The topological Tverberg problem beyond prime powers FLORIAN FRICK (joint work with Pablo Soberón)

A 1959 result of Bryan Birch [3] asserts that for any straight-line drawing of the complete graph K_{3q} with 3q vertices in the plane, there is a partition into q vertexdisjoint 3-cycles that all surround a common point in the plane. It is natural to wonder whether this results holds more generally if the edges are not assumed to be straight-line segments, but only continuous arcs. This question and its natural generalizations to higher dimensions have turned out to be surprisingly resistant.

The natural generalization of Birch's result to dimension d holds: Any q(d+1) points in \mathbb{R}^d may be partitioned into q sets X_1, \ldots, X_q of size d+1 such that the simplices spanned by the X_i all intersect in a common point. In fact, generically this intersection of simplices will be full-dimensional, and one can save d points; Helge Tverberg [11] proved that any (q-1)(d+1)+1 points in \mathbb{R}^d can be partitioned into q sets whose convex hulls all share a common point.

The continuous generalization of Birch's result, and more generally Tverberg's result, has been proved for q a power of a prime [4, 10, 12]. More precisely, any continuous map $f: \Delta_{(q-1)(d+1)} \to \mathbb{R}^d$ from the (q-1)(d+1)-dimensional simplex to \mathbb{R}^d identifies q points from pairwise disjoint faces, provided that q is a power of a prime. For a linear map f this is precisely Tverberg's theorem. Perhaps surprisingly, the condition that q be a prime power is indeed crucial for this continuous generalization: For any q with at least two distinct prime divisors and d sufficiently large there is a continuous map $f: \Delta_{(q-1)(d+1)} \to \mathbb{R}^d$ that never maps q points from pairwise disjoint faces to the same point; see [2, 6, 8, 9]. In fact, Avvakumov, Karasev, and Skopenkov [1] showed that there is such a map $f: \Delta_n \to \mathbb{R}^d$ for $n = q(d+1) - q \lceil \frac{d+2}{q+1} \rceil - 2$, provided that q is not a power of prime and $d \ge 2q$.

However, this leaves open the question whether there is a continuous generalization of Birch's original result. Here we prove this generalization and its higherdimensional versions beyond prime powers; see [7] for details:

Theorem 1. Let $q \ge 2$ and $d \ge 1$ be integers. Let n = q(d+1) - 1. For any continuous map $f: \Delta_n \to \mathbb{R}^d$ there are points x_1, \ldots, x_q in q pairwise disjoint faces of Δ_n with $f(x_1) = f(x_2) = \cdots = f(x_q)$.

As a simple consequence of this we obtain a continuous generalization of Birch's theorem:

Corollary 2. For any continuous drawing of K_{3q} in the plane, where each 3-cycle is embedded, there is a partition of the vertex set into q triples such that the induced 3-cycles all surround a common point.

Here we require 3-cycles to be embedded since then, by the Jordan curve theorem, each 3-cycle surrounds a well-defined interior region. Let p be a prime. The p-fold join of a continuous map $f: \Delta_n \to \mathbb{R}^d$ is a \mathbb{Z}/p -equivariant map $F: (\Delta_n)^{*p} \to (\mathbb{R}^{d+1})^p$. Let

$$D = \{(y_1, \dots, y_p) \in (\mathbb{R}^{d+1})^p : y_1 = y_2 = \dots = y_p\}$$

denote the diagonal in $(\mathbb{R}^{d+1})^p$. The preimage $F^{-1}(D)$ consists of all ordered ptuples of (not necessarily distinct) points that f maps to the same point, that is, $F(\lambda_1 x_1 + \cdots + \lambda_p x_p) \in D$ if and only if $\lambda_i = \frac{1}{p}$ for all i and $f(x_1) = f(x_2) = \cdots =$ $f(x_p)$. Since for p a prime the \mathbb{Z}/p -action shifting coordinates of $(\mathbb{R}^{d+1})^p$ is free away from the diagonal D, a result of Dold [5] now implies that $F^{-1}(D)$ intersects any \mathbb{Z}/p -invariant subcomplex $\Sigma \subset (\Delta_n)^{*p}$ that is homotopically [(p-1)(d+1)-1]connected. The subcomplex $\Sigma \subset (\Delta_n)^{*p}$ that consists only of p-fold joins of pairwise disjoint faces is (n-1)-connected, so for n = (p-1)(d+1) this proves the continuous generalization of Tverberg's theorem, provided that q = p is a prime.

The key idea for the proof of Theorem 1 now is to construct for a given integer $q \geq 2$ and a large prime of the form p = kq + 1 a \mathbb{Z}/p -invariant subcomplex $\Sigma \subset (\Delta_{q(d+1)})^{*p}$ that is [(p-1)(d+1)-1]-connected and such that the \mathbb{Z}/p -orbit of any vertex contains q consecutive vertices that are pairwise not adjacent. Since Σ is highly connected it follows as before that there are $x_1, \ldots, x_p \in \Delta_{q(d+1)}$ with $f(x_1) = f(x_2) = \cdots = f(x_p)$ and such that $\frac{1}{p}x_1 + \cdots + \frac{1}{p}x_p \in \Sigma$. By construction of Σ the points x_1, x_2, \ldots, x_q are in pairwise disjoint faces.

This can be used to prove a weaker variant of Theorem 1 for n = q(d + 1). To prove the stronger version for n = q(d + 1) - 1, one can add a dummy vertex to instead argue for $\Delta_{q(d+1)}$ as above. Then observe that for any set $I \subset \mathbb{Z}/p$ of q consecutive numbers modulo p, the points $x_i, i \in I$, are in pairwise disjoint faces of $\Delta_{q(d+1)}$, and the dummy vertex cannot obstruct all of these collections of points, since otherwise q would divide p.

The technical core of the proof of Theorem 1 consists of the construction of suitable complexes Σ , which are highly connected (thus dense) while having large independent sets in each \mathbb{Z}/p -orbit (and thus are locally sparse). The construction given in [7] is optimal in the sense that in any \mathbb{Z}/p -symmetric [(p-1)(d+1)-1]-connected subcomplex of $(\Delta_{q(d+1)})^{*p}$ the largest independent set in some \mathbb{Z}/p -orbit has size at most q.

References

- S. Avvakumov, R. Karasev, and A. Skopenkov, Stronger counterexamples to the topological Tverberg conjecture, arXiv preprint arXiv:1908.08731 (2019).
- [2] P. V. M. Blagojević, F. Frick, and G. M. Ziegler, Barycenters of polytope skeleta and counterexamples to the topological Tverberg conjecture, via constraints, J. Europ. Math. Soc. (JEMS) 21 (2019), no. 7, 2107–2116.
- [3] B. J. Birch, On 3N points in a plane, Math. Proc. Camb. Phil. Soc. 55 (1959), no. 4, 289–293.
- [4] I. Bárány, S. Shlosman, and A. Szücs, On a topological generalization of a theorem of Tverberg, J. Lond. Math. Soc. 2 (1981), no. 1, 158–164.
- [5] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math. 19 (1983), 65-69.
- [6] F. Frick, Counterexamples to the topological Tverberg conjecture, Oberwolfach Rep. 12 (2015), no. 1, 318–321.

- [7] F. Frick and P. Soberón, The topological Tverberg problem beyond prime powers, arXiv preprint arXiv:2005.05251 (2020).
- [8] I. Mabillard and U. Wagner, *Eliminating Tverberg points, I. An analogue of the Whitney trick*, Proc. 30th Annual Symp. Comput. Geom. (SOCG) (Kyoto), ACM, 2014, pp. 171–180.
- [9] I. Mabillard and U. Wagner, Eliminating higher-multiplicity intersections, I. A Whitney trick for Tverberg-type problems, arXiv preprint arXiv:1508.02349 (2015).
- [10] M. Özaydin, *Equivariant maps for the symmetric group*, available at https://minds.wisconsin.edu/bitstream/handle/1793/63829/Ozaydin.pdf.
- [11] H. Tverberg, A generalization of Radon's theorem, J. Lond. Math. Soc. 1 (1966), no. 1, 123–128.
- [12] A. Yu. Volovikov, On a topological generalization of the Tverberg theorem, Math. Notes 59 (1996), no. 3, 324–326.