis to a corpus of expressions

Johann enumerates a finite chunk of an infinite structure, by randomly adding simple terms to the database. Building this chunk has quadratic space complexity and cubic time complexity in the number of obs or equivalence classes. Thus it is very important that Johann has a “correct” notion of simplicity or complexity — that the weighted combinatorial basis reflects our interest in the infinite structure.

This section describes a basis fitting algorithm that Johann uses to statistically fit the probabilistic basis to a corpus of “interesting” terms, e.g., the expressions appearing in this thesis. We basically fit a bag-of-words-modulo-equality model to maximize the likelihood of the corpus, or minimize KL-divergence between the corpus and the model. This local weight optimization procedure is similar to the standard bag-of-words model, but can use Johann’s equational database to balance multiple possible parses of a given expression. We also describe a basis extension procedure that search the database for possible obs to add to the basis.

Local optimization

We begin with the standard bag-of-words model over an algebraic signature. Let

\[
L = \{ \text{app} \@ P_\text{app}, \ S \@ P_S, \ K \@ P_K, \ldots \}
\]

be a probabilistic basis (a probabilistic context-free grammar [JL92]) generating a probabilistic language

\[
L^* = \{ S \@ P_S, \ K \@ P_K, \ S \ S \@ P_\text{app} P_S P_S, \ S \ K \@ P_\text{app} P_S P_K, \ldots \}
\]

and let \(C \) be a corpus of expressions, a probability distribution over the support of \(L^* \). Note that not all such languages have finite entropy; the infinite entropy-languages are meaningless, and not accessible by gradient descent methods ([ABNK+87], [AN93]). The Kullback-Leibler divergence from \(C \) to \(L^* \) is

\[
H(C \mid L^*) = \sum_x C(x) \log \frac{C(x)}{L^*(x)}
\]

We now solve the local optimization problem

<table>
<thead>
<tr>
<th>Given:</th>
<th>a corpus (C) and initial basis (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vary:</td>
<td>weights (P_\text{app}, P_S, P_K, \ldots) of the basis (S)</td>
</tr>
<tr>
<td>To Minimize:</td>
<td>(H(C \mid L^*))</td>
</tr>
<tr>
<td>Subject To:</td>
<td>(S) being a probability distribution, i.e. (0 \leq P_i \leq 1) and (\sum P_i = 1).</td>
</tr>
</tbody>
</table>

Next under an equational theory \(\sim \), we perform the same optimization, with \(C \) and \(L^* \) probability distributions over equivalence classes of expressions modulo \(\sim \). Thus the sum in \(H(C \mid L^*) \) now ranges over equivalence classes.

In practice we use a conjugate gradient optimization solver, that iteratively selects a conjugate gradient descent direction, and then line-searches in the chosen subspace. Each gradient computation and each objective function evaluation further requires iteration, as both complexity and relevance are defined as
fixedpoints of propagation equations. When solution approaches a boundary, i.e., some atom is given extremely low weight, that atom is removed from the basis, and optimization continues with the reduced basis (as done in active set methods). We have also experimented with using the natural information metric to compute the conjugate direction ([Ama98]), but had problems with non-convergence and NaNs near boundaries.

Extending the basis

Thus far, we have shown how to locally optimize a basis with given support. This naturally leads to a naive algorithm to extend the support with additional atoms:

- For each ob in database support:
 - add ob to basis; locally optimize;
 - if cost decreased then keep ob else remove

However this naive algorithm has two problems:
1. it is too slow to iterate through all $\sim 10^k$ obs; and more importantly
2. the optimal result would be complete overfitting, i.e., defining Basis = Corpus, $P_{app} = 0$, and never generating new ideas or parses of existing obs.

Our solutions are (1) to locally estimate how important an ob would be if added to the basis, and (2) to manually split the large terms in the corpus into polynomials in P_{app} and their subterms below some complexity threshold.

To estimate the improvement any one ob x would have in extending the basis, we compute the partial derivative of cost w.r.t. basis weight of an ob x

$$R(x) = \left. \frac{\partial H(C)[\delta x + (1 - \delta)L^*]}{\partial \delta} \right|_{\delta=0}$$
It turns out that we have already computed this quantity under the name of “relevance” of an ob x to a corpus C. Thus to extend the basis, we can search among the best few (e.g. $|L|$ or $\log(O)$) extension candidates, then locally optimize, as in the naive case.

To deal with overfitting, we split the corpus (a weighted set of obs) into an ob polynomial in P_{app}, so that each ob has complexity below some threshold. For example we might split up

$$SSSS + SSSS \mapsto P_{app} + SSSS + S + SSSS$$

$$\mapsto 2P_{app} + 2(SS) + S$$

Because this splitting puts P_{app} into the objective function, a global extremum cannot completely fit the corpus, as it must give P_{app} some positive value.
Appendix A

Syntactic algorithms

A.1 Term syntax

We first present a relatively large language of terms, and then show how to compile terms down to a small combinatorial fragment.

<table>
<thead>
<tr>
<th>Algebraic Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>x var</td>
</tr>
<tr>
<td>x term</td>
</tr>
<tr>
<td>I term</td>
</tr>
<tr>
<td>K term</td>
</tr>
<tr>
<td>B term</td>
</tr>
<tr>
<td>C term</td>
</tr>
<tr>
<td>W term</td>
</tr>
<tr>
<td>S term</td>
</tr>
<tr>
<td>J term</td>
</tr>
<tr>
<td>code term</td>
</tr>
</tbody>
</table>

| quote term |
| eval term |
| M term |
| N term |
M	N term
M	N term
M	N term

<table>
<thead>
<tr>
<th>Patterns and Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>x var</td>
</tr>
<tr>
<td>x patt</td>
</tr>
<tr>
<td>p_1 patt</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>p_n patt</td>
</tr>
<tr>
<td>p patt</td>
</tr>
<tr>
<td>p patt'</td>
</tr>
<tr>
<td>p : M patt</td>
</tr>
</tbody>
</table>

| (p_1, ..., p_n) patt' |
| (p) patt' |
| M term |
| M term |
| M term |

| p patt' |
| M term |
| p patt' |
| M term |
| p patt |
| M term |

| p patt |
| M term |
| p patt |
| M term |
| p patt |
| M term |

| λp.M term |
| ∀p.M term |
| ∃p.M term |

{M} term
{φ} term

→ term
157
A.2 Compiling to combinators

(large step; R is similar to J; quoting is handled separately)

Algebraic

\[
\begin{align*}
M & \mapsto M' & N & \mapsto N' & (J) \\
\langle \rangle & \mapsto \mathbf{I} \\
\langle \rangle & \mapsto \mathbf{I} \\
M & \mapsto M' & \langle N_1, \ldots, N_n \rangle & \mapsto N' & (n \geq 1)
\end{align*}
\]

Abstraction

\[
\begin{align*}
\lambda x.M & \mapsto K x & (K) & \lambda x.x & \mapsto I & (I) \\
\lambda x.x & \mapsto I & (I) & \lambda x.M & \mapsto M & (\eta) \\
\lambda x.M & \mapsto M' & \lambda x.M & \mapsto M' & \lambda x.N & \mapsto N' & (B) \\
\lambda x.M & \mapsto M' & \lambda x.M & \mapsto M' & \lambda x.M & \mapsto M' & \lambda x.N & \mapsto N' & (S) \\
\lambda x.M & \mapsto M' & \lambda x.N & \mapsto N & \lambda x.M & \mapsto M' & \lambda x.a.M & \mapsto B M' a' & (C) \\
\lambda x.a.M & \mapsto B M' a' & \lambda x:a:t.M & \mapsto S t' M' \\
\lambda x.M & \mapsto M' & \lambda x.a.M & \mapsto B (S t' M') a' & \lambda p_1, \ldots, p_n.M & \mapsto M'
\end{align*}
\]

Definitions

\[
\begin{align*}
x & \mapsto D.N & \mapsto N' & (J) & \lambda x.M & \mapsto M' \\
x & \mapsto D.M & \mapsto M' \\
\langle x_1, \ldots, x_n \rangle & \mapsto D.M & \mapsto D M'
\end{align*}
\]

Quantifiers / Polymorphism

\[
\begin{align*}
\forall x.M & \mapsto M' & \forall x:N.M & \mapsto M' \\
\forall x:N.M & \mapsto M' \\
\exists x.M & \mapsto M' & \exists x:N.M & \mapsto M'
\end{align*}
\]

\[
\lambda(x,y):\text{pair.}(\langle V \ N x, V \ M \ y \rangle) & \mapsto M'
\]

\[
\exists x:N.M & \mapsto M'
\]

158
Quoting is more delicate, as it involves the code comonad. We need to define two types of compiling: one inside quotes, and one outside. Within a quoted environment, we can quote variables. Also, all compilation is done at the outer-most environment, so that, e.g., the abstraction algorithm works with $\text{I}, \text{K}, \text{B}, \text{C}, \text{W}, \text{S}$ instead of the more complicated quoted versions $\text{I}, \text{K}, \text{B}, \text{C}, \text{W}, \text{S}$.

Quoting

$\{M\} \mapsto M'$

$\{N\} \mapsto N'$

$\{M\} \mapsto M'$

$\{\{M\}\} \mapsto \text{quote } M'$

Code Comonad

$\lambda \{x\}. \{x\} \mapsto \text{code}$

$\lambda \{x\}. \{x\} \mapsto \text{Eval}\{a\}$

$\lambda \{x\}. \{x\} \mapsto \text{Quote}\{a\}$

Note that the $\{\text{K}\}$ rule prevents us from testing with $\text{test}\text{.code}$; we need to abstract partial terms as well.

A.3 Decompiling

One of the advancements of this is a successful decompiling algorithm from combinators SKJ to λ-let-terms. Although this is theoretically banal, it has major practical significance in allowing people to read combinators (and foiling the obfuscatory attempts of languages like unlambda, and Iota).

The main idea is to simplify (with Johann’s database), translate left-linear terms to λ abstraction, translate left-copying terms (W, S) to let-expressions, decompile vectors $\lambda . f \ M_1 \ldots M_n \mapsto \langle M_1, \ldots, M_n \rangle$, and η-reduce whenever possible.
Abstraction

 wastewater

Definitions

Join (Rand is identical)

Vectors and Tuples

Codes
A.4 Reduction Strategies

We consider both affine/linear reduction \rightarrow and bounded reduction \Rightarrow. Since affine reduction is size-reducing (and hence terminates), we count only nonlinear steps towards the bound in arbitrary reduction.

\begin{align*}
\text{Affine} & \quad \bot \vdash \bot \quad \top \vdash \top \quad \bot \vdash x \quad \top \vdash x \quad J \vdash \top \quad J \bot \vdash I \quad V \vdash V \\

V(Vx) & \vdash Vx \quad UU \vdash U \quad U(Ux) \vdash Ux \quad Ky \vdash x \quad Fxy \vdash y \\

Jx \top & \vdash \top \quad Jx \bot \vdash x \quad Jx \vdash x \quad Rx \vdash x \quad Bxyz \vdash xy(z) \\

Cxyz & \vdash xzy
\end{align*}

Nonaffine

\begin{align*}
Yx & \vdash x(Yx) \quad V \vdash I | f \circ (Vf) \quad U \vdash f\circ(Uf) | f \quad Wxy \vdash xxy \\
Sxyz & \vdash xzy \quad Jxyz \vdash Juv \quad Rxyz \vdash Ruv \\

R(x(yz)) & \vdash J(R \times y)(R \times z)
\end{align*}

A.5 Statements

Statements are based on equations and Scott’s information ordering. In SKJ and extensions we can also reason about types-as-closures [3.3] and types-as-tests [3.10].

\begin{align*}
\text{Statement Formation} & \quad = \text{rel} \quad \neq \text{rel} \quad \subseteq \text{rel} \quad \nsubseteq \text{rel} \quad \sqsubseteq \text{rel} \quad \nsubseteq \text{rel} \quad \sqsubset \text{rel} \quad \nsubseteq \text{rel} \\

<: \text{rel} & \quad !<: \text{rel} \quad :> \text{rel} \quad !:> \text{rel} \\

!:> \text{rel} & \quad M \text{term} \sim \text{rel} \quad N \text{term} \quad x \text{patt} \quad p \text{stmt} \quad \forall x. \quad p \text{stmt} \\

& \quad x := M. \quad p \text{stmt} \quad p \text{stmt} \quad q \text{stmt} \quad p \text{stmt} \quad q \text{stmt} \\

& \quad p \text{stmt} \quad p \text{stmt} \quad q \text{stmt} \quad p \text{stmt} \quad q \text{stmt} \\

\quad \text{NOT} \quad \text{p stmt} \quad \text{AND} \quad \text{q stmt} \quad \text{p stmt} \quad \text{q stmt} \quad \text{p stmt} \quad \text{q stmt}
\end{align*}

In SKJ and extensions, we can eliminate universal quantifiers, universal quantifiers, and implications where the hypothesis is a testable assertion $x::t$ or $M = I$.

Let \sim denote one of the basic relations $=, \subseteq, \text{or } \sqsubseteq$.

161
Derived Relations

\[M \sqsubseteq N \mapsto M \sqsubseteq N \quad \text{AND} \quad M \not\sqsupseteq N \mapsto M \not\sqsupseteq N \]

\[M : N \mapsto V \quad M N = M \]

\[M :< N \mapsto V \quad M : P N \]

\[M :: N \mapsto \text{test} \quad N M = I \]

\[M ::: N \mapsto \text{test} \quad N M = P_{\text{test}} N M \]

Universal Quantification

\[\forall x. p \mapsto M \sim N \]

\[\forall x : a. p \mapsto (\lambda x : a. M) \sim (\lambda x : a. N) \]

\[\forall x : t. p \mapsto (\lambda x : t. M) \sim (\lambda x : t. N) \]

Hypotheses

\[q \mapsto M = I \quad p \mapsto N \sim N' \]

\[q \implies p \mapsto \text{semi} \quad M N \sim \text{semi} \quad M N' \]

We also use the notation \(x : a \vdash p \) and \(x : : t \vdash p \) to denote \(x \) being bound as a term inhabiting a type or passing a test; these have the same semantics as universal quantification.

\[x : a : : t \vdash M \sim N \mapsto (\lambda x : a : : t. M) x \sim (\lambda x : a : : t. N) \]
Appendix B

Reflected axiom schemata

In this section we reflect the hard-coded axiom schemata from `cpp/axiom_enforcement.C` to achieve the strong transitivity principle "if ⊢ φ then ⊢ pr{φ}" (used in [5.4]. Note that axiom schemata without hypotheses such as $K x y = x$ are deducible from equations; these schemata were hard-coded for efficiency rather than logical strength. Since we have already in [5.2] assumed equations implying these principles, we only !assume schemata with hypotheses here.

First we define some derived provability semipredicates, extending those from 5.3.

if of type := (code→code→semi) (λ{x}, {a}. if pr_equal{x} {V a x}).
if subtype := (code→code→semi) (λ{x}, {a}. if pr_equal{V a} {P a b}).
if passes := (code→code→semi) (λ{x}, {t}. if pr_equal{I} {test t x}).
if subtest := (code→code→semi) (λ{s}, {t}. if pr_equal{test s} {P test s t}).

!check (if of type x y, if subtype x y, if passes x y, if subtest x y ⊑ test_code x | test_code y).

In the language of semibooleans and tests, we can express reasoning principles using and semi to conjoin hypotheses and ⊑ to indicate implication between checked statements: semi (i.e. semiboolan values φ ⊑ I). Similarly, reversible rules use equality for bimplication.

Order schemata from 2.1

!assume (∀{f, x}, {y}. if pr_less{x} {y} ⊑ if pr_less{f x} {f y}).
!assume (∀{f, g}, {x}. if pr_less{f} {g} ⊑ if pr_less{f x} {g x}).

Fixed-point schemata from 2.2

!assume (∀{y}. if pr_equal{y} {S I y} ⊑ if pr_equal{Y} {y}).
!assume (∀{f, x}. if pr_less{f x} {x} ⊑ if pr_less{Y f} {x}).

Join schemata from 3.1

!assume (∀{f, x}, {y}. if pr_less{x} {y} ⊑ if pr_less{f x} {f y}).
!assume (∀{f, g}, {x}. if pr_less{f} {g} ⊑ if pr_less{f x} {g x}).

Universal retract schemata from 3.2

!assume (∀x. if pr_equal{x} {U x} = if pr_equal{x} {x=x}).
!assume (∀x, f. if pr_less{f x} {x} ⊑ if pr_less{U f x} {x}).
Universal closure schemata from 3.3

\[\text{assume } (\forall \{x\}. \text{if } \text{pr of type } \{x\} \{V\} = \text{and semi } (\text{if } \text{pr_equal } \{x\} \{x\}) (\text{if } \text{pr_less } \{I\} \{x\})) \] .

\[\text{assume } (\forall \{x\}, \{f\}. \text{if } \text{pr_less } \{f x\} \{x\} \sqsubseteq \text{if } \text{pr_equal } \{V f x\} \{x\}) . \]

Schemata for the types div, unit, semi from 3.8

\[\text{assume } (\forall \{x\}. \text{if } \text{pr_nless } \{x\} \{\bot\} \sqsubseteq \text{if } \text{pr_equal } \{\text{div } x\} \{T\} \quad \text{AND} \]
\[\text{if } \text{pr_equal } \{x\} \{I\} \sqsubseteq \text{if } \text{pr_less } \{\text{div } x\} \] .

\[\text{assume } (\forall \{x\}. \text{if } \text{pr_nless } \{x\} \{I\} \sqsubseteq \text{if } \text{pr_equal } \{\text{unit } x\} \{T\} \quad \text{AND} \]
\[\text{if } \text{pr_equal } \{x\} \{I\} \sqsubseteq \text{if } \text{pr_less } \{\text{unit } x\} \] .

\[\text{assume } (\forall \{x\}. \text{if } \text{pr_nless } \{x\} \{\bot\} \sqsubseteq \text{if } \text{pr_equal } \{\text{semi } x\} \{T\} \quad \text{AND} \]
\[\text{and semi } (\text{if } \text{pr_equal } \{x\} \{\bot\}) \quad \text{if } \text{pr_less } \{\text{semi } x\} \{x\} \] .

A test intersection schema from 3.11

\[\text{assume } (\forall \{p\}, \{q\}. \text{and semi } (\text{if } \text{pr_less } \{\text{check } q\} \{\text{check } p\}) \]
\[\text{if } \text{pr_less } \{\text{div } p\} \{\text{div } q\} \sqsubseteq \text{if } \text{pr_subtest } \{p\} \{q\} \] .

Code schemata from 5.2

\[\text{assume } (\forall \{x\}, \{y\}. \text{and semi } (\text{if } \text{pr_passes } \{x\} \{\text{test_code}\}) \]
\[\text{if } \text{pr_passes } \{y\} \{\text{test_code}\} \sqsubseteq \text{if } \text{pr_equal } \{E(A \times y)\} \{E x(E y)\} \] .

\[\text{assume } (\forall \{c\}, \{c'\}. (\text{and semi } (\text{if } \text{pr_of_type } \{c\} \{\text{code}\}) \]
\[\text{and semi } (\text{if } \text{pr_passes } \{c\} \{\text{test_code}\}) \]
\[\text{and semi } (\text{if } \text{pr_of_type } \{c'\} \{\text{code}\}) \]
\[\text{and semi } (\text{if } \text{pr_passes } \{c'\} \{\text{check_code}\}) \]
\[\text{if } \text{pr_equal } \{E c\} \{E c'\}) \sqsubseteq \text{if } \text{pr_less } \{c'\} \{c\} \] .

\[\text{assume } (\forall \{c\}, \{c'\}. (\text{and semi } (\text{if } \text{pr_of_type } \{c\} \{\text{code}\}) \]
\[\text{and semi } (\text{if } \text{pr_passes } \{c\} \{\text{test_code}\}) \]
\[\text{and semi } (\text{if } \text{pr_of_type } \{c'\} \{\text{code}\}) \]
\[\text{if } \text{pr_nless } \{E c'\} \{E c\}) \sqsubseteq \text{if } \text{pr_equal } \{\text{code}(c | c')\} \{T\} . \]
Schemata for the oracle O from \[5.5\]

\[
\begin{align*}
!\text{assume } & (\forall\{p\}, \{q\}. \\
& \quad \text{and_semi } (\text{if}_\text{pr}_\text{passes}\{\{p\}\}\{\text{test}_\text{skj}\}) \\
& \quad \quad (\text{if}_\text{pr}_\text{subtest}\{p\}\{q\}) \subseteq \text{if}_\text{pr}_\text{equal}\{O\{p\}\{q\}\}\{T\}) \\
&).
\end{align*}
\]

\[
\begin{align*}
!\text{assume } & (\forall\{p\}, \{p'\}. \\
& \quad \text{and_semi } (\text{if}_\text{pr}_\text{passes}\{\{p\}\}\{\text{test}_\text{skj}\}) \\
& \quad \quad (\text{if}_\text{pr}_\text{subtest}\{p\}\{p'\}) \subseteq \text{if}_\text{pr}_\text{subtest}\{O\{p'\}\}\{O\{p\}\}) \\
&).
\end{align*}
\]

\[
\begin{align*}
!\text{assume } & (\forall\{q\}, \{q'\}. \\
& \quad \text{if}_\text{pr}_\text{subtest}\{q\}\{q'\} \subseteq \text{if}_\text{pr}_\text{subtest}\{C\ O\{q\}\}\{C\ O\{q'\}\}) \\
&).
\end{align*}
\]

\[
\begin{align*}
!\text{assume } & (\forall\{p\}, \{q\}, \{q'\}. \\
& \quad \text{and_semi } (\text{if}_\text{pr}_\text{passes}\{\{p\}\}\{\text{test}_\text{skj}\}) \\
& \quad \quad (\text{if}_\text{pr}_\text{less}\{q\}\{q'\}) \subseteq \text{if}_\text{pr}_\text{less}\{O\{p\}\{q\}\}\{O\{p\}\{q'\}\}) \\
&).
\end{align*}
\]

\[
\begin{align*}
!\text{assume } & (\forall\{p\}, \{q\}, \{x\}. (\\
& \quad \text{and_semi } (\text{if}_\text{pr}_\text{tested}\{\{p\}\}\{\text{test}_\text{skj}\}) \\
& \quad \quad (\text{if}_\text{pr}_\text{passes}\{x\}\{p\}\}) \\
& \quad \quad (\text{if}_\text{pr}_\text{equal}\{q\ x\}\{T\})) \subseteq \text{if}_\text{pr}_\text{equal}\{O\{p\}\{q\}\}\{T\}) \\
&).
\end{align*}
\]

\[
\begin{align*}
!\text{assume } & (\forall\{p\}, \{q\}, \{x\}. (\\
& \quad \text{and_semi } (\text{if}_\text{pr}_\text{tested}\{\{p\}\}\{\text{test}_\text{skj}\}) \\
& \quad \quad (\text{if}_\text{pr}_\text{passes}\{x\}\{p\}\}) \\
& \quad \quad (\text{if}_\text{pr}_\text{equal}\{q\ x\}\{\bot\})) \subseteq \text{if}_\text{pr}_\text{of}_\text{type}\{O\{p\}\{q\}\}\{\text{div}\}) \\
&).
\end{align*}
\]
Index

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(JR)-slurry</td>
<td>82</td>
</tr>
<tr>
<td>⊥</td>
<td>12, 17</td>
</tr>
<tr>
<td>B</td>
<td>124, 135</td>
</tr>
<tr>
<td>Bot</td>
<td>125</td>
</tr>
<tr>
<td>C</td>
<td>124, 125</td>
</tr>
<tr>
<td>F</td>
<td>124</td>
</tr>
<tr>
<td>I</td>
<td>124</td>
</tr>
<tr>
<td>J</td>
<td>74</td>
</tr>
<tr>
<td>K</td>
<td>74, 134, 135</td>
</tr>
<tr>
<td>S</td>
<td>74, 134, 135</td>
</tr>
<tr>
<td>⊤</td>
<td>126</td>
</tr>
<tr>
<td>W</td>
<td>125</td>
</tr>
<tr>
<td>Y</td>
<td>125</td>
</tr>
<tr>
<td>div</td>
<td>126</td>
</tr>
<tr>
<td>reg</td>
<td>134, 135</td>
</tr>
<tr>
<td>succ</td>
<td>134, 135</td>
</tr>
<tr>
<td>zero</td>
<td>134, 135</td>
</tr>
<tr>
<td>SKJ -trace</td>
<td>82</td>
</tr>
<tr>
<td>A</td>
<td>98</td>
</tr>
<tr>
<td>Above</td>
<td>38</td>
</tr>
<tr>
<td>add</td>
<td>72, 129</td>
</tr>
<tr>
<td>And</td>
<td>56</td>
</tr>
<tr>
<td>and</td>
<td>63</td>
</tr>
<tr>
<td>and_div</td>
<td>65</td>
</tr>
<tr>
<td>and_sem</td>
<td>65</td>
</tr>
<tr>
<td>and_unit</td>
<td>65</td>
</tr>
<tr>
<td>Another</td>
<td>127</td>
</tr>
<tr>
<td>another</td>
<td>127</td>
</tr>
<tr>
<td>any</td>
<td>87</td>
</tr>
<tr>
<td>ap</td>
<td>74, 134, 135</td>
</tr>
<tr>
<td>ap</td>
<td>127, 128</td>
</tr>
<tr>
<td>Apply</td>
<td>104</td>
</tr>
<tr>
<td>assert</td>
<td>65</td>
</tr>
<tr>
<td>assert_eq_term</td>
<td>75</td>
</tr>
<tr>
<td>assert_eq_ty</td>
<td>130</td>
</tr>
<tr>
<td>at</td>
<td>128</td>
</tr>
<tr>
<td>atom_code</td>
<td>98</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
</tr>
<tr>
<td>B'</td>
<td>12</td>
</tr>
<tr>
<td>b_c</td>
<td>127</td>
</tr>
<tr>
<td>B_R</td>
<td>124</td>
</tr>
<tr>
<td>B_</td>
<td>124</td>
</tr>
<tr>
<td>b_2b</td>
<td>92, 93</td>
</tr>
<tr>
<td>b_2u</td>
<td>92</td>
</tr>
<tr>
<td>Bin_op</td>
<td>53</td>
</tr>
<tr>
<td>Bin_rel</td>
<td>58</td>
</tr>
<tr>
<td>bool</td>
<td>53, 58</td>
</tr>
<tr>
<td>bool-hard</td>
<td>114</td>
</tr>
<tr>
<td>bool</td>
<td>52, 53</td>
</tr>
<tr>
<td>Bot</td>
<td>12</td>
</tr>
<tr>
<td>Bot_</td>
<td>125</td>
</tr>
<tr>
<td>Bot_</td>
<td>125</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>c_c</td>
<td>127</td>
</tr>
<tr>
<td>C_R</td>
<td>125</td>
</tr>
<tr>
<td>C_</td>
<td>125</td>
</tr>
<tr>
<td>case_ap</td>
<td>75</td>
</tr>
<tr>
<td>case_exp</td>
<td>129</td>
</tr>
<tr>
<td>case_j</td>
<td>77</td>
</tr>
<tr>
<td>case_k</td>
<td>76, 77</td>
</tr>
<tr>
<td>case_n</td>
<td>71</td>
</tr>
<tr>
<td>case_num</td>
<td>129</td>
</tr>
<tr>
<td>cases</td>
<td>76, 77</td>
</tr>
<tr>
<td>case_t</td>
<td>77</td>
</tr>
<tr>
<td>Check</td>
<td>64</td>
</tr>
<tr>
<td>check</td>
<td>64</td>
</tr>
<tr>
<td>check-any</td>
<td>67</td>
</tr>
<tr>
<td>check_p</td>
<td>67</td>
</tr>
<tr>
<td>check_conv</td>
<td>80</td>
</tr>
<tr>
<td>check_Maybe</td>
<td>68</td>
</tr>
<tr>
<td>check_n</td>
<td>69</td>
</tr>
<tr>
<td>check-nil</td>
<td>67</td>
</tr>
<tr>
<td>check_pre_term</td>
<td>131</td>
</tr>
<tr>
<td>check_F</td>
<td>68</td>
</tr>
<tr>
<td>check_Red</td>
<td>78</td>
</tr>
<tr>
<td>check_semi</td>
<td>67</td>
</tr>
<tr>
<td>check_S</td>
<td>68</td>
</tr>
</tbody>
</table>
check_term, 74, 134
check_ty, 129
check_unit, 67
Checkable, 67
checkable, 67
Checked, 64
checks, 65
closure, 34
Code, 104
code, 97
code comonad, 104
code_to_term, 107
Comm_op, 58
comonad, 104
compact point, 31
compose, 124, 135
compose_, 128
computational comonad, 104
consistent, 112
context, 127, 128
Conv, 80
conv, 80, 119
CSPD interpretation, 83
decides, 111
Δ, 13
detailed balance, 148
div, 41
Div1, 126
div1, 126
Div2, 126
div2, 126
Done, 80
done, 80

E, 98, 99
empirically complete, 116
Endo, 53
eq_num, 72
eq_term, 75
eq_ty, 130
equal, 119
error, 13
Eval, 104, 135
eval, 135
eval_eq, 139
eval_term, 74
Exists, 120
exists, 120
exists_Code, 121
exists_code, 121

exists_num, 120
exists_skj, 120
exists_term, 121
Exp, 53
exp, 12
exp_ty, 129

F, 12
F_R1, 124
F_e1, 124
F_e, 124
fail, 13
false, 12
feed, 126
finite, 31, 83
Fix, 109
Forall, 120
forall, 120
forall_Code, 121
forall_code, 121
forall_num, 120
forall_skj, 121
forall_Term, 137
forall_term, 121, 137
forall_ty, 137
From, 53
functor, 103
functor, 58
fuzzy, 87
fuzzy_b2b, 93
fuzzy_b2u, 92
fuzzy_bool, 88
fuzzy_Maybe, 90
fuzzy_n2s, 93
fuzzy_nat, 89
fuzzy_nil, 88
fuzzy_num, 91
fuzzy_Prod, 90
fuzzy_Stream, 91
fuzzy.Sum, 90
fuzzy_unit, 88

hard, 114
head normal form, 31
head variable, 31
hypothesis, 116

I, 12
id, 126, 127
I_R, 124
I_e, 124
ld, 105
id, 127, 128
Idem, 54
If, 56
if, 63
if_case_ap, 75
if_casey, 77
if_cases, 76, 77
if_case, 77
if_conv, 118, 119
if_conv_term, 80
if_div, 118, 119
if_eq_num, 72
if_eq_term, 75
if_eq_ty, 130
if_equal, 119
if_exists_num, 119
if_finite, 71
if_forall_num, 120
if forall_num', 120
if_less, 119
if_neq, 119
if_pr_equal, 109
if_pr_less, 109
if_pr_nequal, 109
if_pr_nless, 109
if_pr_of_type, 163
if_pr_passes, 163
if_pr_subtest, 163
if_pr_subtype, 163
if_Red, 79
iff, 63
implied_by, 63
implies, 63
inconsistent, 112
Ind_nat, 71
ind Nat, 71
Inl, 55
inl, 55
Inr, 55
inr, 55
Inv, 139
invariance, 139
is_zero, 70

J, 29
J-Bohm tree, 31
jc, 126, 127
jR, 79
Jr, 79
Jr2, 79
J2, 79
Jay, 12
join, 31
join, 74
Join_Conv, 80
Join_Red, 79
Join_term, 77
Join Ty, 130
JR-Bohm tree, 83

K, 12
Kc, 126
KRB, 79
K, 79

less, 119
Lhs_r, 79
Lhs, 79
Lift, 87
lift b2b, 83
lift b2u, 82
lift bool, 88
lift Maybe, 80
lift N2s, 83
lift nat, 89
lift nil, 88
lift num, 91
lift Prod, 90
lift Stream, 91
lift Sum, 90
lift term, 118
lift Unit, 88
lower, 44

M- solvable, 32
map Maybe, 56
map maybe, 56
map Sset, 57
map sset, 57
Maybe, 55
maybe, 55
mixture, 82
Mod, 59
mod, 59
mul, 72

n2s, 93
nat, 69
nat2num, 73
natural transformation, 104
Next, 80
next, 80
nil, 38
none, 55
<table>
<thead>
<tr>
<th>term</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonstandard</td>
<td>102</td>
</tr>
<tr>
<td>nonzero</td>
<td>70</td>
</tr>
<tr>
<td>not</td>
<td>63</td>
</tr>
<tr>
<td>num</td>
<td>56</td>
</tr>
<tr>
<td>num_below</td>
<td>73</td>
</tr>
<tr>
<td>num_ty</td>
<td>129</td>
</tr>
<tr>
<td>O</td>
<td>58</td>
</tr>
<tr>
<td>O_Codev</td>
<td>115</td>
</tr>
<tr>
<td>O_code</td>
<td>115</td>
</tr>
<tr>
<td>O_nat</td>
<td>115</td>
</tr>
<tr>
<td>O_num</td>
<td>115</td>
</tr>
<tr>
<td>O_skip</td>
<td>115</td>
</tr>
<tr>
<td>O_term</td>
<td>115</td>
</tr>
<tr>
<td>Ω</td>
<td>13</td>
</tr>
<tr>
<td>ω</td>
<td>12</td>
</tr>
<tr>
<td>one</td>
<td>70</td>
</tr>
<tr>
<td>Or</td>
<td>56</td>
</tr>
<tr>
<td>or</td>
<td>63</td>
</tr>
<tr>
<td>or_div</td>
<td>64</td>
</tr>
<tr>
<td>or_semi</td>
<td>64</td>
</tr>
<tr>
<td>or_unit</td>
<td>64</td>
</tr>
<tr>
<td>Ord</td>
<td>73</td>
</tr>
<tr>
<td>P</td>
<td>39</td>
</tr>
<tr>
<td>P_check</td>
<td>65</td>
</tr>
<tr>
<td>P_probe</td>
<td>65</td>
</tr>
<tr>
<td>P_test</td>
<td>65</td>
</tr>
<tr>
<td>P_where</td>
<td>65</td>
</tr>
<tr>
<td>Pair</td>
<td>54</td>
</tr>
<tr>
<td>pair</td>
<td>54</td>
</tr>
<tr>
<td>ϕ</td>
<td>12</td>
</tr>
<tr>
<td>I</td>
<td>57</td>
</tr>
<tr>
<td>P1</td>
<td>54</td>
</tr>
<tr>
<td>P2</td>
<td>54</td>
</tr>
<tr>
<td>π1</td>
<td>54</td>
</tr>
<tr>
<td>π2</td>
<td>54</td>
</tr>
<tr>
<td>pow</td>
<td>72</td>
</tr>
<tr>
<td>pr</td>
<td>110</td>
</tr>
<tr>
<td>pr_equal</td>
<td>110</td>
</tr>
<tr>
<td>pr_less</td>
<td>110</td>
</tr>
<tr>
<td>pre_Red</td>
<td>78</td>
</tr>
<tr>
<td>pre_term</td>
<td>74</td>
</tr>
<tr>
<td>pre_ty</td>
<td>129</td>
</tr>
<tr>
<td>prec</td>
<td>71</td>
</tr>
<tr>
<td>prec_num</td>
<td>72</td>
</tr>
<tr>
<td>Pred</td>
<td>58</td>
</tr>
<tr>
<td>pred</td>
<td>63</td>
</tr>
<tr>
<td>pred_qbool</td>
<td>111</td>
</tr>
<tr>
<td>predicates</td>
<td>69</td>
</tr>
<tr>
<td>principle type</td>
<td>59</td>
</tr>
<tr>
<td>probability</td>
<td>149</td>
</tr>
<tr>
<td>Probe</td>
<td>64</td>
</tr>
<tr>
<td>probe</td>
<td>64</td>
</tr>
<tr>
<td>probes</td>
<td>65</td>
</tr>
<tr>
<td>Prod</td>
<td>54</td>
</tr>
<tr>
<td>prod</td>
<td>54</td>
</tr>
<tr>
<td>ψ</td>
<td>12</td>
</tr>
<tr>
<td>pull</td>
<td>44</td>
</tr>
<tr>
<td>push</td>
<td>44</td>
</tr>
<tr>
<td>Q</td>
<td>99</td>
</tr>
<tr>
<td>Quantifier</td>
<td>120</td>
</tr>
<tr>
<td>Quote</td>
<td>104</td>
</tr>
<tr>
<td>quote_bool</td>
<td>106</td>
</tr>
<tr>
<td>quote_Maybe</td>
<td>107</td>
</tr>
<tr>
<td>quote_nat</td>
<td>107</td>
</tr>
<tr>
<td>quote_num</td>
<td>107</td>
</tr>
<tr>
<td>quote_Prod</td>
<td>107</td>
</tr>
<tr>
<td>quote_semi</td>
<td>106</td>
</tr>
<tr>
<td>quote_Sum</td>
<td>107</td>
</tr>
<tr>
<td>quote_term</td>
<td>107</td>
</tr>
<tr>
<td>Quoter</td>
<td>106</td>
</tr>
<tr>
<td>Quotient</td>
<td>59</td>
</tr>
<tr>
<td>R</td>
<td>82</td>
</tr>
<tr>
<td>raise</td>
<td>44</td>
</tr>
<tr>
<td>rec</td>
<td>125</td>
</tr>
<tr>
<td>Rec_nat</td>
<td>71</td>
</tr>
<tr>
<td>rec_nat</td>
<td>71</td>
</tr>
<tr>
<td>Rec_num</td>
<td>73</td>
</tr>
<tr>
<td>rec_num</td>
<td>73</td>
</tr>
<tr>
<td>recurse</td>
<td>135</td>
</tr>
<tr>
<td>Red</td>
<td>78</td>
</tr>
<tr>
<td>red</td>
<td>138</td>
</tr>
<tr>
<td>reducibility</td>
<td>138</td>
</tr>
<tr>
<td>reducible</td>
<td>136</td>
</tr>
<tr>
<td>Refl</td>
<td>128</td>
</tr>
<tr>
<td>refl</td>
<td>128</td>
</tr>
<tr>
<td>refl</td>
<td>128</td>
</tr>
<tr>
<td>refutable in the limit</td>
<td>116</td>
</tr>
<tr>
<td>relevance</td>
<td>149</td>
</tr>
<tr>
<td>Resp</td>
<td>128</td>
</tr>
<tr>
<td>resp</td>
<td>128</td>
</tr>
<tr>
<td>resp_c</td>
<td>127</td>
</tr>
<tr>
<td>retract</td>
<td>32</td>
</tr>
<tr>
<td>Rhs</td>
<td>79</td>
</tr>
<tr>
<td>rhs</td>
<td>79</td>
</tr>
<tr>
<td>S</td>
<td>12</td>
</tr>
<tr>
<td>S′</td>
<td>12</td>
</tr>
<tr>
<td>s_c</td>
<td>127</td>
</tr>
<tr>
<td>Sr</td>
<td>79</td>
</tr>
<tr>
<td>S_r</td>
<td>79</td>
</tr>
<tr>
<td>sampling_thm</td>
<td>88</td>
</tr>
<tr>
<td>sampling_thm_j</td>
<td>88</td>
</tr>
</tbody>
</table>
ty_eval, 130

U, 52
Unit, 122
unit, 52 88
unitp, 63
unitk, 63

V, 54

W, 12
w, 127
WR, 125
W, 125

Y, 12
Y', 108
YR, 125
Y, 125

zero, 12 69 89 129
zero_num, 72
Bibliography

