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I. A Core Model Toolbox and Guide

Ernest Schimmerling

1. Introduction

The subject of this chapter is core model theory at a level where it involves
iteration trees. Our toolbox includes a list of fundamental theorems that set
theorists can use off the shelf in applications; see Section 3. It also contains
a catalog of applications of this sort of core model theory; see Section 5.
The odd sections have no proofs and are basically independent of the even
sections. For those interested in the nuts and bolts of core model theory,
we offer a guide to the monograph The Core Model Iterability Problem [42]
by John Steel in Section 2. We also provide an outline of the paper The
covering lemma up to a Woodin cardinal by William Mitchell, John Steel
and the author [20] in Section 4.

What developed into the theory of core models began in earnest with
theorems of Ronald Jensen on L under the hypothesis that 0# does not
exist. Jensen showed that if 0# does not exist, then L is the canonical core
model, which is written K = L. He also showed that if 0# exists but 0##

does not exist, then K = L[0#] is the canonical core model. In general,
KV is the canonical core model (if there is one) whereas W is a core model
if W = KM where M is a transitive class model of ZFC. Unfortunately,
we must ask the reader to pay close attention to articles in the sense of
grammar.

Whether or not it is possible to give a definition of K that allows us
to make sense of KM for all M is unknown. Up until recently, for those
M for which KM has been defined, KM has turned out to be an extender
model. Backing up slightly, recall that the existence of 0# is equivalent
to the existence of an ordinal κ and an ultrafilter F over ℘(κ) ∩ L that
gives rise to a non-trivial elementary embedding from L to itself. Large
cardinal axioms such as the existence of 0# can all be phrased in terms
of the existence of filters or systems of filters. Some of these systems are

This work was supported in part by National Science Foundation Grant No. 0400467.
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6 I. A Core Model Toolbox and Guide

known as extenders. A model is a transitive set or proper class transitive
model of ZFC. Extender models are models of the form JEΩ where Ω ≤ On,
E is a sequence of length Ω and Eα is an extender for each α < Ω.1

Statements asserting that certain models with large cardinals do not exist
are called anti-large cardinal hypotheses. Instead of making this precise, we
list the four examples most relevant to our introduction.

• 0# does not exist.

• There is no proper class model with a measurable cardinal.

• There is no proper class model with a measurable cardinal κ with
Mitchell order o(κ) = κ++.

• There is no proper class model with a Woodin cardinal.

For the last three examples, it would be equivalent to replace “model” by
“extender model” although this is not obvious.

Much of core model theory deals with generalizations of Jensen’s theo-
rems about L. The core model theorist adopts an anti-large cardinal hy-
pothesis, possibly for the sake of obtaining a contradiction. Then he defines
K and shows that K has many of the same useful properties that L has
if 0# does not exist. With some exceptions, these properties fall into the
following categories.

• Fine structure with the consequence, for example, that GCH and com-
binatorial principles such as ♦ and � hold in K.

• Universality with the consequence, for example, that the existence of
certain extender models is absolute to K.

• Maximality with the consequence, for example, that certain large car-
dinal properties of κ are downward absolute to K.

• Definability in a way that makes K absolute to set forcing extensions.

• Covering with the consequence, for example, that K computes suc-
cessors of singular cardinals correctly.

Often, such properties of K are used in elaborate proofs by contradiction.
In order to prove that a principle P implies the existence of a model with
large cardinal C, one may assume that there is no model of C and use P to
show that one of the basic properties of K fails. When this accomplished,
it follows that the large cardinal consistency strength of P is at least C.

1Is every core model an extender model? Since we do not know how to define K in the
abstract, it is impossible to answer this question. There are models that are not extender
models that most likely will be accepted as core models but these are beyond the scope
of this introduction.



2. Basic Theory of K 7

Dodd and Jensen developed the theory of K under the anti-large cardinal
hypothesis that there is no proper class model with a measurable cardinal.
Mitchell did this under the hypothesis that there is no proper class model
with a measurable cardinal κ of order κ++. Steel did this under the hy-
pothesis that there is no proper class model with a Woodin cardinal except
that he added a technical hypothesis, which we discuss momentarily.

It is important to emphasize that we do not know how to defineK without
an anti-large cardinal hypothesis. We do not refer to the Dodd-Jensen,
Mitchell or Steel core model without the corresponding anti-large cardinal
hypothesis. It is also important to know that the various definitions of
K are consistent with each other. For example, if there is no transitive
class model with a measurable cardinal, then the Dodd-Jensen, Mitchell
and Steel definitions of K coincide. Quite reasonably, if 0# does not exist,
then K = L under all three definitions.

For all but the last section of this paper we assume:

Anti-large cardinal hypothesis. There is no proper class model with a
Woodin cardinal.

From what we said about the core model theories predating Steel’s, the
reader might expect that we could go straight into a discussion of K. But
it is not known if the theory of K can be developed under this anti-large
cardinal hypothesis alone. Following Steel, we add:

Technical hypothesis. Ω is a measurable cardinal and U is a normal
measure over Ω.

This means that U is a non-principal Ω-complete normal ultrafilter on
℘(Ω). Except in the last section, we also assume this technical hypothesis
throughout this paper. Of course, by adding the technical hypothesis to ZFC
we obtain a stronger theory. But, in this setting, it is not much stronger as
measurable cardinals are much weaker than Woodin cardinals.

The author thanks Paul Larson, Itay Neeman, Ralf Schindler, John Steel,
Stuart Zoble and the anonymous referee for their help.

2. Basic Theory of K

2.1. Second-Order Definition of K

All of the results and proofs in Sections 2.1 and 2.2 are due to Steel and come
from [42]. But we only assume that the reader is familiar with [41] through
the theory of countably certified construction.2 Recall from §6 of [41] that

2Countably certified constructions are called Kc-constructions in [41]. There, Kc-
constructions are studied in generality before a particular maximal Kc-construction

〈Nα | α ≤ Ω〉
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a countably certified construction is a sequence of premice 〈Nα | α ≤ Ω〉
where either

Nα+1 = rud(C(Nα))

or
Nα+1 = rud(C(Nα)_〈F 〉),

where the second option (adding an extender) is permitted if

C(Nα)_〈F 〉

is a countably certified mouse. When β is a limit ordinal, we define

Nβ = lim inf〈Nα | α < β〉.

The gist of §6 of [41] as it applies to us is that the following statements hold
for all γ ≤ Ω.

1. Nγ is a 1-small premouse. In other words, no initial segment of Nγ
has the first-order properties of a sharp for an inner model with one
Woodin cardinal.

2. If P is a countable premouse that embeds into Nγ , then P is ω1 + 1
iterable.

3. Let α < γ. Suppose that κ ≤ ρ
Nβ
ω for all β such that α < β < γ.

Then Nα and Nγ agree below (κ+)Nα .

The proof of the clause (1) uses our anti-large cardinal hypothesis. Count-
able certificates are used in the proof of the clause (2). Clause (3) implies
that NΩ has height Ω. Another important fact that we revisit in this paper
is Theorem 6.19 of [41], which implies that if 〈Nα | α ≤ Ω〉 is a maximal
countably certified construction, then NΩ computes κ+ correctly for U al-
most all κ < Ω. In this context, maximal means that at all successor stages
of the construction, if it is possible to add an extender, then we do.

To define Kc, we consider a kind of countably certified construction that
is not maximal but still computes the successors of U almost all cardinals
correctly. The new condition is that we add an extender to form

Nα+1 = rud(C(Nα)_〈F 〉)

whenever it is permitted so long as

crit(F ) is an inaccessible cardinal

and, if
(crit(F )+)C(Nα) = crit(F )+

is fixed, at which point Kc is defined to be NΩ. The terminology here is slightly different
in this respect, and so is the definition of Kc.
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then

{κ < crit(F ) | κ is an inaccessible cardinal and (κ+)C(Nα) = κ+}

is stationary in crit(F ). For the rest of this section, fix such a countably
certified construction and let Kc = NΩ.

2.1 Definition. A weasel is an (ω,Ω + 1) iterable premouse of height Ω.

This is slightly different from the notation in [42] where weasels are not
required to be iterable at all.3 The meaning of (ω,Ω + 1) iterable is given
by Definition 4.4 of [41]. It says that there is a strategy for picking cofinal
branches at limit stages that avoids illfounded models at all stages when
building almost normal iteration trees. These are iteration trees obtained
as follows.

• Build a normal iteration tree T0 of length ≤ Ω + 1.

• If Tn has successor length θn+1 < Ω+1, then build a normal iteration
tree Tn on an initial segment of MTnθn .

• If Tn is defined for all n < ω, then form the concatenation

T0
_T1

_ · · ·_Tn_ · · ·

In particular, the unique cofinal branch of the infinite concatenation may
have only finitely many drops and its corresponding direct limit must be
wellfounded. The original raison d’être for almost normal iteration trees is
the Dodd-Jensen lemma, Theorem 4.8 of [41]. The reader must forgive us
for not saying whether we mean normal or almost normal when we write
iteration tree in this basic account except at key places when the difference
is most pronounced.

By the next theorem, the only way to iterate a weasel is to pick the
unique cofinal wellfounded branch through an iteration tree of limit length
< Ω.

2.2 Theorem. Let P be a premouse with no Woodin cardinals. Suppose
that T is an iteration tree of limit length on P. Assume that

δ(T ) < On ∩ P.

Then T has at most one cofinal wellfounded branch.

3Following the convention on premice versus mice, a structure with the first-order
properties of a weasel should have been called a preweasel.
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Sketch. Let θ = lh(T ). Recall from Definition 6.9 of [41] that

δ(T ) = sup({lh(ETη ) | η < θ})

andM(T ) is the unique passive mouse of height δ(T ) that agrees withMTη
below lh(ETη ) for all η < θ. Our anti-large cardinal hypothesis implies that
δ(T ) is not a Woodin cardinal in L[M(T )]. Let Q(M(T )) be the premouse
R of minimum height such that

M(T ) E R / L[M(T )]

and δ(T ) is not a Woodin cardinal in rud(R). By Theorem 6.10 of [41],
there is at most one cofinal branch b of T with the property that

Q(M(T )) E wfp(MTb ).4

Our assumptions about P and T imply that if b is a cofinal wellfounded
branch of T , then

Q(M(T )) EMTb .

a

2.3 Theorem. Kc is a weasel.

Sketch. We already know that Kc is a premouse of height Ω. It remains to
see that Kc is (ω,Ω + 1) iterable. Here we show that it is Ω iterable. Our
strategy is to pick the unique cofinal wellfounded branch through iteration
trees of length < Ω and to use the fact that Ω is measurable to find a branch
through iteration trees of length Ω.

First suppose that T is an iteration tree on Kc of length θ < Ω. Recalling
that H(λ) denotes the collection of sets hereditarily of cardinality < λ, let

π : N → H(Ω+)

be an elementary embedding with N countable and transitive. Say π(P) =
Kc and π(S) = T . By Theorem 6.16 of [41], P has an ω1 + 1 iteration
strategy. Then S is consistent with this strategy because there is only one
strategy: by Theorem 2.2, [0, η)S is the unique cofinal wellfounded branch
of S�η whenever η is a limit ordinal < lh(S).

Assume that θ = η+ 1 and F is an extender from theMTη sequence such
that lh(F ) > lh(ETζ ) for all ζ ≤ η. We claim that

Ult(M∗ζ+1, F )

4We defineMT
b to be the Mostowski collapse of the direct limit ofMT

η for η ∈ b even

if this direct limit is illfounded. By wfp(MT
b ) we mean the wellfounded part of MT

b . In

this case, the wellfounded part and the transitive part are the same because MT
b is its

own Mostowski collapse.
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is wellfounded where ζ ≤ η is least so that crit(F ) < ν(ETζ ), M∗ζ+1 is
the maximal level of MTζ that is measured by F , and the degree of the
ultrapower is as large as possible. Otherwise, there exists such an F and a
witness to illfoundedness in the range of π, so the corresponding extension
of S using π−1(F ) is also illfounded. This contradicts that P is lh(S) + 1
iterable.

Now assume that θ is a limit ordinal < Ω. Let b be the unique cofinal
wellfounded branch of S. We know that b is the unique cofinal branch of S
with the property that

Q(M(S)) E wfp(MSb ).

By our technical hypothesis,

Q(M(T )) / LΩ[M(T )].

Therefore,
Q(M(S)) = π−1(Q(M(T ))) ∈ N.

Let κ < π−1(Ω) be a regular cardinal of N greater than the cardinality of
Q(M(S)) in N . For example, we may simply take

κ = (|δ(S)|+)N .

Let S∗ be S construed as an iteration tree on J Pκ and G be an N -generic
filter over Col(ω, κ).5 Then S∗ and Q(M(S)) = Q(M(S∗)) are hereditarily
countable in N [G]. Moreover, in N [G], there is a set Z and a subtree U of
<ωZ whose infinite branches correspond to picking an ordinal η < π−1(θ)
and a level Q/MS∗η , then, in infinitely many steps, picking a cofinal branch
c of S∗ and simultaneously defining an isomorphism

f : Q(M(S)) ' iS
∗

η,c(Q).

By being slightly more precise about the definition of U , we guarantee that
U has a unique branch, namely the one determined by b and the least ordinal
η ∈ b such that

Q(M(S)) ∈ ran(iη,b).

By the absoluteness of wellfoundedness, b ∈ N [G]. Then b ∈ N by the
uniqueness of b and the homogeneity of the poset Col(ω, κ). The fact that
b is a cofinal wellfounded branch of S is absolute to N . Therefore, π(b) is a
cofinal wellfounded branch of T .

Finally, suppose that T is an iteration tree on Kc of length Ω. Let

b = [0,Ω)j(T )

where j is the ultrapower map corresponding to U . There is an elementary
embedding fromMTb toMj(T )

Ω . SinceMj(T )
Ω is wellfounded, so isMTb . a

5We recall that Col (ω, κ) is the collapsing poset consisting of the finite partial func-
tions from ω to κ.
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2.4 Theorem. {κ < Ω | (κ+)K
c

= κ+} ∈ U .

Sketch. Let V ′ = Ult(V,U) and j : V → V ′ be the ultrapower embedding.
Then for all A ⊆ ℘(Ω), if |A| ≤ Ω, then j�A ∈ V ′. Assume for contradiction
that

(Ω+)j(K
c) < Ω+.

Let F be the extender of length j(Ω) derived from j�j(Kc). Then F ∈ V ′
and F is countably certified in V ′. Now an elaborate induction similar to the
proof of Theorem 6.18 of [41] shows that for all ν < j(Ω), either the trivial
completion of F �ν is on the j(Kc) sequence, or something close enough that
still implies

F �ν ∈ j(Kc).

We could add F itself to j(Kc) to get a model with a superstrong cardinal
but it is enough to note that the initial segments of F witness that Ω is a
Shelah cardinal in j(Kc) for a contradiction. a

2.5 Definition. Let

A1 = {κ < Ω | κ is an inaccessible cardinal and (κ+)K
c

= κ+}

and
A0 = {λ ∈ A1 | A1 ∩ λ is not stationary in λ}.

2.6 Theorem. The following hold.

(1) A0 6∈ U .

(2) A0 is stationary.

(3) If λ ∈ A0, then there are no total-on-Kc extenders on the Kc sequence
with critical point λ.

Sketch. From Theorem 2.4 it follows thatA1 ∈ U . Suppose for contradiction
that A0 ∈ U . Then Ω ∈ j(A0). So j(A0) ∩ Ω is not stationary in Ω. But
A0 = j(A0)∩Ω. Thus A0 is not stationary in Ω. Since U is normal, A0 6∈ U ,
which is a contradiction.

Suppose for contradiction that A0 is not stationary. Then there exists a
C club in Ω such that for all λ < Ω, if λ ∈ A1 ∩C, then A1 ∩λ is stationary
in λ. Let λ be the least element of A1 ∩ lim(C). Then C ∩ λ is club in λ
and λ is an inaccessible cardinal, so lim(C)∩ λ is club in λ. Since A1 ∩ λ is
stationary in λ, there exists a κ < λ such that κ ∈ A1 ∩ lim(C), which is a
contradiction.

Let λ ∈ A0. For all sufficiently large α < Ω,

(λ+)Nα = (λ+)K
c
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and Nα and Kc agree below their common λ+. For such α,

(λ+)C(Nα) = (λ+)Nα

and C(Nα) and Nα agree below their common λ+. Therefore,

(λ+)C(Nα) = λ+

and

{κ < λ | κ is an inaccessible cardinal and (κ+)C(Nα) = κ+}

is not stationary in λ. By the definition of Kc, we cannot add an extender
with critical point λ to C(Nα) in forming Nα+1. It follows that if λ+ < ξ <
Ω, then crit(EK

c

ξ ) 6= λ. Thus there are no total-on-Kc extenders on the Kc

sequence with critical point λ. a

Next we discuss some basic facts about coiteration. Suppose that (P,Q)
is a pair of mice. Let (S, T ) be the coiteration of (P,Q) determined by
their respective iteration strategies. Say η + 1 = lh(S) and θ + 1 = lh(T ).
By Theorem 3.11 of [41], there are two possibly overlapping cases.

1. P ≤∗ Q. That is, [0, η]S does not drop in model or degree and

MSη EMTθ .

2. P ≥∗ Q. That is, [0, θ]T does not drop in model or degree and

MSη DMTθ .

Moreover, by the proof of Theorem 3.11 of [41],

η, θ < max(|P|, |Q|)+.

We continue the discussion above but assume instead that P and Q both
have height ≤ Ω and are Ω+1 iterable. Using the fact that Ω is inaccessible,
we can modify the proof of Theorem 3.11 of [41] to show that the coiteration
of (P,Q) is successful. Moreover, with the same notation as above, η, θ ≤ Ω
and, if

max(η, θ) = Ω,

then at least one of the following holds.

1. P ≤∗ Q, P is a weasel and iS0,η“Ω ⊆ Ω.

2. P ≥∗ Q, Q is a weasel and iT0,θ“Ω ⊆ Ω.

We leave it to the reader to fill in these details.
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2.7 Definition. A weasel Q is universal iff P ≤∗ Q for all Ω + 1 iterable
premice P of height ≤ Ω.

By the next theorem, Kc is a universal weasel.

2.8 Theorem. If Q is a weasel and {κ < Ω | (κ+)Q = κ+} is stationary,
then Q is universal.

Sketch. Otherwise, there is an Ω + 1 iterable mouse P of height ≤ Ω such
that not P ≤∗ Q. Therefore, P ≥∗ Q and, with notation as in our discussion
on coiteration, η = Ω. Moreover, for some ξ ∈ [0,Ω]S and κ < Ω,

iSξ,Ω(κ) = Ω.

Then the set
{λ ∈ (ξ,Ω)S | iSξ,λ(κ) = λ}

is club. Let us assume for simplicity that θ = Ω. Then also

{λ ∈ (0,Ω)T | iT0,λ“λ ⊆ λ}

is club because iT0,Ω“Ω ⊆ Ω. Let λ be a regular cardinal in both these clubs
with

(λ+)Q = λ+.

Then
iT0,λ(λ) = sup(iT0,λ“λ) = λ

so
iT0,λ(λ+) = λ+

and
(λ+)M

T
λ = λ+.

On the other hand,

(λ+)M
S
λ = iSξ,λ((κ+)M

S
ξ ) = sup(iSξ,λ“(κ+)M

S
ξ ) < λ+.

Because iSλ,Ω has critical point λ and iTλ,Ω has critical point ≥ λ,

(λ+)M
S
Ω = (λ+)M

S
λ < (λ+)M

T
λ = (λ+)M

T
Ω .

This contradicts that MTΩ EMSΩ. a

We are leading up to the definitions of the definability and hull properties
for weasels. Historically, these derive from familiar properties of mice that
have gone unnamed. Before dealing with weasels, we digress to discuss
the analogous properties of mice as motivation. The fundamental intuition
from fine-structure theory of mice is that cores and ultrapowers are inverse
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operations. Let us give an illustrative example. Suppose that Q is a 1-sound
mouse, E = ḞQ and

ρQ1 ≤ crit(E) = κ < On ∩Q.

Let
i : Q → R = Ult(Q, E)

be the ultrapower map. Then i is a Σ1 elementary embedding and cofinal
in the sense that

On ∩R = sup(i“(On ∩Q)).

Moreover, ρR1 = ρQ1 and pR1 = i(pQ1 ). By the definition of 1-soundness,

Q = HullQ1 (ρQ1 ∪ pQ1 ).

By definition, HullQ1 (X) has elements τQ[c] where τ is a Σ1 Skolem term
and c ∈ X<ω. Therefore,

ran(i) = HullR1 (ρR1 ∪ pR1 ).

The moral is that by deriving an extender from the inverse of the Mostowski
collapse of this hull, we recover E. We abstract two key notions from this
example. Observe that κ is the least ordinal α such that

α 6∈ HullR1 (α ∪ pR1 ).

This says that κ is the least ordinal α ≥ ρR1 such that R fails to have a
certain definability property at α. Observe also that

℘(κ) ∩R ⊆ the Mostowski collapse of HullR1 (κ ∪ pR1 ).

This says that R has a certain hull property at κ. The combination of the
two observations above is the minimum required to derive an extender over
R with critical point κ from the inverse of the Mostowski collapse of

HullR1 (κ ∪ pR1 ).

Of course, Q has the definability and hull properties at all α ≥ ρQ1 since we
assumed that Q is 1-sound. We could go on to show that for all α ≥ ρR1 ,
R fails to have the definability property at α iff α is a generator of E. And
that R has the hull property at α iff α ≤ κ or α ≥ ν(E) where

ν(E) = sup({(κ+)Q} ∪ {ξ + 1 | ξ is a generator of E}).

Taking our discussion to the next level, suppose instead thatQ is a weasel.
This is fundamentally different because

ρQ1 = On ∩Q = Ω.
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Nevertheless, it is important to find an analogous way of undoing iterations
of Q. What we need are versions of the definability and hull properties that
are appropriate for weasels. And we need a way to take hulls in Kc that
produces weasels with these properties.

2.9 Definition. Let Q be a weasel and Γ ⊆ Q. Then Γ is thick in Q iff
there is a club C in Ω such that for all λ ∈ A0 ∩ C,

1. (λ+)Q = λ+,

2. λ is not the critical point of a total-on-Q extender on the Q sequence,
and

3. there is a λ-club in Γ ∩ λ+.

2.10 Definition. Q is a thick weasel iff Ω is thick in Q.

The reader will not find the expression thick weasel in the literature but
the concept needed a name so we picked one. Clearly Kc is a thick weasel.
The next three results are useful closure properties of thick sets.

2.11 Theorem. Let Q be a thick weasel. Then

{Γ ⊆ Q | Γ is thick in Q}

is an Ω-complete filter.

2.12 Theorem. Suppose that π : P → Q is an elementary embedding and
ran(π) is thick in Q. Let

Φ = {α < Ω | π(α) = α}.

Then Φ is thick in both P and Q.

2.13 Theorem. Let T be an iteration tree on a thick weasel Q with

lh(T ) = θ + 1 ≤ Ω + 1.

Assume that there is no dropping along [0, θ]T and iT0,θ“Ω ⊆ Ω. Let

Φ = {α < Ω | iT0,θ(α) = α}.

Then Φ is thick in both Q and MTθ .

The proofs of the previous three theorems are reasonable exercises for
the reader. The θ = Ω case of the Theorem 2.13 is why we used A0 instead
of A1.



2. Basic Theory of K 17

2.14 Definition. A thick weasel Q has the definability property at α iff

α ∈ HullQ(α ∪ Γ)

whenever Γ is thick in Q.

By definition, the elements of HullQ(X) are those of the form τQ[c] where
τ is a Skolem term and c ∈ X<ω. Equivalently, a ∈ HullQ(X) iff {a} is first-
order definable over Q with parameters from X.

2.15 Definition. A thick weasel Q has the hull property at α iff

℘(α) ∩Q ⊆ the Mostowski collapse of HullQ(α ∪ Γ)

whenever Γ is thick in Q.

2.16 Theorem. Let β < Ω and Q be a thick weasel with the definability
and hull properties for all α < β. Suppose that T is an iteration tree on Q
with

lh(T ) = θ + 1 ≤ Ω + 1.

Assume that there is no dropping along [0, θ]T and iT0,θ“Ω ⊆ Ω. Then the
following hold for all α < β.

(1) MTθ does not have the definability property at α iff there exists an

η + 1 ∈ [0, θ]T

such that α is a generator of ETη .

(2) MTθ does not have the hull property at α iff there exists an η + 1 ∈
[0, θ]T such that

(crit(ETη )+)M
T
θ ≤ α < ν(ETη ).

Sketch. For simplicity, we deal only with the case of a single ultrapower. In
other words, θ = 2. Let E = ET0 and consider the following diagram.

Q

i ((QQQQQQQQQQQQQQQ
j // Ult(Q, E)

Ult(Q, E�α)

k

OO

Then crit(k) = α iff α is a generator of E. Let Φ = {ξ < Ω | j(ξ) = ξ}.
Then Φ is thick in all three models. Of course, j(ξ) = ξ implies k(ξ) = ξ
and i(ξ) = ξ.
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First we prove the if direction of (1). Assume that α is a generator of E.
Equivalently, that α = crit(k). Suppose for contradiction that Ult(Q, E)
has the definability property at α. Then there is a Skolem term τ and a
parameter c ∈ (α ∪ Φ)<ω such that

α = τUlt(Q,E)[c] = k(τUlt(Q,E�α)[c] ).

This is a contradiction since α 6∈ ran(k).
Second we prove the if direction of (2). Assume that

(crit(E)+)Q ≤ α < ν(E).

The main point is that
E�α ∈ Ult(Q, E)

whereas
E�α 6∈ Ult(Q, E�α).

We know this because E is on the Q sequence, which is a good extender
sequence. Since

(crit(E)+)Q ≤ α,

it is possible to code E�α by A ⊆ α with A ∈ Ult(Q, E). Suppose for
contradiction that Ult(Q, E) has the hull property at α. Then there is a
Skolem term τ and a parameter c ∈ (α ∪ Φ)<ω such that

A = τUlt(Q,E)[c] ∩ α.

Since crit(k) ≥ α,

A = τUlt(Q,E�α)[c] ∩ α ∈ Ult(Q, E�α),

so
E�α ∈ Ult(Q, E�α),

which is a contradiction.
Notice that the two if directions did not use the hypothesis that Q has

the definability and hull properties at all ordinals < β. These are used for
the two only if directions, which we leave to the reader. a

The next theorem explains how the definability property and hull prop-
erty are related, and its proof is a good example of how they are used.

2.17 Theorem. For all β < Ω, if Q has the definability property at all
α < β, then Q has the hull property at β.
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Sketch. By induction, we may assume that Q has the definability and hull
properties at all α < β. Suppose that Γ is thick in Q. Let

π : P ' HullQ(β ∪ Γ)

be the inverse of the Mostowski collapse. We must show that

℘(β) ∩ P = ℘(β) ∩Q.

If ∆ is thick in P, then {ξ ∈ ∆ | π(ξ) = ξ} is thick in Q. From this it follows
that P has the definability and hull properties at all α < β. Let (S, T ) be
the coiteration of (P,Q). Both P and Q are universal, so

MSη =MTθ

where η + 1 = lh(S) and θ + 1 = lh(T ). Moreover, there is no dropping
along [0, η]S and [0, θ]T . It is enough to see that

crit(iS0,η), crit(iT0,θ) ≥ β.

For contradiction, suppose that

crit(iS0,η) < β.

Apply Theorem 2.16 to S to see that crit(iS0,η) is equal to the least α such
that MSη does not have the definability property at α. And apply Theo-
rem 2.16 to T to see that

crit(iS0,η) = crit(iT0,θ).

Call this ordinal α and let

α∗ = min(iS0,η(α), iT0,θ(α)).

As α < β, Q has the hull property at α, so

℘(α) ∩ P = ℘(α) ∩Q.

Next we use the fact that

Φ = {ξ < Ω | iS0,η(ξ) = ξ = iT0,θ(ξ)}

is thick in both P and Q to show that if X ⊆ α with X ∈ P, then

iS0,η(X) ∩ α∗ = iT0,θ(X) ∩ α∗

First note that α ⊆ Φ. Then, given X ⊆ α with X ∈ P, choose a Skolem
term τ and c ∈ Φ<ω such that

X = τP [c] ∩ α.
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Let
Y = τQ[c] ∩ α.

Then

iS0,η(X) ∩ α∗ = iS0,η(τP [c] ∩ α) ∩ α∗

= τM
S
η [c] ∩ α∗

= τM
T
θ [c] ∩ α∗

= iT0,θ(τ
Q[c] ∩ α) ∩ α∗

= iT0,θ(Y ) ∩ α∗.

Also
X = iS0,η(X) ∩ α = iT0,θ(Y ) ∩ α = Y.

We have seen that the first extenders used along [0, η]S and [0, θ]T are
comparable, which is impossible in a coiteration. (E.g., see the subclaim in
the proof of Theorem 3.11 of [41].)

The same contradiction is obtained similarly by assuming that

crit(iT0,θ) < β.

a

2.18 Definition. Let P be a mouse of height < Ω. Then P is A0 sound iff
there exists a thick weasel P∗ such that P /P∗ and P∗ has the definability
property at all α ∈ On ∩ P.

The point of isolating A0 sound mice is that they line up as the next
theorem shows.

2.19 Theorem. Let P and Q be A0 sound mice. Then P E Q or P D Q.

Sketch. Let P∗ and Q∗ be A0 soundness witnesses for P and Q respectively.
Let (S, T ) be the coiteration of (P∗,Q∗). Then

MSη =MTθ

where η + 1 = lh(S) and θ + 1 = lh(T ), and there is no dropping along
[0, η]S and [0, θ]T . It is enough to see that

crit(iS0,η), crit(iT0,θ) ≥ min(On ∩ P,On ∩Q).

This is done by contradiction exactly as in the proof of Theorem 2.17 using
the hull property and definability property of P∗ and Q∗ at all

α < min(On ∩ P,On ∩Q).

a
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2.20 Definition. K is the union of all the A0 sound mice.

By Theorem 2.19, K is a premouse. But it is not immediate that K has
height Ω.

2.21 Definition. Let Q be a thick weasel. Then

Def(Q) =
⋂
{HullQ(Γ) | Γ is thick in Q}

The plan for proving that K is a weasel is as follows. First we show that
K is the Mostowski collapse of Def(Kc). Then we establish that Kc has
the hull and definability properties at U -almost all α < Ω. The last step
is to show that Def(Kc) is unbounded in Ω. The realization of this plan
stretches over several theorems.

2.22 Theorem. Let P and Q be thick weasels. Then Def(P) ' Def(Q).

Sketch. Let (S, T ) be the coiteration of (P,Q). Then

MSη =MTθ
where η + 1 = lh(S) and θ + 1 = lh(T ), and there is no dropping along
[0, η]S and [0, θ]T . It is enough to see that

iS0,η“Def(P) = Def(MS0,η)

and
iT0,θ“Def(Q) = Def(MT0,θ).

This is an easy exercise using the basic properties of thick sets. a

2.23 Theorem. K ' Def(Kc).

Sketch. Let
π : K ′ ' Def(Kc)

be the inverse of the Mostowski collapse. We must show that K ′ = K.
First let P / K and P∗ be a witness that P is A0 sound. Since P∗ has

the definability property at all α < On ∩ P,

P ⊆ Def(P∗).

But Def(Kc) ' Def(P∗) ' K ′ by Theorem 2.22. Therefore P / K ′.
Now let P / K ′. Let θ = sup(π“(On ∩ P)). For each α ∈ θ − Def(Kc),

pick an A0-thick set Γα such that

α 6∈ HullK
c

(Γα).

Let
∆ =

⋂
{Γα | α ∈ θ −Def(Kc)}

and Q be the Mostowski collapse of HullK
c

(∆). It is an easy exercise to see
that Q witnesses that P is A0 sound. Therefore P / K. a
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By Theorems 2.22 and 2.23, K ' Def(P) whenever P is a thick weasel.

2.24 Theorem. Let Q be a thick weasel. Then there exists a C club in
Ω such that Q has the hull property at α for all inaccessible α ∈ C. In
particular,

{α < Ω | Q has the hull property at α} ∈ U.

Sketch. By recursion, define a continuous decreasing sequence

〈Xα | α < Ω〉

of thick elementary substructures of Q and an increasing sequence

〈λα | α < Ω〉

of cardinals of Q. For all α < Ω, let πα : Pα ' Xα be the inverse of the
Mostowski collapse and πα(κα) = λα. Arrange the construction so that
〈κα | α ≤ β〉 is an initial segment of the infinite cardinals of Pβ for all
β < Ω. Also arrange that for all α < β < Ω,

πα�(κα + 1) = πβ�(κα + 1)

and Pβ has the hull property at all κ ≤ κα.
Start the construction with κ0 = λ0 = ω, X0 = Q and π0 = id�Q. If

β is a limit ordinal, then Xβ =
⋂
α<βXα and this determines Pβ , πβ , κβ

and λβ by what we said above. The successor step is more complicated. If
A ∈ ℘(κα) ∩ Pα and there exists a Γ thick in Pα such that

A 6∈ Mostowski collapse of HullPα(κα ∪ Γ),

then pick such a Γ and call it ΓA. Then let

Γα =
⋂

({Pα} ∪ {ΓA | A ∈ ℘(κα) ∩ Pα and ΓA is defined})

and
Xα+1 = HullPα((κα + 1) ∪ Γα).

This determines Pα+1, πα+1, κα+1 and λα+1 by what we said at the start.

2.25 Lemma. If γ is a limit ordinal, then Pγ = Pγ+1.

Sketch. Suppose not. Then ΓA is defined for some A ∈ ℘(κγ)∩Pγ . Let PA
be the Mostowski collapse of

HullPγ (κγ ∪ ΓA).

and (S, T ) be the coiteration of (PA,Pγ). Then MSη =MTθ where η + 1 =
lh(S) and θ + 1 = lh(T ), and there is no dropping along [0, η]S and [0, θ]T .
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Suppose that crit(iT0,θ) ≥ κγ . Then

A ∈ ℘(κγ) ∩ Pγ = ℘(κγ) ∩MTθ = ℘(κγ) ∩MSη ⊆ ℘(κγ) ∩ PA

since all the extenders used on S have length at least κγ . But A 6∈ PA,
contradiction!

Therefore, crit(iT0,θ) < κγ . Let β < γ be such that

κβ = crit(iT0,θ).

Then β is equal to the least ordinal α < γ such thatMTθ does not have the
hull property at κα+1. This is not precisely what Theorem 2.16 says about
T but the proof shows it. Applying a similar modification of Theorem 2.16
to S shows that κβ = crit(iS0,η). Finally, use the hull property at κβ in both
PA and Pγ to see that the first extenders used on [0, η]S and [0, θ]T are
compatible. This leads to a standard contradiction. a

2.26 Lemma. Let X =
⋂
{Xα | α < Ω}. Then X is thick in Q.

Sketch. For each α < Ω, pick Cα club in Ω witnessing that Xα is thick in
Q. Let C be the diagonal intersection of 〈Cα | α < Ω〉. We show that C
witnesses that X is thick in Q. Let β ∈ A0 ∩ C. Clearly (β+)Q = β+ and
β is not the critical point of a total-on-Q extender on the Q sequence. For
each α < β, there exists a β-club Dα ⊆ Xα ∩ β+. Let D =

⋂
{Dα | α < β}.

Then D is a β-club subset of⋂
α<βXα ∩ β+ = Xβ ∩ β+ = Xβ+1 ∩ β+ = X ∩ β+.

The first equation holds by the definition of Xβ . The second holds by
Lemma 2.25. The third holds because β ≤ λβ , β+ ≤ λβ+1 and

Xβ+1 ∩ (λβ+1 + 1) = X ∩ (λβ+1 + 1).

In fact, by taking β closed under α 7→ λα we get that β = κβ = λβ and
β+ = κβ+1 = λβ+1. a

2.27 Lemma. Let P be the Mostowski collapse of X. Then P has the hull
property at all α < Ω.

Sketch. Lemma 2.26 implies that P is a thick weasel. By construction,
〈κα | α < Ω〉 lists the infinite cardinals of P in increasing order and P has
the hull property at κα for all α < Ω. a

Let (S, T ) be the coiteration of (P,Q). Consider the case in which S and
T both have length Ω + 1, the other cases being similar. Then MSΩ =MTΩ
and there is no dropping along [0,Ω]S and [0,Ω]T . Let C be the set of limit
ordinals

θ ∈ [0,Ω]S ∩ [0,Ω]T
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such that θ is the supremum

{lh(ESη ) | η < θ} ∪ {lh(ETη ) | η < θ}.

Then C is club in Ω. Consider an arbitrary θ ∈ C. Then MSθ has the hull
property at θ and, since

crit(iSθ,Ω) ≥ θ,

MSΩ has the hull property at θ. The fact that crit(iTθ,Ω) ≥ θ can be used to
see thatMTθ has the hull property at θ. Now assume that θ is inaccessible.
Then iT0,θ(θ) = θ. To finish the proof of the theorem, we show that Q
has the hull property at θ. Suppose A ∈ ℘(θ) ∩ Q and Γ is thick in Q.
Let B = iT0,θ(A). Then B ∈ ℘(θ) ∩MTθ so there is a Skolem term τ and
parameters c ∈ θ<ω and d ∈ Γ<ω such that d = iT0,θ(d) and

B = τM
T
θ [c, d] ∩ θ.

By minimizing c in this equation we find b ∈ θ<ω such that c = iT0,θ(b).
Thus

A = τQ[b, d] ∩ θ.

a

We have used the technical hypothesis that Ω is measurable twice already.
First, to see that the set of α such that (α+)K

c

= α+ is stationary in Ω.
Second, to show that Kc is (ω,Ω + 1) iterable starting from the fact that
if P is countable and elementarily embeds into Kc, then P is (ω, ω1 + 1)
iterable. The third and final use of the technical hypothesis comes in the
proof of the following theorem.

2.28 Theorem. {α < Ω | Kc has the definability property at α} ∈ U .

Sketch. Suppose not. Let

D = {α < Ω | Kc does not have the definability property at α}.

Then D ∈ U . For each α ∈ D, pick a thick Γα such that

α 6∈ HullK
c

(α ∪ Γα).

We may assume Γβ ⊆ Γα whenever α < β are elements of D. We write
Γ = 〈Γα | α ∈ D〉. Form the iteration

V
j

// V ′
k

// V ′′

with V ′ = Ult(V,U), U ′ = j(U) and V ′′ = Ult(V ′, U ′). We will use the
general fact that

j ◦ j = k ◦ j.
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This equation holds because

j([α 7→ x]VU ) = [α 7→ j(x)]V
′

U ′ .

Let W = Kc, W ′ = j(W ) and W ′′ = k(W ′). By what we just said,
W ′′ = j(W ′). Consider the inverse of the Mostowski collapse

π : P ' HullW
′
(Ω ∪ Γ′Ω)

where Γ′α = j(Γ)α. Also let Γ′′α = k(Γ′)α. Then Γ′′α = j(Γ′)α. Since W ′ does
not have the definability property at Ω, crit(π) = Ω. By Theorem 2.24,

(W ′ has the hull property at Ω)V
′
,

so
℘(Ω) ∩ P = ℘(Ω) ∩W ′.

Let Ω′ = j(Ω). Note that π(Ω) < Ω′ because Γ′Ω is unbounded in Ω′. Let
F be the extender of length π(Ω) derived from π. We claim that

π(A) = j(A) ∩ π(Ω)

for all A ∈ ℘(Ω) ∩ W ′. From the claim, it follows that F is countably
certified in V ′, which can be used to show that F witnesses that Ω is a
superstrong cardinal in W ′. To prove the claim, pick a Skolem term τ and
parameters c ∈ Ω<ω and d ∈ (Γ′Ω)<ω such that A = τW

′
[c, d] ∩ Ω. Then

j(A) = τW
′′
[c, j(d)] ∩ Ω′

and
j(d) ∈ (Γ′′Ω′)

<ω ⊆ (Γ′′Ω)<ω

because Γ′′ is a descending sequence and Ω′ > Ω. In particular,

τW
′′
[c, j(d)] ∈ HullW

′′
(Ω ∪ Γ′′Ω)

and
A = τW

′′
[c, j(d)] ∩ Ω.

By elementarity,
k(π) : k(P) ' HullW

′′
(Ω ∪ Γ′′Ω).

Finally, since crit(k) = Ω′ > π(Ω) and A ⊆ Ω,

π(A) = k (π (A)) = k(π)(k(A)) = k(π)(A)

= k(π)(τW
′′
[c, j(d)] ∩ Ω)

= τW
′′
[c, j(d)] ∩ k(π(Ω))

= j(A) ∩ π(Ω).

a
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2.29 Theorem. K is a weasel.

Proof. Consider the following recursive construction. Let Γ0 = Ω. Assum-
ing that Γα has been defined, if

HullK
c

(Γα) = Def(Kc),

then stop the construction. Otherwise, let

γα = min(HullK
c

(Γα)−Def(Kc))

and pick Γα+1 ⊆ Γα so that

γα 6∈ HullK
c

(Γα+1).

If β is a limit ordinal, then let

Γβ =
⋂
{Γα | α < β}.

Suppose for contradiction that Def(Kc) is bounded in Ω. Then γα and
Γα are defined for all α < Ω. And there exists an α < Ω such that

Def(Kc) ∩ Ω ⊆ γα.

By Theorem 2.28, there exists a δ ∈ (γα,Ω) such that

δ = sup({γβ | β < δ}) ≤ γδ

and Kc has the definability property at δ. This implies that there exist an
ordinal β ∈ (α, δ), parameters c ∈ (γβ)<ω and d ∈ (Γδ+1)<ω, and a Skolem
term τ such that δ = τK

c

[c, d]. Then c is a witness to the sentence:

there exists a b ∈ (γβ)<ω such that γβ < τK
c

[b, d] < γδ+1.

Since γβ and γδ+1 are elements of HullK
c

(Γβ) we may pick a witness b to
this sentence with

b ∈ HullK
c

(Γβ).

By the minimality of γβ and the fact that b ∈ (γβ)<ω,

b ∈ Def(Kc).

Hence
τK

c

[b, d] ∈ HullK
c

(Γδ+1).

By the choice of γα and the fact that γα < γβ < τK
c

[b, d],

τK
c

[b, d] 6∈ Def(Kc).
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By the minimality of γδ+1,

τK
c

[b, d] ≥ γδ+1.

But
τK

c

[b, d] < γδ+1,

which is a contradiction. a

At the corresponding point in [42], Steel goes on to prove that

{α < Ω | (α+)K = α+} ∈ U.

(Cf., Theorem 3.1 below.) The calculations involve combinatorics similar
to the proof of Theorem 2.29 but we omit them here. From this and Theo-
rem 2.8, it follows that K is universal. Also at this point, Steel shows that
K is absolute under forcing in H(Ω). (Cf., Theorem 3.4 below.) The proof
involves abstracting the properties of A0 in the arguments we have given so
far.

2.2. First-Order Definition of K

Now we head in a slightly different direction. Notice that the definition of
K we have given is second-order over H(Ω). Moreover, there is no obvious
sense in which the definition works locally. For example, it is not immediate
from what we have said so far that K ∩ HC is less complex than K.6

Our next goal is to find an equivalent first-order definition of K that gives
meaningful local bounds on complexity. For example, K ∩ HC turns out
to be Σ1 definable over Lω1(R). (Cf., Theorem 3.5.) By results of Woodin,
this is the best possible upper bound on the complexity of K ∩ HC. The
ideas that go into the first-order definition of K are central to the proof of
the weak covering theorem in Section 4.

Before launching into the details, let us motivate what is to come. It is
not hard to see that all universal weasels have the same subsets of ω, namely
those in

JK(ω1)K =
⋃
{Q | Q is a sound mouse and ρQω = 1}.

Nor is it hard to see that all universal weasels have the same subsets of
(ω1)K , namely those in

JK(ω2)K =
⋃
{Q | Q is a sound mouse with ρQω = (ω1)K and JK(ω1)K /Q}.

6By definition, HC = H(ℵ1). The reader should be attentive here to the difference
between

JK
(ω1)K

= HCK

and
JK

(ω1)V
= K ∩HC.
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This points to a simultaneous definition of what it means for α to be a
cardinal of K on one hand, and JK(α+)K on the other, by induction on
α < Ω. However, the general pattern is more complicated than we have
indicated; it has to be by Woodin’s result on the complexity of K ∩ HC.
Instead, Steel wove together three definitions,

• α is a cardinal of K,

• Q is an α strong mouse, and

• JK(α+)K

by induction on α < Ω, where α strong is a natural strengthening of iterable.
In the end, if α is a cardinal of K, then

JK(α+)K =
⋃
{Q | Q is a sound α strong mouse with ωρQω = α and JKα /Q}.

The simpler pattern that leaves out α strong holds for α less than the least
measurable cardinal of K, as the reader familiar with the core model theory
of Dodd and Jensen would expect. A remarkable fact due to Ralf Schindler
is that the simpler pattern holds again if α ≥ ℵ2. See Theorem 3.6.

Let us make the convention that if P is a mouse and T is an iteration
tree on P, then we have equipped P with an (ω,Ω + 1) iteration strategy
ΣP and T is consistent with ΣP . Unless, of course, we specify otherwise.
This will save us some writing and make the main points clearer.

2.30 Definition. Suppose that Q is a premouse and α ≤ On∩Q ≤ Ω. Let
P = JQα . Then Q is α strong iff

1. P is A0 sound (i.e., P / K) and

2. for each witness P∗ that P is A0 sound, there exist

(a) an iteration tree T on P∗ of successor length θ+ 1 ≤ Ω + 1 such
that ν(ETη ) ≥ α for all η < θ,

(b) R EMTθ and

(c) an elementary embedding π : Q → R with π�α = id�α.

Definition 2.30 does not have the features advertised before in that it is
not first-order over H(Ω) and it is not a natural strengthening of iterability.
But there is a satisfactory equivalent formulation that we get to somewhat
later. However, the following connection between K and α strong tells us
that we are on the right track.

2.31 Theorem. Let α be a cardinal of K and Q be a sound premouse that
agrees with K below α. Assume that ρQω = α. Then

Q / K ⇐⇒ Q is α strong.
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The proof of this and the following closely related basic result are left as
reasonable exercises for the reader.

2.32 Theorem. Let α be a cardinal of K and P = JKα . Suppose that P∗
is a witness that P is A0 sound. Let β = (α+)K . Then

(1) β = (α+)P
∗
,

(2) P∗ and K agree below β and

(3) P∗ is α strong.

Theorem 2.31 tells us how to formulate a recursive definition of K in
terms of α strong mice. But the definition of α strong involves quantification
over weasels that witness A0 soundness, hence over subsets of H(Ω), so we
are no better off than we started in terms of complexity. The first-order
formulation we have in mind involves a generalization of the notion of an
iteration tree on a mouse to an iteration tree on a phalanx, which is defined
below. Such iteration trees also generalize the double-rooted iteration trees
that appear in the proofs of condensation, Theorem 5.1 of [41], and solidity,
Theorem 5.3 of [41], the difference being that we allow an arbitrary number
of roots. (These condensation and solidity theorems originally appeared in
[21] where double-rooted iteration trees are called pseudo-iteration trees.)

2.33 Definition. Suppose that ~λ = 〈λα | α < γ〉 is an increasing sequence
of ordinals, and ~Q = 〈Qα | α ≤ γ〉 is a sequence of mice. Then ( ~Q, ~λ) is a
phalanx of length γ + 1 iff Qα and Qβ agree below λα whenever α < β ≤ γ.

As an example, observe that if S is an iteration tree of successor length,
then

(〈MSα | α < lh(S)〉, 〈lh(ESα ) | α < lh(S)− 1〉)

is a phalanx of length lh(S). Notice that in passing from S to this phalanx
we retain the models and record the relevant amount of agreement between
the models but we lose all information about how the models were created
and the tree order. Of course, not every phalanx comes from an iteration
tree in this way.

2.34 Definition. Let ( ~Q, ~λ) be a phalanx of length γ + 1 and θ ≥ γ + 1.
An iteration tree T of length θ on ( ~Q, ~λ) consists of

• a tree structure <T on θ for which each ordinal ≤ γ is a root,

• the corresponding root operation rootT : θ → γ + 1,

• the corresponding predecessor operation predT that maps successor
ordinals in the interval [γ + 1, θ) to ordinals ≤ θ,

• premice MTη for η < θ,
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• extenders ETη whenever γ < η + 1 < θ,

• a set of successor ordinals DT ⊆ [γ + 1, θ),

• a commutative system of embeddings

iTζ,η :MTζ →MTη

indexed by ζ <T η for which

(ζ, η]T ∩DT = ∅

and

• an operation degT : [γ + 1, θ)→ ω + 1

with the following properties.

• If α ≤ γ, then MTα = Qα and λTα = λα.

• If γ < η + 1 < θ, then ETη is an extender from the MTη sequence,
predT (η + 1) is the least ζ ≤ η such that

crit(ETη ) < λTζ ,

and
MTη+1 = Ult(N , ETη )

where N is the greatest initial segment of MT
predT (η+1)

such that ETη
is an extender over N . And

η + 1 ∈ DT ⇐⇒ N 6=MTpredT (η+1).

The degree of this ultrapower is degT (η + 1), and this degree equals
the largest n ≤ ω such that

ρNn > crit(ETη )

If η + 1 6∈ DT , then

iTpredT (η+1),η+1 :MTpredT (η+1) →M
T
η+1

is the ultrapower embedding. And

λTη = lh(ETη ).
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• If γ < η < θ and η is a limit ordinal, then

[rootT (η), η)T

is a cofinal branch of T �η. Moreover,

DT ∩ [rootT (η), η)T

is finite and MTη is the direct limit of the models MTζ under the
embeddings

iTι,ζ :MTι →MTζ
for ι, ζ ∈ [rootT (η), η)T −max(DT ) with ι <T ζ. In addition,

degT (η) = lim inf
ζ<T η

degT (ζ).

Just like with iteration trees on a single mouse, in the literature one sees
the ultrapower embedding N →MTη+1 above denoted

i∗η+1 :M∗η+1 →Mη+1.

Adding a superscript T leads to admittedly unattractive notation but we
do not break with tradition.

We remark that in most cases of interest, the degree is non-increasing
between drops in model so the lim inf ends up being the eventual value.
The phrase drop in degree has the obvious meaning.

The notion of an iteration strategy generalizes in the obvious way to
phalanxes. An iteration strategy picks cofinal branches at limit stages and
is responsible for wellfoundedness in both successor and limit stages. When
we speak of an iteration tree on an iterable phalanx, the reader should
assume that the iteration tree is compatible with a fixed iteration strategy
on the phalanx.

The following theorem is the key step towards a recursive definition of α
strong. We write <β strong to mean α strong for all α < β.

2.35 Theorem. Suppose that α is a cardinal of K and Q is a premouse of
height ≤ Ω that agrees with K below α. Then the following are equivalent.

(1) Q is α strong.

(2) For all <α strong premice P,

(〈P,Q〉 , 〈α〉)

is an Ω + 1 iterable phalanx.

Proof. That (2) implies (1) is an immediate consequence of Theorem 2.32(3)
and the following result.
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2.36 Lemma. Suppose that α is a cardinal of K and P = JKα . Let P∗ be a
witness that P is A0 sound and Q be a premouse of height ≤ Ω. Suppose that
(〈P∗,Q〉, 〈α〉) is an Ω+1 iterable phalanx. Then clause (2) of Definition 2.30
holds for Q and P∗.

Sketch. Let (S, T ) be the coiteration of the pair

((〈P∗,Q〉, 〈α〉),P∗).

We have not discussed this sort of coiteration before but it is defined in
the natural way, using comparison of extender sequences to decide which
extenders to apply at successor stages. The proof of the comparison, Theo-
rem 3.11 of [41], generalizes to show that this coiteration is successful, which
means that either MS1+η EMTθ or vice-versa where 1 + η + 1 = lh(S) and
θ + 1 = lh(T ). And that 1 + η, θ ≤ Ω.

2.37 Claim. rootS(1 + η) = 1.

Sketch. For contradiction, suppose that rootS(1 + η) = 0. As in the proof
of universality Theorem 2.8, the fact that P∗ computes κ+ correctly for
stationary many κ < Ω can be used to see that

MS1+η =MTθ

and there is no dropping along [0, 1 + η]S and [0, θ]T . We have the embed-
dings

iS0,1+η : P∗ →MS1+η

and
iT0,θ : P∗ →MT1+η

with
crit(iS0,1+η) < α.

Theorems 2.13 and 2.16 generalize to iteration trees on phalanxes. Thus
using the fact that P∗ has the definability and hull properties at all ordinals
< α, we see that iS0,1+η and iT0,θ have the same critical point and move subsets
of their critical point the same way. In other words, the first extenders used
along [0, 1 + η]S and [0, θ]T agree, which leads to a contradiction as in the
proof of comparison, Theorem 3.11 of [41]. a

Again as in the proof of Theorem 2.8,

MS1+η EMTθ

and there is no dropping along [1, 1 + η]S . So we have the embedding

iS1,1+η : Q →MS1+η
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with crit(iS1,1+η) ≥ α. Since Q and P∗ agree below α, lh(ETζ ) ≥ α for all
ζ < θ. Since α is a cardinal of K, it is a cardinal of P∗. This can be used
to see that ν(ETζ ) ≥ α for all ζ < θ. Thus iS1,1+η and T witness that Q is α
strong relative to P∗ as desired. a

We have seen that (2) implies (1). Let β be a cardinal of K. We show
that (1) for β implies (2) for β. Suppose that Q is a β strong premouse
and P is a <β strong premouse. We must show that (〈P,Q〉, 〈β〉) is Ω + 1
iterable. By the proof of Theorem 2.29, there exist a witness W that JKβ
is A0 sound and an elementary embedding

σ : W → Kc.

We do not have a lower bound on the critical point of σ, nor is it relevant.
By Definition 2.30, for each α ≤ β, we have an iteration tree Tα of length
θα + 1 ≤ Ω + 1 on W such that ν(F Tαη ) ≥ α for all η < θα,

Rα EMTαθα

and an elementary embedding πα with πα�α = id�α. If α < β, then

πα : P → Rα

whereas
πβ : Q → Rβ .

Use σ to copy each Tα to an iteration tree σTα on Kc and let

τα : Rα → Sα

be the restriction of the final copying map to Rα. Then

(τα ◦ πα)�α = τα�α = σ�α

for all α ≤ β.
We wish to construe

(〈Sα | α ≤ β〉, 〈σ(α) | α < β〉)

as a phalanx. Formally, for this we let 〈αη | η ≤ θ〉 enumerate the cardinals
of K up to and including β and set

F = (〈Sαη | η ≤ θ〉, 〈σ(αη) | η < θ〉).

Then F is a phalanx. There are two basic elements to the remainder of the
proof. Notice that all the models of F are obtained by iterating Kc. We
call such phalanxes Kc based. Steel proved that all Kc based phalanxes are
Ω+1 iterable. The reader is referred to §9 of [42] for the proof, which builds
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on Steel’s proof that Kc is (ω,Ω + 1) iterable. The second idea is that the
sequence of embeddings

ψη = ταη ◦ παη
for η ≤ θ can be used to pull back an iteration strategy on F to an iteration
strategy on (〈P,Q〉, 〈β〉). For this we use a generalization of the copying
construction in §4.1 of [41]. The generalization is routine except for a few
technical details. The main wrinkle comes in the case β = (α+)K when we
apply the shift lemma to an ultrapower of P by an extender with critical
point α. The difficulty is that ψθ−1 = τα ◦ πα and ψθ = τβ ◦ πβ agree to α
in this case whereas agreement to β would be needed to quote Lemma 4.2
of [41]. Nevertheless, a version of the shift lemma still goes through. We
refer the reader to pp. 49-50 of [42] for the details. This type of copying
construction is used repeatedly in the proof of the weak covering property
in Section 4 a

We are about to arrive at the much promised definition of K that is
first-order over H(Ω). Clause (b) of Theorem 2.35 quantifies over weasels
so there is still something to do.

2.38 Definition. If T is an iteration tree of length θ, then T is called bad
if it is a losing position for player II in the iteration game. In other words,

1. if θ = η + 1, then there is an extender F on the MTη sequence such
that lh(F ) > lh(ETζ ) for all ζ < η but if ζ ≤ η is least such that
crit(F ) ≥ ν(ETζ ) and N is the greatest initial segment of MTζ over
which F is an extender, then Ult(N , F ) is illfounded where the degree
of the ultrapower is as large as possible, and

2. if θ is a limit ordinal, then all cofinal branches of T have infinitely
many drops in model or are illfounded.

Because of our technical hypothesis, Ω + 1 iterability is equivalent to Ω
iterability. In light of our anti-large cardinal hypothesis, there are many
cases in which Ω + 1 iterability reduces further to the non-existence of a
countable bad tree. For example, the proof of Theorem 2.3 can be extended
to show that if a premouse P of height Ω is not Ω + 1 iterable, then there
is a countable bad tree on P. We give another useful example.

2.39 Definition. A premouse P is defined to be properly small iff P has
no Woodin cardinals and P has a largest cardinal.

Notice that if P is a weasel and µ < Ω, then J P(µ+)P is properly small.
It is also easy to see that the properly small levels of K that project to α
are unbounded in (α+)K . If each premouse of a phalanx is properly small,
then the Ω + 1 iterability of the phalanx reduces to the non-existence of a
countable bad tree on the phalanx. Arguing along these lines we obtain the
following characterization.
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2.40 Theorem. Suppose that α is a cardinal of K and Q is a properly small
premouse of height < Ω that agrees with K below α. Then the following are
equivalent.

(1) Q is not α strong.

(2) There is a properly small <α strong premouse P with the same cardi-
nality as Q and a countable bad iteration tree on the phalanx

(〈P,Q〉 , 〈α〉) .

Sketch. Suppose that Q is not α strong. Then there exist a weasel P∗ that
witnesses JKα is A0 sound and a bad iteration tree on

(〈P∗,Q〉, 〈α〉).

The same bad iteration tree can be construed as a bad iteration tree, call it
U , on

(〈P∗∗,Q〉, 〈α〉)

for some properly small P∗∗ / P∗. Let Y ≺ H(Ω) with U ∈ Y such that
Y has the same cardinality as Q. Let τ : N ' Y with N transitive. Then
τ−1(Q) = Q. Let P = τ−1(P∗∗). Then P is <α strong, properly small
and has the same cardinality as Q. Let X ≺ N with X countable and
τ−1(U) ∈ X. Let σ : M ' X with M transitive. Let S = (τ ◦ σ)−1(U). An
absoluteness argument like that used in the proof of Theorem 2.3 shows that
S is bad. (Here is where the hypothesis that Q is properly small is used.)
Let T = σS. Then T is a countable bad iteration tree on (〈P,Q〉, 〈α〉). a

Finally, we reach Steel’s recursive definition of K.

2.41 Theorem. LetM be a premouse of height < Ω. ThenM/K iff there
exist θ < Ω, an increasing continuous sequence of ordinals

〈αη | η ≤ θ + 1〉

starting with α0 = ω, an / increasing continuous sequence of premice

〈Rη | η ≤ θ + 1〉

with M /Rθ+1 and a double-indexed sequence of sets

〈Fζ,η | ζ ≤ η ≤ θ〉

that satisfy the following conditions.
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(1) For all ζ ≤ η ≤ θ and Q,
Q ∈ Fζ,η

iff Q is a properly small premouse of cardinality |αη| such that

Rζ /Q

and, if
P ∈

⋂
{Fι,η | ι < ζ},

then
(〈P,Q〉, 〈αζ〉)

is a phalanx on which there is no countable bad iteration tree.

(2) For all η ≤ θ,

{Q ∈ Fη,η | Q is sound and ωρQω = αη}

is a family of premice that are pairwise comparable under E. More-
over, the union of this family is Rη+1, which is a premouse of height
αη+1.

Sketch. The idea is that, for all ζ ≤ η < Ω,

αη = (ℵη)K

Rη = JK(ℵη)K

and Fζ,η is the set of properly small (ℵζ)K strong premice of size |(ℵη)K |.
And θ is large enough so that

M / JK(ℵθ+1)K .

a

3. Core Model Tools

Throughout this section, we continue to assume the anti-large cardinal hy-
pothesis,

there is no proper class model with a Woodin cardinal

and the technical hypothesis,

U is a normal measure over Ω.

Under these hypotheses, in the previous section, a certain transitive model
of ZFC of ordinal height Ω is defined and named K. Here, we list properties
of K that are useful in applications. For the most part, it is not necessary
to read the previous section to make sense of these properties.
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3.1. Covering Properties

Jensen showed that if 0# does not exist and A is an uncountable set of
ordinals, then there exists a set B ∈ L such that A ⊆ B and |A| = |B|.
Dodd and Jensen proved the same theorem for K under the hypothesis
that there is no inner model with a measurable cardinal. If there is a
measurable cardinal, then the Jensen covering property for K fails in any
Prikry forcing extension. Mitchell proved that if there is no inner model
with o(κ) = κ++, then K still satisfies several consequences of the Jensen
covering property and that these weak covering properties are still useful in
applications. Mitchell’s work in this regard and the history behind it is the
subject of the Handbook chapter [18].

The first result we list in this subsection, which is due to Steel, says that
K computes the successor of almost every cardinal correctly.

3.1 Theorem.
{κ < Ω | (κ+)K = κ} ∈ U.

The reader should cite Theorem 5.18(2) of [42] when applying Theo-
rem 3.1. We mentioned this result in Section 2 just after the proof of
Theorem 2.29.

Many people would identify the following result, which is due to Mitchell
and the author, as the weak covering theorem for K. It implies that K com-
putes successors of singular cardinals correctly but contains other applicable
information.

3.2 Theorem. Let κ be a cardinal of K such that

ω2 ≤ κ < Ω.

and
λ = (κ+)K .

Then
cf(λ) ≥ |κ|.

Thus either λ = |κ|+ or cf(λ) = |κ|.

The reader should cite Theorem 0.1 of [19] when applying Theorem 3.2.
The proof builds on that of Theorem 1.1 [20], which is the special case in
which |κ| is a countably closed cardinal. We outline the proof under this
and further simplifying assumptions in Section 4.

The next result, which is due to Steel and the author, says that K com-
putes successors of weakly compact cardinals correctly. The corresponding
fact for L under the assumption that 0# does not exist was observed by
Kunen in the 1970s.
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3.3 Theorem. Let κ be a weakly compact cardinal such that κ < Ω. Then

(κ+)K = κ+.

The reader should cite Theorem 3.1 of [30] when applying Theorem 3.3.

3.2. Absoluteness, Complexity and Correctness

Steel proved the following theorem, which says that K is forcing absolute.

3.4 Theorem. Let P ∈ H(Ω) be a poset. Then

P K = KV .

The reader should cite Theorem 5.18(3) of [42] when applying Theo-
rem 3.4. We mentioned this result in Section 2 just after the proof of
Theorem 2.29.

Using his first-order definition of K, Steel carried out the first part of the
following computation of K ∩ HC. Think of this as the set of reals that
code the countable levels of K, countable in V that is. The second part,
a computation done by Schindler, shows that the complexity drops if only
finitely many countable ordinals are strong cardinals in K.

3.5 Theorem. There is a Σ1 formula ϕ(x) such that for all a ∈ HC,

a ∈ K ⇐⇒ Lω1(R) |= ϕ[a].

Moreover, if K ∩HC has at most finitely many strong cardinals, then there
is a formula ψ(x) such that for all a ∈ HC,

a ∈ K ⇐⇒ HC |= ψ[a].

The reader should cite Theorem 6.15 of [42] when applying the first part
of Theorem 3.5. We mentioned this result in Section 2; it is a corollary to
Theorem 2.41. The reader should cite Theorems 3.4 and 3.6 of [11] when
applying the moreover part of Theorem 3.5.

Steel defined the levels of K by recursion on their ordinal height < Ω.
It turns out that iterability alone is not enough to guarantee that a mouse
with all the right first-order properties to be a level of K is actually a level
of K. So, simultaneous with his recursive definition of the levels of K,
Steel defined increasingly strong forms of iterability. This is explained in
detail in Section 2.2. The following theorem of Schindler shows that there
is a tremendous simplification in the recursive definition for levels of K of
height ≥ ℵ2.

3.6 Theorem. Let κ be a cardinal of K such that ℵ2 ≤ κ < Ω. Suppose
that M is a mouse such that
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(1) M and K agree below κ,

(2) ρMω ≤ κ and

(3) M is sound above κ.

Then M is an initial segment of K.

One says that above ℵ2, K is obtained by stacking mice. The reader
should cite Lemma 3.5 of [10] when using Theorem 3.6 and should consult
Lemma 2.2 of [34] as well. The proof of Theorem 3.6 builds on the proof of
Theorem 3.2.

By definition, a class M is Σ1
n correct iff M ≺Σ1

n
V . In other words, for

each Σ1
n formula ψ(x) and a ∈ R ∩M ,

ψ[a]M ⇐⇒ ψ[a].

Jensen proved that if x# exists for all x ⊆ ω but there is no inner model
with a measurable cardinal, then K is Σ1

3 correct. The following result is
due to Steel.

3.7 Theorem. Suppose that there exists a measurable cardinal < Ω. Then
K is Σ1

3 correct.

The reader should cite Theorem 7.9 of [42] when applying Theorem 3.7.
It is not known if the existence of a measurable cardinal < Ω is needed.
There is also an attractive conjecture regarding Σ1

4 correctness that has
been open for about a decade.7

3.3. Embeddings of K

The first result in this subsection, which is due to Steel, says that K is rigid.

3.8 Theorem. If j : K → K is an elementary embedding, then j is the
identity.

The reader should cite Theorem 8.8 of [42] when applying Theorem 3.8.
Steel proved the following result, which says that K is universal.

3.9 Theorem. K is the unique universal weasel that elementarily embeds
into all other universal weasels.

The reader should cite Theorem 8.10 of [42] when applying Theorem 3.9.
Universal weasels were defined in Section 2. See Definitions 2.1 and 2.7.

Now we turn to external embeddings and their actions on K. The ques-
tion is whether the restriction to K of an embedding from an iteration of V
is the embedding from an iteration of K.

7Assume that M1(x) exists for all sets x but that there is no model with two Woodin
cardinals. Show that K is Σ1

4 correct.



40 I. A Core Model Toolbox and Guide

3.10 Theorem. Suppose that T is an iteration tree on V with final model
N and branch embedding

π : V → N.

Assume that

(1) T is finite and ωN ⊆ N , or

(2) T is countable and ρ-maximal in the sense of Neeman [24].

Then there is an iteration tree on K whose last model is KN and whose
branch embedding is π�K.

Keep in mind that even if the external iteration tree T consists of a
single ultrapower by a normal measure, the corresponding iteration tree on
K may be infinite and quite complicated. Schindler proved Theorem 3.10
under assumption (1). The author observed that Schindler’s proof goes
through with assumption (2). The reader should cite Corollary 3.1 of [36]
in case (1) and Corollary 3.2 [36] in case (2) when applying Theorem 3.10.

3.4. Maximality

Steel proved that K is maximal in the following sense.

3.11 Theorem. Let F be an extender that coheres with the extender se-
quence of K. Suppose that (K,F ) is countably certified. Then F is on the
extender sequence of K.

The reader should cite Theorem 8.6 of [42] when applying Theorem 3.11.
This can be used to see that certain large cardinals reflect to K. For exam-
ple, if κ < Ω and κ is a λ strong cardinal for all λ < Ω, then κ has the same
property in K. The proof of a theorem slightly more general than The-
orem 8.6 of [42], applications of maximality and other results along these
lines by Steel and the author can be found in [30]. For example, Theorem
3.4 of [30] says that if κ is a cardinal such that ℵ2 ≤ κ < Ω, then H(κ)∩K
is universal for mice in H(κ).

3.5. Combinatorial Principles

Jensen’s results on the fine structure of L generalize to models of the
form L[E].

3.12 Theorem. Let Q be a weasel. Then Q satisfies the following state-
ments.

(1) If κ is a cardinal, then ♦+
κ+ holds.
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(2) If κ is an inaccessible cardinal, then

♦+
κ holds ⇐⇒ κ is not ineffable.

(3) If κ is a cardinal, then

�κ holds ⇐⇒ κ is not subcompact.

(4) If κ is a regular cardinal, then there is a κ+ morass.

When applying Theorem 3.12, the reader should cite Theorem 1.2 of [28]
for the clauses on diamond, which are due to the author. The reader should
cite Theorem 2 of [32] for the existence of a �κ sequence. (It is a theorem
of ZFC due to Burke [4] that if κ is a subcompact cardinal, then �κ fails.)
Zeman and the author [31] proved the clause on morass.

Even though Q = K is its most interesting instance, Theorem 3.12 holds
in situations in which we do not know how to define K. Neither the anti-
large cardinal hypothesis nor the technical hypothesis is used in the proof
of Theorem 3.12. This explains why we bothered to mention subcompact
cardinals in the clause on square since subcompact cardinals are themselves
Woodin cardinals, which do not exist under our anti-large cardinal hypoth-
esis. We should add that only a weak form of iterability is needed for the
proof of Theorem 3.12, much less than is assumed in the definition of weasel.

The next result gives conditions under which the�κ sequence inK cannot
be threaded in V . It is a result of the author.

3.13 Theorem. Let κ be a cardinal such that

ℵ2 ≤ κ < Ω.

Suppose that κ is a limit cardinal of K. Let λ = (κ+)K . Then there exists
a

〈Cα | α < λ〉 ∈ K

such that 〈Cα | α < λ〉 is a �κ sequence in K and 〈Cα | α < λ〉 has no
thread. That is, there is no club D in λ such that

D ∩ α = Cα

for all α ∈ lim(D).

The reader should cite [27] when applying Theorem 3.13.

3.6. On the Technical Hypothesis

Schindler proved that below “zero hand grenade”, the technical hypothesis
can be avoided:
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3.14 Theorem. If there is no proper class model with a proper class of
strong cardinals, then the technical hypothesis is not needed for the results
in this paper.

The reader should consult [33] before applying Theorem 3.14. Not only
is Theorem 3.14 loosely worded, it does not make sense, at least not liter-
ally, since there are results in this paper that explicitly refer to the normal
measure U over Ω. For these, Ω should be replaced by On and statements
about sets in U should be read as statements about stationary classes of
ordinals.

Without going to a more restrictive anti-large cardinal hypothesis, it is
not known how to get away without a technical hypothesis. But technical
hypotheses weaker than a measurable cardinal are known to suffice. For
example, Steel showed that the existence of X# for all X ∈ H(Ω) is enough.
Also, Steel and the author showed in Theorem 5.1 of [42] that an ω Erdos
cardinal is enough.

4. Proof of Weak Covering

In this section, we discuss elements of the proof of Theorem 3.2 under some
simplifying assumptions. Earlier versions of this theorem due to Jensen,
Dodd and Jensen, and Mitchell had no technical hypothesis and much
stronger anti-large cardinal hypotheses. In particular, their proofs involved
linear iterations at most whereas we deal with iteration trees and even some
generalizations of iteration trees. To make our task manageable we assume
that the reader is familiar with at least one of these earlier proofs, such as
any proof in the Handbook chapter [18] or just the proof for L as presented
in [29] or in the Handbook chapter [38]. Our emphasis here is on the new
complications and how to overcome them, really just a segue into [20] for
the reader.

4.1 Definition. A cardinal κ is countably closed iff µℵ0 < κ for all cardinals
µ < κ.

For example, if 2ℵ0 < ℵω then ℵω is countably closed. The following
special case of Theorem 3.2 was proved in [20]. We continue to assume the
same anti-large cardinal hypothesis and technical hypothesis as in all earlier
sections, therefore K exists.

4.2 Theorem. Let κ be a cardinal of K such that |κ| is countably closed
and λ = (κ+)K . Then

cf(λ) ≥ |κ|.

Thus either λ = |κ|+ or cf(λ) = |κ|.

For example, if 2ℵ0 < ℵω and κ = ℵω, then (κ+)K = ℵω+1.
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Outline. The proof begins pretty much as do earlier proofs of weak covering
under stronger anti-large cardinal hypotheses. Let λ = (κ+)K and assume
for contradiction that

cf(λ) < |κ|.

By taking the union of an elementary chain of length ω1, we find

X ≺ (VΩ+1,∈, U)

with
sup(X ∩ λ) = λ

and
ωX ⊆ X

such that
|X| < cf(λ)ℵ0 < |κ|.

Let π : N ' X with N transitive and δ = crit(π). Note that π(δ) ≤ κ. Let

κ = π−1(κ)

λ = π−1(λ)

and
Ω = π−1(Ω).

Consider an arbitrary µ ≤ Ω. Let Eπ�µ be the extender of length µ derived
from π. This means the following. For each a ∈ [µ]<ω, let

δa = min({γ ∈ Ω ∩N | a ∈ [π(γ)]<ω}).

Then let
(Eπ)a = {X ⊆ [δa]|a| | a ∈ π(X)}.

Notice that (Eπ)a is an ultrafilter over

℘([δa]|a|) ∩N.

And
Eπ�µ = {(a,X) | a ∈ [µ]<ω and X ∈ (Eπ)a}.

The point of this extender is that if M is a transitive model and

℘(δa) ∩M ⊆ N

for all a ∈ [µ]<ω, then it makes sense to talk about the ultrapower map

iME : M → Ult(M,F )
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where
F = Eπ ∩ ([µ]<ω ×M).

Put another way, we may apply F to M iff

℘(γ) ∩M ⊆ N

for all γ such that π(γ) ≥ µ. Define

Ult(M,π, µ) = Ult(M,Eπ�µ).

Here are a few more general remarks. If a ∈ [δ]<ω, then (Eπ)a is principal
and therefore Eπ�δ is trivial in the sense that it gives rise to the identity em-
bedding. Observe that (Eπ){δ} is equivalent to the normal measure derived
from π,

{X ⊆ δ | δ ∈ π(X)},

in the sense that they determine the same ultrapower. We call

Eπ�π(δ)

the superstrong extender derived from π. And we call Eπ�µ a long extender
whenever π(δ) < µ or, equivalently, whenever δa > δ for some a ∈ [µ]<ω.
Long extenders come up in the covering theorem for L in exactly the same
way although the terminology had not been established when Jensen dis-
covered the proof. The reader may refer to [29] for an account of Jensen’s
proof in these terms.

Instead of K we work with an A0 soundness witness for a large enough
initial segment of K. Large enough for us means height Ω0 where

Ω > Ω0 ≥ |λ|+ = |κ|+.

But for convenience we assume that Ω0 is an inaccessible cardinal. Let
W be the witness that JKΩ0

is A0 sound that comes out of the proof of
Theorem 2.24. There is an elementary embedding σ : W → Kc that is
relevant later in the current proof. Let

W = π−1(W )

and (T , T ) be the coiteration of (W,W ). Say

θ + 1 = lh(T )

and
θ + 1 = lh(T ).

Simplify the notation by setting

Wη =MTη
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for η ≤ θ and
W η =MTη

for η ≤ θ. Because W is universal,

DT ∩ [0, θ]T = ∅

and
W θ / Wθ.

Nothing we have said so far differs significantly from earlier proofs of weak
covering under stronger anti-large cardinal hypotheses except possibly that
we are using W instead of K. Before continuing, let us review the main
points of the earlier proofs and compare and contrast them with the current
proof. In the earlier proofs, it is shown that K = π−1(K) does not move in
its coiteration with K. The current proof shows this too but in an indirect
way.8 Now let η ≤ θ be least such that

ν(ETη ) > κ

if there is such an η; otherwise let η = 0. In the earlier proofs, it is shown
that there exist P EWη and n < ω such that

ρPn ≥ λ = (κ+)P

and
P = HullPn+1(κ ∪ pPn+1).

People refer to P as the least mouse missing from N at κ. The current
proof is different in that Wη might be a weasel and

(κ+)Wη = λ.

In this case, we set P = Wη. Then P is a thick weasel. Moreover, because
ν(ETζ ) ≤ κ for all ζ < η, we conclude that P has the hull and definability
properties at µ whenever κ ≤ µ < Ω0. This collection of facts about P
turns out to be an adequate substitute if P happens to be a weasel instead
of a premouse of height < Ω. Moving on with our discussion, in the earlier
proofs, Eπ�λ is an extender over P and one sets

R = Ult(P, π, λ).

People refer to R as the lift up of P. In the current proof, because iteration
trees need not be linear, something along the lines of W not moving is
needed just to make sense of the definition of R. In the earlier proofs, a

8The current proof is a complicated induction that shows no extender of length < Ω0

is used on T .
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standard argument using the fact that ωX ⊆ X shows that R is an iterable
premouse. The current proof is different on this point. For although R
is wellfounded, it can fail to be a premouse! This happens exactly when
ρ1(P) ≤ κ (that is, n = 0), P has a top extender with critical point µ < κ
and π is discontinuous at (µ+)P . For then the top extender of R is not total
on R since its critical point is π(µ) but it only measures sets in

JRsup(π“(µ+)P) / J
R
(π(µ)+)R .

We call R a protomouse and its top predicate FR an extender fragment.
Vaguely put, our answer to the possibility that R is not a premouse is to
find an actual premouse that corresponds to R. But let us set aside this
complication until later and assume that R is a premouse. In the discus-
sion so far, we have implicitly used some basic facts about the ultrapower
embedding π̃ : P → R, mainly that

π̃�λ = π�λ.

It is also easy to see that

R = Ultn(P, π, κ).

And that, if P is not a weasel, then

R = HullRn+1(κ ∪ π̃(pPn+1)) = HullRn+1(κ ∪ pRn+1),

whereas if P is a weasel, then R is a thick weasel with the hull and definabil-
ity properties at µ whenever κ ≤ µ < Ω0. The last step in the earlier proofs
is to analyze the coiteration of R versus W to obtain the contradiction

λ = (κ+)K = (κ+)W > (κ+)R = sup(π̃“λ) = sup(π“λ) = λ.

At the analogous step in the current proof, we coiterate (〈W,R〉, 〈κ〉) versus
W . For this we need that the phalanx is iterable. Basically, we need to know
that R is κ strong whereas in the earlier proofs, iterability was enough. Our
solution, which we make precise soon, is to work up to this phalanx by an
induction that involves other phalanxes. In summary, the new complications
are:

• how to show that W does not move,

• P and R could be weasels,

• R might be a protomouse but not a premouse and

• how to show that R is κ strong.
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We need more definitions to explain our strategy for dealing with these
new complications. Let ~κ enumerate the infinite cardinals of W θ up to
Ω0 = π−1(Ω0). Thus

κα = (ℵα)W θ

for all α < Ω0. Also let ~λ enumerate the infinite successor cardinals of
W θ. Thus λα = κα+1 for all α < Ω0. The main idea for dealing with
the first and last new complications involves an induction on γ < Ω0 with
six induction hypotheses. As they are introduced, we assume (1)α through
(6)α for all α < γ. Our obligation is to prove (1)γ through (6)γ . The
first induction hypothesis tells us that W has not moved yet. We use the
notation Eη = ETη .

(1)α For all η ≤ θ, if Eη 6= ∅, then lh(Eη) > λα.

The next step is to derive a phalanx from T . Let η(α) be the least η ≤ θ
such that

ν(ETη ) > κα

if there is such an η; otherwise, let η(α) = 0. Then let Pα be the unique
P EWη(α) such that for some n < ω

ρPn ≥ λα = (κ+
α )P

and ρPn+1 ≤ κα if it exists. In this case,

P = HullPn+1(κα ∪ pPn+1).

Otherwise, let Pα = Wη(α). In this case, Pα is a thick weasel with the hull
and definability properties at µ whenever κα ≤ µ < Ω0.

4.3 Lemma. The phalanx (~P�(γ + 1), ~λ�γ) is iterable.

Idea. We may construe an iteration tree on this phalanx as an iteration tree
extending T �(η(γ) + 1). But W is iterable. a

By our induction hypothesis (1)α, Eπ�π(κα) is an extender over Pα for
each α < γ.9 This allows us to define

Rα = Ult(Pα, π, π(κα))

and
Λα = sup(π“λα) = (π(κα)+)Rα .

9Models on a non-linear iteration tree are not necessarily contained in the starting
model. In order to form Ult(Pα, π, π(κα)) we must know that Eπ�π(κα) measures all
sets in Pα. The proof presented in [20] overlooks this detail but can can be straightened
out easily using the approach shown here.
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A standard application of the fact that ωX ⊆ X shows that Rα is a tran-
sitive structure. Let πα : Pα → Rα be the ultrapower map. More standard
calculations show that

πα�λα = π�λα

and
πα(λα) = Λα ≤ π(λα).

Also that
Rα = Ult(Pα, π,Λα).

And, if Pα is not a weasel, then

Rα = HullRαn+1(π(κα) ∪ πα(pPαn+1)) = HullRαn+1(π(κα) ∪ pRαn+1)

for some n < ω, whereas if Pα is a weasel, then Rα is a thick weasel with
the hull and definability properties at µ whenever π(κα) ≤ µ < Ω0. But
notice that if ρ1(Pα) ≤ κα, Pα is an active premouse and π is discontinuous
at the cardinal successor of crit(FPα) in Pα, then Rα is not a premouse.

Observe that
( ~R�(γ + 1), ~Λ�γ)

satisfies the agreement condition for being a phalanx. We call it a phalanx
of protomice. Let us examine the situation in which β ≤ γ and Rβ is not a
premouse. Equivalently, there exist α < β with

crit(FPβ ) = κα

and
Λα < π(λα).

In this case,
crit(FRβ ) = π(κα).

And, although FRβ is an extender fragment but not an extender over Rβ ,
it is an extender over Rα. More generally, if U is what would naturally be
called an iteration tree on

( ~R�(γ + 1), ~Λ�γ)

and γ < β′ < lh(U) with
rootU (β′) = β

and
DU ∩ (β, β′]U = ∅,

then
crit(FM

U
β′ ) = π(κα) = crit(FRβ )

and the two extender fragments are total over Rα. Thus FM
U
β′ could legit-

imately be applied to Rα to form an extension of U . While the following
result is not used in the current proof, others like it are.
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4.4 Lemma. The phalanx of protomice

( ~R�(γ + 1), ~Λ�γ)

is iterable.

Idea. In the standard way, use the fact that ωX ⊆ X to reduce the iterabil-
ity of the above phalanx to that of

(~P�(γ + 1), ~λ�γ).

The latter phalanx is iterable by Lemma 4.3. a

Based on our discussion of earlier proofs of weak covering, we would
expect to want to iterate

(〈W,Rγ〉, 〈π(κγ)〉).

We can make sense of what we mean by this even if Rγ is not a premouse,
but iterating this phalanx of protomice does not seem to accomplish much
in this case. Our solution to this problem is complicated. For each α ≤ γ,
if Rα is not a premouse, then we define a certain premouse Sα that agrees
with Rα below Λα. We also find a premouse Qα that agrees with Pα below
λα such that

Sα = Ult(Qα, π, π(κα))

Only near the end of the current proof will we say exactly what Qα and Sα
are in this case. On the other hand, if Rα is a premouse, then Qα = Pα and
Sα = Rα. The reader is asked to consider this case only for the moment.

As we just indicated, the main thing we want to know besides (1)γ is that
Sγ is π(κγ) strong, so we make it an induction hypothesis in the following
way.

(2)α (〈W,Sα〉, 〈π(κα)〉) is an iterable phalanx.

(3)α (〈W,Qα〉, 〈κα〉) is an iterable phalanx.

4.5 Lemma. (3)γ implies (2)γ .

Idea. The proof uses the fact that Sγ = Ult(Qγ , π, λγ) together with count-
able closure ωX ⊆ X. It is not as routine as Lemma 4.4 though. a

The next hypothesis is the key to showing that W does not move. It also
represents an interesting switch in that W appears as the starting model
instead of the back-up model.

(4)α ((~P�α)_〈W 〉, ~λ�α) is an iterable phalanx.
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4.6 Lemma. (4)γ implies (1)γ .

Idea. Let (U ,V) be the coiteration of the phalanxes

((~P�γ)_〈W 〉, ~λ�γ)

and
((~P�γ)_〈Pγ〉, ~λ�γ)

The former phalanx is iterable by (4)γ . The latter phalanx is iterable by
Lemma 4.3. In particular, V can be construed as an extension of T �η(γ)+1.
Let ζ + 1 = lh(U). Standard arguments can be used to see that

γ = rootU (ζ)

and
DU ∩ (γ, ζ]U = ∅.

These arguments use the hull and definability properties at κα when Pα is
a thick weasel and soundness at κα otherwise. Suppose for contradiction
that (1)γ fails. Since (1)α holds for all α < γ,

lh(E0) = λγ .

Consequently, the first extenders used on U and T are the same, i.e.,

EUγ = E0.

Hence
lh(EUγ ) = λγ < ((κγ)+)W .

This can be used to see that if

γ = predU (ι+ 1)

then
κγ ≤ crit(EUι )

so
ι+ 1 ∈ DU ,

which is a contradiction. a

Here is a fact whose proof is like that of Lemma 4.6. Hypothesis (4)α
implies that there is an iteration tree Vα on W that extends T �(η(α) + 1),
an initial segment Nα of the last model of Vα with

℘(κα) ∩W = ℘(κα) ∩Nα

and an elementary embedding kα : W → Nα with kα�κα = id�κα. This fact
and the notation just established comes up again when we prove (3)γ .
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(5)α (( ~R�α)_〈W 〉, ~Λ�α) is an iterable phalanx of protomice.

It makes sense to iterate this phalanx of protomice for reasons like those
we gave before Lemma 4.4. The difference is that W is the starting model
instead of Rγ .

4.7 Lemma. (5)γ implies (4)γ .

Idea. Consider the sequence of embeddings

〈πα | α < γ〉_〈π〉.

Since πα�λα = π�λα for all α < γ, this sequence can be used to reduce the
iterability of

((~P�γ)_〈W 〉, ~λ�γ)

to that of
(( ~R�γ)_〈W 〉, ~Λ�γ).

The latter phalanx is iterable by (5)γ . a

It is worth noticing that the iteration trees on (( ~R�γ)_〈W 〉, ~Λ�γ) that are
relevant to the proof of Lemma 4.7 have a special form: whenever α < γ and
an extender is applied to Rα, the critical point of the extender is exactly
π(κα). Similarly, only special iteration trees are relevant to the proof of
Lemma 4.4.

(6)α (( ~S�α)_〈W 〉, ~Λ�α) is an iterable phalanx.

4.8 Lemma. (6)γ implies (5)γ .

Since we have not defined ~S�γ it would be meaningless to sketch the
proof of Lemma 4.8, which is not easy. It is interesting, though, that the
proof involves a variant of the usual copying constructions in which the
tree structure changes. And an ultrapower by an extender fragment in an
iteration tree on (( ~R�γ)_〈W 〉, ~Λ�γ) corresponds to something like padding
in the copied iteration tree on (( ~S�γ)_〈W 〉, ~Λ�γ).

Having seen that

(6)γ =⇒ (5)γ =⇒ (4)γ =⇒ (1)γ

and
(3)γ =⇒ (2)γ

it remains to prove (3)γ and (6)γ , which we do next.

4.9 Lemma. (3)γ holds.
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Idea. We must see that (〈W,Qγ〉, 〈κγ〉) is iterable. Consider the sequence
of embeddings

〈kα | α < γ〉_〈id�Qγ〉

where kα : W → Nα was defined just after the proof of Lemma 4.6. Since
kα�κα = id�κα, this sequence of embeddings can be used to reduce the
iterability of

(〈W,Qγ〉, 〈κγ〉)

to that of
(〈Nα | α < γ〉_〈Qγ〉, ~κ�γ).

There is a subtlety in the copying construction that also came up at the
end of the proof of Theorem 2.35 but once again we omit this detail. The
phalanx (〈Nα | α < γ〉_〈Qγ〉, ~κ�γ) is what we call W based because each
of its models appears on an iteration tree on W . For α < γ, the iteration
tree is Vα. And for Qγ the iteration tree is T �(η(γ)+1) because we are still
assuming for simplicity that Qγ = Pγ . (Otherwise a generalized notion of
W based is used.) We chose W so that there is an elementary embedding
from σ : W → Kc. Copy each Vα to σVα and let

σ∗α : Nα → N ∗α

be the final copy embedding restricted to Nα. Copy T �(η(γ) + 1) to
σT �(η(γ) + 1) and let

σ∗γ : Qγ → Q∗γ
be the final copy embedding restricted to Qγ . The sequence of embeddings

〈σ∗α | α ≤ γ〉

can be used to reduce the iterability of (〈Nα | α < γ〉_〈Qγ〉, ~κ�γ) to that of

(〈N ∗α | α < γ〉_〈Q∗γ〉, 〈σ(κα) | α < γ〉).

The latter phalanx is Kc based and hence iterable by §9 of [42]. a

The following lemma is the last step in our induction.

4.10 Lemma. (6)γ holds.

Idea. Consider an arbitrary α < γ. Freeing up earlier notation, let (U ,V)
be the coiteration of W versus (〈W,Sα〉, 〈π(κα)〉). The latter phalanx is
iterable by (2)α. Say lh(U) = ζ + 1 and lh(V) = η+ 1. Standard arguments
as in Section 2 show that

MUζ DMVη ,
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1 = rootV (η) and DV ∩ (1, η]V = ∅. Since Sα and W agree below Λα, the
extenders used on U and V all have length ≥ Λα. In the remainder of this
proof, we refer to

jα = iV1,η

and
Mα =MVη .

Note that jα : Sα →Mα is an elementary embedding and

jα�π(κα) = id�π(κα).

To show that (6)γ holds we must see that the phalanx

(( ~S�γ)_〈W 〉, ~Λ�γ)

is iterable. Using the sequence of embeddings

〈jα | α < γ〉_〈id�W 〉

this reduces to seeing that the phalanx

(〈Mα | α < γ〉_〈W 〉, ~Λ�γ)

is iterable. But the latter phalanx is W based. Since W embeds into Kc and
all Kc based phalanxes are iterable, all W based phalanxes are iterable. a

This concludes the proof by induction that (1)α through (6)α hold for
all α < Ω0. Now fix α so that κα = κ. Then λα = λ and Λα = λ. Write
P = Pα, R = Rα, Q = Qα and S = Sα. Also let π̃ : Q → S be the
ultrapower embedding.

4.11 Lemma. It is not the case that S = R and S is not a weasel.

Idea. Assume otherwise. We build on the facts from the proof of Lemma 4.10
about the coiteration (U ,V) of W versus (〈W,S〉, 〈κ〉). We have that

S = HullSn+1(κ ∪ pSn+1).

Standard arguments show that either

S /MV0 = W

or
EU0 = EWλ

and
S =MV1 = Ult((M∗1)V , EV0 ).

Either way, we get the contradiction

λ = (κ+)S < (κ+)W = (κ+)K .

a
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4.12 Lemma. It is not the case that S = R and S is a weasel.

Idea. Assume otherwise. We build on facts about the coiteration (U ,V)
of W versus (〈W,S〉, 〈κ〉) from the proof of Lemma 4.10. We have that S
is a thick weasel with the hull and definability properties at µ whenever
κ ≤ µ < Ω0. By universality,

MUζ =MVη .

MVη has the hull property at κ because crit(iV1,η) ≥ κ. On the other hand,
since MVη also results from the iteration

W
iT0,η(α)

// Q eπ // S
iV1,η

//MVη

and crit(π̃) = crit(π) = δ, we conclude that MVη does not have the defin-
ability property at δ. Here we are using that Wη(α) = P = Q. This implies
that U is not trivial. Let EUι be the first extender used along [0, ζ]U . That
is,

0 = predU (ι+ 1) ≤U ζ.

Since MUζ does not have the definability property at δ,

crit(EUι ) ≤ δ.

Recall that S and W agree below λ. But λ is a cardinal in both hence not
the index of an extender on the sequence of either. Thus,

lh(EUι ) > λ.

This implies that the generators of EUι are unbounded in λ. But then MUζ
does not have the hull property at κ. This is a contradiction. a

To wrap things up for this section we give the definitions of Qβ and Sβ
and discuss how they fit with the outline of the proof of Theorem 4.2 given
so far. Recall that if Rβ is a premouse, then we already defined Qβ = Pβ
and Sβ = Rβ . Suppose that Rβ is not a premouse. Say α < β and
crit(FRβ ) = π(κα). Recall that FRβ is an extender over Rα. Suppose for the
moment that Rα is a premouse. Then what we would do is set

Sβ = Ult(Rα, FRβ ) = Ult(Sα, FRβ )

and
Qβ = Ult(Pα, FPβ ) = Ult(Qα, FPβ ).
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It is easy to see that, in this case, Sβ is a premouse and

Sβ is a weasel ⇐⇒ Rα is a weasel
⇐⇒ Pα is a weasel
⇐⇒ Qβ is a weasel.

Of course, Rβ is not a weasel. With a little more work, one sees that

Sβ = Ult(Qβ , π, π(κα)) = Ult(Qβ , π,Λα).

As for Qα, it is a model on a finite extension of T �(η(α) + 1) in this case
but not so literally in others.

The general definition of Sβ and Qβ is by induction. We set

Sβ = Ult(Sα, FRβ )

and
Qβ = Ult(Qα, FPβ )

whenever α < β,
crit(FRβ ) = π(κα)

and Rβ is not a premouse. For example, we could have α < β < γ,

Sα = Rα
Sβ = Ult(Sα, FRβ )

Sγ = Ult(Sβ , FRγ )

and the analogous equations for Qα, Qβ and Qγ . Note that Qγ is a model
on a finite extension of T �(η(α) + 1) but not in the conventional sense.
What we mean by W based phalanxes and the theorems about them can
be generalized accordingly though. This is needed to complete the proof of
Lemma 4.9.

Beyond this, we do not attempt to explain how to incorporate this def-
inition of S and Q into the proof by induction of (1)α through (6)α. In
particular, the proof of Lemma 4.8 is beyond the scope of this exposition.
Instead, we finish this section by showing that it is still possible to obtain
a contradiction assuming (1)α through (6)α hold for all α < Ω0 without
assuming that S = R. The argument uses two additional concepts: the
Dodd decomposition of an extender and fine structure for thick weasels.
The simplest case in which S 6= R already illustrates the main new ideas.
First we look at the non-weasel subcase.
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4.13 Lemma. Let α < β and F = FPβ . Suppose that

ρPαn+1 ≤ κα < λα ≤ ρPαn

and Qβ = Ult(Pα, F ). Then

Qβ = HullQβn+1(κβ ∪ p
Qβ
n+1).

Idea. For simplicity, assume n = 0. (Otherwise, use the Σn mastercode
structure for Pα.) Let i : Pα → Qβ be the ultrapower map. The lemma is
relatively easy to see if ν(F ) = κβ because then

p
Qβ
1 = i(pPα1 ).

More generally, we show that

p
Qβ
1 − κβ = i(pPα1 ) ∪ (s− κβ)

for a certain s ∈ [lh(F )]<ω whose identity we are about to reveal.
The Dodd projectum of Pβ , written τPβ , is the least ordinal τ such that

λα = (crit(F )+)Pβ ≤ τ ≤ ν(F )

and there exists an s ∈ [ν(F )]<ω such that F and F �(τ ∪ s) have the same
ultrapower. The Dodd parameter of Pβ , written sPβ , is the least parameter
s ∈ [ν(F )]<ω such that F and F �(τPβ ∪ s) have the same ultrapower.10 In
fact, τ = max(ρPβ1 , λα). There is a relationship between the sPβ and p

Pβ
1

that is slightly more complicated but not needed here. By a result of Steel
in [37], if Pβ is 1-sound, then for all i < |sPβ |,

F �(sPβi ∪ (sPβ �i)) ∈ Pβ

and for all ξ < τPβ ,
F �(ξ ∪ sPβ ) ∈ Pβ .

These properties are known as Dodd solidity and Dodd amenability respec-
tively. Counterexamples for mice that are not 1-sound can be found in
[28].

If Pβ /Wη(β), then certainly Pβ is 1-sound and therefore Dodd solid and
Dodd amenable. The fact that F and F �(κβ∪sPβ ) have the same ultrapower
translates into

Qβ = HullQβ1 (κβ ∪ i(pPα1 ) ∪ sPβ ).

The fact that
F �(sPβi ∪ (sPβ �i)) ∈ Pβ

10Recall that parameters, i.e., finite sets of ordinals, are often identified with descending
sequences of ordinals, and that the ordering on parameters is lexicographic.
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for all i < |sPβ − κβ | translates into

p
Qβ
1 − κβ = i(pPα1 ) ∪ (sPβ − κβ).

Suppose instead that Pβ = Wη(β). Then Pβ is not 1-sound. Let ι+ 1 be
the last drop in model or degree along [0, η(β)]T and let

W ∗ι+1 EWpredT (ι+1)

be the level to which we drop. Also let

i∗ι+1 : W ∗ι+1 →Wι+1 = Ult(W ∗ι+1, F
T
ι )

be the ultrapower embedding. Since W ∗ι+1 is 1-sound, it is Dodd solid and
Dodd amenable by [37]. Now by induction on ζ such that

ι+ 1 ≤T ζ ≤T η(β)

it is possible to show that if

s = iTι+1,ζ(i
∗
ι+1(sW

∗
ι+1)),

then FWζ and FWζ �(νTζ ∪ s) have the same ultrapower,

FWζ �(si ∪ (s�i)) ∈Wζ

for all i < |s− νTζ | and

s− νTζ = sWζ − νTζ .

By definition, κβ ≥ νTη(β). So at the end of this induction we see that if
s = sPβ , then F and F �(κβ ∪ s) have the same ultrapower and

F �(si ∪ (s�i)) ∈ Pβ

for all i < |s−κβ |. As before, these facts translate into the desired result. a

The facts about Dodd solidity in the proof of Lemma 4.13 can be used
to avoid a convoluted argument in [20].11

4.14 Lemma. It is not the case that S 6= R and S is not a weasel.

Idea. In the simplest case, which is the only one we discuss here, κ = κβ
satisfies the hypothesis of Lemma 4.13. Then

S = HullSn+1(κ ∪ pSn+1).

Now repeat the proof of Lemma 4.11 to obtain a contradiction. a
11Avoid Lemma 2.1.2 and Corollaries 2.1.3 and 2.1.6 of [20].
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4.15 Lemma. It is not the case that S 6= R and S is a weasel.

Idea. There is an analog of Lemma 4.13 that is valid when Qβ is a weasel.
With this analog, the proof of Lemma 4.12 can be adapted to give the proof
of Lemma 4.15. The basic idea behind this analog is as follows.

Once again, we look only at the simplest instance of Qβ 6= Pβ . That is,
α < β and F = FPβ and Qβ = Ult(Pα, F ). But this time suppose that
Pα = Wη(α) is a thick weasel with the hull and definability properties at
µ whenever κα ≤ µ < Ω0. Then Qβ is also a thick weasel. If ν(F ) = κβ ,
then we can show that Qβ has the hull and definability properties at µ
whenever κβ ≤ µ < Ω0, which is just what is needed to run the proof of
Lemma 4.12 when κβ = κ. More generally, consider again the fact that F
and its Dodd decomposition F �(τPβ ∪ sPβ ) have the same ultrapower and
τPβ ≤ κβ . There is a natural sense in which Qβ has the sPβ definability
property at µ whenever κβ ≤ µ < Ω0. This fact motivates defining κQβ to
be the least ordinal µ0 such that there exists a c ∈ [Ω0]<ω such that Qβ has
the c definability property at µ whenever µ0 ≤ µ < Ω0. This is the class
projectum. We have that

κQβ ≤ κβ
as witnessed by sPβ . We also define cQβ to be the least parameter c ∈ [Ω0]<ω

such that Qβ has the c definability property at µ whenever κQβ ≤ µ < Ω0.
This is the class parameter. The proof of Lemma 4.13 shows that F is Dodd
solid above κβ . This fact translates into

cQβ − κβ = sPβ .

The two displayed facts above are our version of Lemma 4.13 when Qβ is a
weasel. They translate into

κS ≤ κ
and

cS − κ = sR

when κβ = κ. With some additional work we can adapt the proof of
Lemma 4.12 to finish the proof of Lemma 4.15. a

This concludes our outline of the proof of Theorem 4.2. a

5. Applications of Core Models

In this section, we list some results whose proofs use core model theory
at a level that involves iteration trees. These are stated in a way that
minimizes core model prerequisites. We have also tried to avoid overly
technical hypotheses. For example, in some theorems, the hypothesis that
Ω is a measurable cardinal can be reduced to the existence of sharps for
elements of HΩ or even less.
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5.1. Determinacy

Some of the results in Section 5 are stated in terms of determinacy instead
of large cardinals. Often it is easier to phrase things one way or the other
but there are reasons to think that there is more to it than that. We begin
this subsection by recalling some of the known equiconsistencies between
large cardinals and determinacy.

5.1 Theorem. The following are equiconsistent.

(1) There exists a Woodin cardinal.

(2) ∆1
2 determinacy.

5.2 Theorem. The following are equiconsistent.

(1) There exist infinitely many Woodin cardinals.

(2) L(R) determinacy.

Theorems 5.1 and 5.2 are due to Woodin. A proof that (2) is consistent
relative to (1) in Theorem 5.2 is given in the Handbook chapter [22]. The
consistency of (1) relative to (2) in the two theorems is given in the Hand-
book chapter [14]. It would be reasonable for the reader to suspect that
these parts of the proofs use core model theory. However, Woodin obtained
these results in the 1980’s before Steel developed the theory of K at the
level of one Woodin cardinal. Woodin used HOD instead of K. In the proof
of Theorem 5.1, Woodin showed that if ∆1

2 determinacy holds, then there
exists a real x such that ωL[y]

2 is a Woodin cardinal in HODL[y] whenever
x ∈ L[y]. And his proof of Theorem 5.2 built on that of Theorem 5.1. More
recently, Steel discovered alternate proofs that use core models.

Theorems 5.1 and 5.2 are equiconsistencies between determinacy and the
existence of large cardinals. This is a good place to recall some of the known
equivalences between determinacy and the existence of mice. For this, we
must recall the definition of M#

n (x), which can also be found in §7 of [41].
The theory of mice generalizes to a theory of mice built over a real. If

n ≤ ω and x ⊆ ω, then there is at most one structure

M = 〈JE,xβ ,∈, E, F 〉

such that M is a ω1 + 1 iterable sound premouse built over x,

JE,xcrit(F ) |= the number of Woodin cardinals = n

and for all α < β, if Eα 6= ∅, then

JE,xcrit(Eα) |= the number of Woodin cardinals < n.
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If it exists, then this unique mouse built over x is called M#
n (x). For n = 0,

we have that M#
0 (x) is Turing equivalent to x#.

Let us point out some features of M#
n . Recall that the empty extender

codes the identity embedding. The next weakest possibility is that the
critical point of an extender is the only generator of the extender, in which
case the extender codes the embedding from a normal measure. It follows
from the definition that FM

#
n (x) is a measure in this sense and that if δ is

the supremum of the Woodin cardinals of M#
n (x), then

δ < crit(FM
#
n (x))

and
E
M#
n (x)

α = ∅

whenever δ ≤ α < crit(FM
#
n (x)). Regarding the projectum and standard

parameter, it is easy to see that

ρ
M#
n (x)

1 = 1

and
p
M#
n (x)

1 = ∅.

In particular, M#
n (x) is countable. We have enough iterability to guarantee

that all (not just the first ω1 many) iterates of M#
n (x) by images of its top

extender are wellfounded. By iterating away the top extender of M#
n (x)

in this way we obtain a proper class model that goes by the name Mn(x).
For n = 0 we have that M0(x) = L[x]. Observe that Mn(x) has the same
Woodin cardinals as M#

n (x) and that Mn(x) is ω1 + 1 iterable. Moreover,
the critical points of extenders used on this linear iteration form a club class
of Mn(x) indiscernibles. In the case n = 0, these are the L[x] indiscernibles.

Let us call a structure that satisfies the first-order properties in the def-
inition of M#

n (x) but is λ iterable instead of ω1 + 1 iterable a λ iterable
M#
n (x).

5.3 Theorem. Let n < ω and assume Π1
n determinacy. Then the following

are equivalent.

(1) Π1
n+1 determinacy.

(2) For every x ∈ R, there is an ω1 iterable M#
n (x).

(3) For every x ∈ R, there is a unique ω1 iterable M#
n (x).

The case n = 0 boils down to the fact that

Π1
1 determinacy ⇐⇒ ∀x ∈ R (x# exists)
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where the forward implication is due to Martin and the reverse is due to
Harrington. The proof that (1) implies (3) is due to Woodin and uses core
models. Parts of the proof can be found in the Handbook chapter [14] and
Theorem 7.7 of [42]. The proof that (2) implies (1) is due to Woodin for
odd n and Neeman for even n. See the Handbook chapter [22].

5.4 Corollary. The following are equivalent.

(1) PD.

(2) For all n < ω and x ⊆ ω, there is an ω1 iterable M#
n (x).

(3) For all n < ω and x ⊆ ω, there is a unique ω1 iterable M#
n (x).

(4) For all n < ω and x ⊆ ω, there exists a Σ1
n correct model M with

n Woodin cardinals and x ∈M .

This equivalence combines results of Martin, Steel and Woodin.
Woodin proved that if M#

ω (x) exists for all x ⊆ ω, then L(R) determinacy
holds. See the Handbook chapter [22] for a proof due to Neeman. Steel and
Woodin obtained the following optimal result.

5.5 Theorem. The following are equivalent.

(1) L(R) determinacy.

(2) For all x ⊆ ω and every Σ1 formula ϕ, if ϕ[x,R] holds in L(R), then
there is a countable, ω1 iterable model M satisfying ZF− plus there
are ω Woodin cardinals such that x ∈ M , and ϕ[x,R∗] holds in the
derived model of M .

Next we state several theorems which show that some well-known conse-
quences of determinacy are equivalent to determinacy.

5.6 Theorem. Assume that for all x ⊆ ω, x# exists and the Σ1
3(x) separa-

tion property holds for subsets of ω. Then ∆1
2 determinacy holds.

Steel proved Theorem 5.6 by combining the Σ1
3 correctness of K, Theo-

rem 3.7, with ideas due to Kechris. See Corollary 7.14 of [42].
Recall that if A,B ⊆ ωω, then A ≤W B iff there is a continuous function

f : ωω → ωω such that A = f−1[B]. This is Wadge reducibility, which
can also be expressed in terms of games and winning strategies. By Γ
Wadge determinacy we mean that for all A,B ∈ Γ, either A ≤W B or
B ≤W ωω − A. Under mild assumptions, Γ determinacy implies Γ Wadge
determinacy. In the other direction, Harrington showed that Π1

1(x) Wadge
determinacy implies x# exists, hence Π1

1(x) determinacy by the result due
to Martin mentioned earlier. One level up, Hjorth proved the following.

5.7 Theorem. Π1
2 Wadge determinacy implies Π1

2 determinacy.
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Theorem 5.7 is Theorem 3.15 of [12]. The proof uses the Σ1
3 correctness

of K, Theorem 3.7.
Projective determinacy has the following well-known consequences: every

projective subset of R is Lebesgue measurable and has the property of Baire,
and every projective binary relation on R has a projective uniformization.
Woodin once conjectured that the conjunction of these three consequences
of PD implies PD, and he proved several theorems that provided evidence
in favor of his conjecture. Eventually, Steel disproved Woodin’s conjecture
by showing that these three consequences of PD hold in V Col(ω,κ) if V is the
minimal extender model with a cardinal λ such that the set of κ < λ that are
<λ strong is unbounded in λ. This large cardinal axiom is weaker than the
existence of a Woodin cardinal, hence weaker than the consistency strength
of PD by Theorem 5.1. The reader is referred to Hauser and Schindler [11]
where the history is reviewed more completely than here and Steel’s theorem
is reversed. While these consequences of determinacy do not match up with
determinacy at the projective level, it turns out that they do match up at
other levels. For example, Woodin proved the following theorem using his
core model induction technique.

5.8 Theorem. The following statements are equivalent.

(1) L(R) determinacy.

(2) For every A ∈ L(R) such that A ⊆ R × R and A is ∆2
1 definable in

L(R) from real parameters,

(a) A is Lebesgue measurable,

(b) A has the property of Baire and

(c) A can be uniformized by a function f ∈ L(R). (By reflection, f
can be chosen to be ∆2

1 definable in L(R) from real parameters.)

(3) Same as (2) except instead of (c) we have

(c′) A can be uniformized by a function f such that every B ⊆ R, if
B is projective in f , then B is are Lebesgue measurable and has
the property of Baire. (Note that f is not required to be in L(R).)

5.2. Tree Representations and Absoluteness

Shoenfield showed that all transitive proper class models of ZFC are Σ1
2

correct. The proof involves a canonical recursive tree T that projects to a
complete Σ1

1 subset of ωω and a tree T ∗ on ω ×On such that

proj([T ∗]) = ωω − proj([T ∗])
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holds in every uncountable transitive model of ZFC. Forcing and Shoenfield
absoluteness can be used to reprove the classical theorem that Σ1

1 sets are
Lebesgue measurable; the argument is due to Solovay.

Suppose that κ be a measurable cardinal. Martin showed that all Π1
1

sets are κ-homogeneous and all κ-homogeneous sets are determined.12 The
projection of a κ-homogeneous set is called κ weakly homogeneous and
there is a corresponding notion of a κ-weakly homogeneous tree. Martin
and Solovay showed that if T is a κ-weakly homogeneous tree, then there is
a tree T ∗ on ω ×On such that

proj([T ∗]) = ωω − proj([T ∗])

in V P whenever P ∈ Vκ. We say that T and T ∗ are <κ absolutely comple-
mented and that their projections are <κ absolutely Suslin. (This property
of the projections is also called <κ universally Baire.) Martin and Solovay
used this to show that V P is Σ1

3 correct in V P∗Q for all P ∗ Q ∈ Vκ. Forc-
ing and Martin-Solovay absoluteness can be used to see that Σ1

2 sets are
Lebesgue measurable.

The main theorem of Martin and Steel [16] is that if δ is a Woodin
cardinal and A ⊆ ωω × ωω is δ+ homogeneous, then ωω − proj(A) is <δ
homogeneous. This has many important corollaries. For example, suppose
that δ < κ where δ is a Woodin cardinal and κ is a measurable cardinal.
Then Π1

2 sets are <δ homogeneous and Σ1
3 sets are <δ weakly homogeneous.

(The latter was proved by Woodin before Martin and Steel obtained their
result.) By Martin, Π1

2 sets are determined. By Martin-Solovay, Σ1
3 sets

are <δ absolutely Suslin and V P is Σ1
4 correct in V P∗Q whenever P∗Q ∈ Vδ.

Forcing and Σ1
4 absoluteness can be used to see that Σ1

3 sets are Lebesgue
measurable.

Martin and Steel also combined their main theorem with an earlier the-
orem of Woodin to see that if there are δ < κ such that δ is a limit of
Woodin cardinals and κ is a measurable cardinal, then all sets of reals in
L(R) are <δ homogeneous and hence determined. (Note that we are no
longer assuming that δ is a Woodin cardinal.) From this it follows that all
sets of reals in L(R) are < δ weakly homogeneous, that the theory of L(R)
cannot be changed by forcing and that all sets of reals in L(R) are Lebesgue
measurable. (These last three consequences were proved before Martin and
Steel obtained their result; see Woodin-Shelah [40] and Woodin [50].)

Now we turn to lower bounds on the large cardinal consistency strength
of the properties discussed above.

5.9 Theorem. Let Ω be a measurable cardinal. Suppose that for all posets
P ∈ H(Ω),

(Lω1(R))V
P
≡ (Lω1(R))V .

12For these and other notions discussed below, we refer to the Handbook chapter [22].
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Then

Kc |= there is a Woodin cardinal.

Theorem 5.9 is due to Woodin and appears as Theorem 7.4 of [42]. The
proof uses Theorem 3.5, that K ∩HC is Σ1 definable over Lω1(R). It also
uses almost everywhere weak covering, Theorem 3.1, which allows us to use
forcing to change the truth value of the statement that ω1 of the universe
is a successor cardinal of K.

5.10 Theorem. Let Ω be a measurable cardinal. Then the following are
equivalent.

(1) For all posets P ∈ VΩ,

(L(R))V
P
≡ (L(R))V .

(2) For all posets P ∈ VΩ,

(L(R) determinacy)V
P
.

(3) For all posets P ∈ VΩ,

(L(R) Lebesgue measurability)V
P
.

(4) For all posets P ∈ VΩ,

(there is no ω1 sequence of distinct reals in L(R))V
P
.

(5) There exists an Ω + 1 iterable model of height Ω with infinitely many
Woodin cardinals.

Theorem 5.10 is due independently to Steel and Woodin and appears as
Theorem 3.1 in [43]. The proof that the failure of (5) implies the failure of
(4) uses core model theory. Instead of Kc and K, an “excellent” premouse
P is found so that the maximal countably complete construction above P
yields a relativized weasel Kc(P) such that all the Woodin cardinals of
Kc(P) are in P and Kc(P) is Ω + 1 iterable above P. The relativized core
model K(P) is extracted from Kc(P) as in Section 2. One of the main
tools is a version of the recursive definition of K, Theorem 3.5, that shows
K(P) ∩HC ∈ L(R) in this more general context.
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5.3. Ideals and Generic Embeddings

Let κ be an uncountable cardinal and let I be a κ-complete ideal on P(κ).
Assume that I is κ+-saturated. In other words, P(κ)/I has the κ+-chain
condition. Suppose that G is V generic over P(κ)/I. Let

j : V →M = Ult(V,G)

be the ultrapower map computed in V [G]. Then M is transitive, crit(j) = κ
and

<j(κ)M ⊆M.

Such a j is called a generic almost huge embedding. The story of saturated
ideals from the forcing side is far too rich to tell here but we do mention a
couple of results. Shelah showed that if δ is a Woodin cardinal, then there is
a semiproper poset P with the δ chain condition such that the nonstationary
ideal over ω1 is ℵ2 saturated in V P. The following result in this subsection
comes close to showing that one Woodin cardinal is the exact consistency
strength.

5.11 Theorem. Assume that Ω is a measurable cardinal and κ < Ω. Let
P ∈ VΩ be a poset. Suppose that forcing with P produces a generic almost
huge embedding. Then there is a model of height Ω that satisfies “there is a
Woodin cardinal”.

Theorem 5.11 is due to Steel and appears as Theorem 7.1 of [42]. The
proof uses core model theory. In particular, it uses forcing absoluteness,
Theorem 3.4 and the recursive definition of K, Theorem 3.5.

If I is a countably complete non-trivial ideal on P(ω1), then I is ℵ1-dense
iff P(ω1)/I has a dense subset of cardinality ℵ1. This implies that forcing
with P(ω1)/I is equivalent to forcing with Col(ω, ω1), which in turn implies
that I is ℵ2 saturated. It also implies that P(ω1)/I is weakly homogeneous
in the sense of forcing; we just say that I is homogeneous in this case.
Woodin showed that the existence of a ℵ1 dense ideal is consistent relative
to L(R) determinacy in [49]. Using core models, Steel proved that if there
is a homogeneous ideal on ω1 and CH holds, then PD holds. Building on
this, Woodin showed his hypothesis was optimal.

5.12 Theorem. The following are equiconsistent over ZFC.

(1) There is an ℵ1 dense ideal over ω1.

(2) L(R) determinacy.

The passage from (1) to (2) uses core models. In particular, it uses K
and a method due to Woodin known as the core model induction. Woodin
proves that if A ⊆ R and A ∈ L(R), then A is determined. One could
say that his proof is by induction on the least (α, n) ∈ On × ω such that
A ∈ Σn+1(Jα(R)). Steel uses a version of the core model induction in [44].
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5.4. Square and Aronszajn Trees

This section is actually on the failure of square and the non-existence of
Aronszajn trees, i.e., the tree property.

If λ is an ordinal and C = 〈Cα | α < λ〉, then C is a coherent sequence
iff for all limit β < λ,

• Cβ is club in β and

• if α ∈ lim(Cβ), then Cα = α ∩ Cβ .

If C is a coherent sequence, then D is a thread of C iff D is club in λ and
Cα = α ∩ D for all α ∈ lim(D). The principle �(λ) says that there is a
coherent sequence of length λ with no thread. The principle �κ says that
there is a coherent sequence C of length κ+ such that type(Cα) ≤ κ for all
limit α < λ. Coherent sequences are the topic of the Handbook chapter
[46]. In this and the next section, it is convenient to set c = 2ℵ0 .

5.13 Theorem. Let κ ≥ max(ℵ2, c). Suppose that both �κ and �(κ) fail.
Then L(R) determinacy holds.

See [27], which explains credit for Theorem 5.13 and related results, and
has a proper introduction. Two basic elements of the proof are general-
izations of Theorems 3.2 and 3.13. Theorem 3.6 is also used. The author
derived PD from the hypothesis of Theorem 5.13. In fact, he showed that
Mn(X) exists for all n < ω and bounded X ⊆ κ+. Steel observed that the
author’s proof meshed with techniques from [44] to give the result as stated.

Todorcevic proved that if if �(κ) holds then there is an Aronszajn tree
on κ. See [46]. From this and Theorem 5.13, one may conclude, for exam-
ple, that if c ≤ ℵ2 and the tree property holds at ℵ2 and ℵ3, then L(R)
determinacy holds. Related theorems about the tree property were proved
earlier without going through square; see [6] and its bibliography.

5.14 Theorem. Suppose that κ is a singular strong limit cardinal and �κ
fails. Then L(R) determinacy holds.

Theorem 5.14 is Theorem 0.1 of [44], which includes an explanation of
credit and related results. The proof uses Theorem 3.12, a generalization of
Theorem 3.2 and a version of Woodin’s core model induction due to Steel.

5.15 Theorem. Suppose that κ is a weakly compact cardinal and �κ fails.
Then L(R) determinacy holds.

Theorem 5.15 is Corollary 8 of [32], which includes an explanation of
credit. Two basic elements of the proof are generalizations of Theorems 3.3
and 3.12.
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5.16 Theorem. Suppose that κ is a measurable cardinal and �κ fails. Then
there is a model of height κ that satisfies “there is a proper class of strong
cardinals” and “there is a proper class of Woodin cardinals”.

See [2], which includes an explanation of credit. The proof uses a gen-
eralization of Theorem 3.12 for Kc and nothing about K. The hypothesis
of Theorem 5.16 holds if κ is strongly compact by a well-known theorem of
Solovay. Woodin has shown that the conclusion of Theorem 5.16 implies the
consistency of ZF + ADR where ADR asserts that all real games of length ω
are determined.

The following is a very recent theorem due to Jensen, Schimmerling,
Schindler and Steel [13].

5.17 Theorem. Let κ ≥ max(ℵ3, c). Suppose that both �κ and �(κ) fail.
Then there is a proper class model that satisfies “there is a proper class of
strong cardinals” and “there is a proper class of Woodin cardinals”.

5.5. Forcing Axioms

If C is a class of posets, then FA(C) says that for all P ∈ C and D with
|D| = ℵ1, there exists a D-generic filter on P. By definition,

PFA ≡ FA({P | P is proper}).

This is the Proper Forcing Axiom. For any cardinal λ, we set

PFA(λ) = FA({P | P is proper and |P| = λ}).

Todorcevic and Velickovic showed that PFA(c) implies that c = ℵ2. See
Theorem 1.8 of [48] and Theorem 3.16 of [3]. Todorcevic [47] showed that
if λ is an ordinal such that cf(λ) ≥ ℵ2, then PFA(λℵ0) implies the failure of
�(λ). Therefore PFA(c+) implies the the hypothesis of Theorem 5.13.

5.18 Corollary. PFA(c+) implies L(R) determinacy.

Note too that PFA(c++) implies the hypothesis of Theorem 5.17.

5.19 Corollary. PFA(c++) implies that there is a proper class model that
satisfies “there is a proper class of strong cardinals” and “there is a proper
class of Woodin cardinals”.

Baumgartner and Shelah showed that PFA is consistent relative to the
existence of a supercompact cardinal. The levels of the PFA hierarchy
described above do not require a supercompact cardinal. For example, Nee-
man and Schimmerling [25] showed that the consistency strength of PFA(c+)
is strictly less than the existence of a cardinal κ that is κ+-supercompact.
More about this shortly.
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By definition,

SPFA ≡ FA({P | P is semi-proper})

and
MM ≡ FA({P | P preserves stationary subsets of ω1}).

These are the Semi-proper Forcing Axiom and Martin’s Maximum respec-
tively. It is straightforward to see that MM implies SPFA, which in turn
implies PFA. Foreman, Magidor and Shelah showed that MM is consistent
relative to a supercompact cardinal; see Theorem 5 of [7]. Their proof used
Shelah’s revised countable support iteration. (Donder and Fuchs [5] is a
good source for this.) Later, Shelah [39] proved that SPFA and MM are
equivalent.

Recall that a poset P = (P,<P ) is λ-linked iff there is a function ` : P → λ
such that for all p, q ∈ P , if `(p) = `(q), then p and q are compatible in
P. Here are two obvious comments. If |P | = λ, then P is λ-linked. If P is
λ-linked, then P has the λ+-chain condition. For any cardinal λ, we define

SPFA(λ-linked) ≡ FA({P | P is semi-proper and λ-linked})

and

MM(λ) ≡ FA({P | P preserves stationary subsets of ω1 and |P | = λ}).

Shelah [39] showed that SPFA implies MM. In [25], this theorem is refined to
SPFA(c+-linked) implies MM(c). This is useful because Neeman and Schim-
merling also show in [25] that SPFA(c+-linked) is consistent relative to the
existence of a cardinal λ that is (λ,Σ2

1)-subcompact. Without reproducing
the definition, we remark that a witness that λ is (λ,Σ2

1)-subcompact is a
certain family of elementary embeddings of the form

π : H(κ+)→ H(λ+)

with crit(π) = κ and π(κ) = λ. Our point here is that each embedding
of this sort comes from a superstrong extender. Consequently, (λ,Σ2

1)-
subcompactness is strictly weaker than κ+-supercompactness in the large
cardinal hierarchy. The consistency proof in [25] of SPFA(c+-linked) uses
a revised countable support iteration of semi-proper posets of length λ as
did Shelah’s consistency proof of SPFA. Not surprisingly, if countable sup-
ports and proper posets are used instead, then one obtains a model of
PFA(c+-linked) starting from the same large cardinal in the ground model.
The theory of extender models can accommodate (λ,Σ2

1)-subcompactness
but core model techniques are not sufficiently developed to measure the con-
sistency strength of PFA(c+-linked). However, there is evidence towards an
equiconsistency: Neeman [23] showed that in order to force PFA(c+-linked)
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by proper forcing over an extender model, if λ is ℵ2 of the generic extension,
then λ is (λ,Σ2

1)-subcompact in the ground model.
Taking a fundamentally different approach, Woodin [51] showed that

MM(c) is consistent relative to the theory

ZF + ADR + Θ is regular

where
Θ = sup({α ∈ On | there is a surjection f : R→ α}).

The proof uses Woodin’s Pmax theory; see the Handbook chapter [15] for
an introduction to this technique.

Todorcevic showed that MM(c) implies the Stationary Reflection Princi-
ple SRP(ω2), which says that for every stationary S ⊆ Pω1(ω2), if for all
stationary T ⊆ ω1, {X ∈ S | X ∩ ω1 ∈ T} is stationary in Pω1(ω2), then
there exists an α such that ω1 < α < ω2 and S ∩ Pω1(α) contains a club in
Pω1(α). This version comes from Definition 9.74(3) and Lemma 9.75(1) of
Woodin [51]. The reason we bring this up here is the following core model
result of Steel and Zoble [45].

5.20 Theorem. SRP(ω2) implies L(R) determinacy.

The proof builds on that of Corollary 9.86 of Woodin [51], which says
that SRP(ω2) implies PD.

Another well-known variant of MM is Bounded Martin’s Maximum or
BMM, which says that if P preserves stationary subsets of ω1, then

(H(ω2))V ≺Σ1 (H(ω2))V
P
.

Woodin has shown that BMM is consistent relative to the existence of ω+1
many Woodin cardinals; see Theorem 10.99 of [51]. The following lower
bound by Schindler [35] uses core models.

5.21 Theorem. BMM implies that for every set X there is a model with a
strong cardinal containing X.

5.6. The Failure of UBH

The theory of iteration trees was initiated by Martin and Steel in the context
of inner models in [17] and determinacy in [16]. Three Hypotheses are
isolated in §5 of the former paper: UBH (Unique Branches), CBH (Cofinal
Branches) and SBH (Strategic Branches). These hypotheses have to do with
iteration trees on V but their motivation is the construction of inner models
with large cardinals. Results, both positive and negative, about the three
hypotheses and their variants give useful information towards a solution to
the inner model problem.
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Woodin showed that UBH and CBH are false assuming sufficient large
cardinals. This lead to the question of consistency strength and the following
core model result of Steel [43].

5.22 Theorem. Suppose that there is a non-overlapping iteration tree T
on V with cofinal wellfounded branches b 6= c. Then there is an inner model
with infinitely many Woodin cardinals. If, in addition,

δ(T ) ∈ ran(iT0,b) ∩ ran(iT0,c),

then there is an inner model with a strong cardinal that is a limit of Woodin
cardinals.

Woodin eventually reduced the large cardinal assumption in his refuta-
tions of UBH and CBH to a supercompact cardinal. Motivated by this, Nee-
man and Steel [26] constructed counterexamples starting from much less in
the way of large cardinals. For example, under a large cardinal assumption
slightly stronger than the one mentioned in Theorem 5.22, they constructed
an iteration tree on V with distinct cofinal wellfounded branches. See [26]
for a discussion on additional results on UBH and CBH and their failure.

5.7. Cardinality and Cofinality

Shelah famously showed that if ℵω is a strong limit cardinal, then (ℵω)ℵ0 <
ℵω4 . See the Handbook chapter [1]. An important conjecture is that the
actual bound is ℵω1 . The following theorem appears as Theorem 1.1 of
[10]. It provides valuable information about what it would take to obtain a
counterexample to the conjecture.

5.23 Theorem. Let α be a limit ordinal. Suppose that 2|α| < ℵα and
2|α|

+
< ℵ|α|+ but (ℵα)|α| > ℵ|α|+ . Then Mn(X) exists for all n < ω and

bounded X ⊆ ℵ|α|+ .

The following theorem appears as Theorem 1.4 of [10]. Recently, Gi-
tik showed that its hypothesis is consistent relative to the existence of a
supercompact cardinal. See [8].

5.24 Theorem. Let λ be a cardinal such that ω < cf(λ) < λ. Suppose that
{κ < λ | 2κ = κ+} is stationary and co-stationary in λ. Then M#

n (X)
exists for all X ⊆ λ.

In [9], Gitik showed that if there is a proper class of strongly compact
cardinals, then there is a model of ZF in which all uncountable cardinals
are singular. Towards measuring the consistency strength of this statement,
Daniel Busche showed the following, which will appear in his Ph.D. thesis.

5.25 Theorem. Suppose that all uncountable cardinals are singular. Then
AD holds in L(R)HODP

for some P ∈ HOD.
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