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1 Introduction

2 Preliminaries

Let’s begin by defining the basic structure for our work. A C-sequence is a
sequence 〈Cα : α < ω1〉 so that the following holds for any α < ω1,

1. Cα+1 = {α}, and

2. if α is a non-zero limit ordinal, then

(a) supCα = α

(b) o.t.(Cα) = ω, where o.t. stands for order type, and

(c) Cα does not contain any succesor ordinal.

For the rest of the notes Cα will always denote the αth term of our C-
sequence.

The porpouse of this section is to stablish some of the basic structures and
properties linked to a C-sequence. We start with the upper and full lower trace.

2.1 Definition. Let α < β < ω1.

1. The upper trace of the walk from β to α is defined as Tr(α, β) = 〈βi : i ≤
n〉, where

(a) β0 = β,

(b) βn = α, and

(c) βi+1 = min(Cβi
\ α), for i < n.
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2. The full lower trace of the walk from β to α is defined recursively as

F (α, β) := F (α,min(Cβ \ α)) ∪
⋃
{F (ξ, α) : ξ ∈ Cβ ∩ α},

and F (α, α) := {α}.

Note that Tr(α, β) is a decreasing sequence.
The following statements can be proven by induction on γ.

2.2 Proposition. If α ≤ β ≤ γ, then

1. F (α, γ) ⊆ F (α, β) ∪ F (β, γ).

2. F (α, β) ⊆ F (α, γ) ∪ F (β, γ).

Assume that c is a function with domain [ω1]2. We will use the symbol
c(α, β) to denote c({α, β}) when α < β. It will be a common practice to use
recursion to define the value of c(α, β), and sometimes the expression c(α, α)
will be involved!

If s and t are sequences, s_t is the concatenation of s followed by t.

2.3 Definition. The full code of the walk is the function ρ0 : [ω1]2 → ω<ω

given by
ρ0(α, β) := 〈|Cβ ∩ α|〉_ρ0(α,min(Cβ \ α)),

and ρ0(α, α) := ∅.

Note that if we know the full code, then we can get the upper trace by

Tr(α, β) = {ξ : ρ0(ξ, β) v ρ0(α, β)},

where s v t means that s is an initial segment of the sequence t.

2.4 Lemma. Let ξ < α < β. If αξ := min(F (α, β) \ ξ), then

1. ρ0(ξ, α) = ρ0(αξ, α)_ρ0(ξ, αξ).

2. ρ0(ξ, β) = ρ0(αξ, β)_ρ0(ξ, αξ).

The right lexicographical order, <r, on ω<ω is the linear ordering defined by
letting

s <r t iff t < s or s(m) < t(m), where m := min{i : s(i) 6= t(i)}.

2.5 Lemma. If ξ0 < ξ1 < β, then ρ0(ξ0, β) <r ρ0(ξ1, β). In other words, the
function ρ( · , β) � α is strictly increasing when α ≤ β.

Given α ≤ β < ω1, let ρ0β � α := {ρ0(ξ, β) : ξ < α}. Now define

T (ρ0) := {ρ0β � α : α ≤ β < ω1}

and order it by end-extension, i.e. for all a, b ∈ T (ρ0) let a <e b iff

a ⊂ b and (∀x ∈ a)(∀y ∈ b \ a)(x <r y).

Then we have the following result.

2



2.6 Proposition. T (ρ0) is an Aronszajn tree.

2.7 Definition. Let Tr(α, β) = 〈βi : i ≤ n〉. The lower trace of the walk from
β to α is the increasing sequence L(α, β) = 〈λi : i < n〉, where

λi = max{max(Cξ ∩ α) : ρ0(ξ, β) v ρ0(βi, β)}

for any i < n.

Observe that L(α, β) ⊆ F (α, β).
Let a and b be two sets (or sequences) of ordinals. The symbol a < b means

that any ordinal from a is smaller than any element of b. We will write a < α
instead of a < {α}.

2.8 Proposition. If L(α, β) < ξ < α < β, then ρ0(ξ, β) = ρ0(α, β)_ρ0(ξ, α).

3 Second Session

3.1 Definition. The maximal weight of the walk is the function ρ1 : [ω1]2 → ω
given by

ρ1(α, β) := max{|Cβ ∩ α|, ρ1(α,min(Cβ \ α))},

and ρ1(α, α) = 0.

In other words, ρ1(α, β) is the largest integer appearing in the sequence
ρ0(α, β).

3.2 Proposition. For all α < β < ω1 and n < ω, the following sets are finite

1. {ξ < α : ρ1(ξ, α) 6= ρ1(ξ, β)}.

2. {ξ < α : ρ1(ξ, α) ≤ n}.

If s and t are sequences with the same domain, then s =∗ t means that
{ξ : s(ξ) 6= t(ξ)} is finite.

3.3 Proposition. The set T (ρ1) := {t ∈ ω<ω1 : t =∗ ρ1( · ,dom(t))} ordered
by the relative ordering from ω<ω1 is an R-embeddable (i.e. there exists an
increasing map from T (ρ1) to R) Aronszajn tree.

Let T be an arbitrary tree. Given x, y ∈ T , define

∆(x, y) := o.t.({t ∈ T : t ≤ x ∧ t ≤ y}).

One should view ∆ as some sort of distance function on T by interpreting
inequalities like ∆(x, y) > ∆(x, z) as saying that x is closer to y than z. A
map g ⊆ T × T is Lipschtiz, if g is level preserving and ∆(g(x), g(y)) ≥ ∆(x, y)
for all x, y ∈ dom(g). Finally, T is Lipschtiz if every function f ⊆ T × T with
uncountable domain which is level preserving is Lipschitz on an uncountable
subset of dom(f) or f−1 is Lipschitz on an uncountable subset of its domain.
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3.4 Proposition. T (ρ0) and T (ρ1) are Lipschitz trees.

3.5 Question. Let T be a tree. Does

U(T ) := {A ⊆ ω1 : (∃X ⊆ T )(|X| > ω ∧ {∆(x, y) : x, y ∈ X} ⊆ A)}

extend the club filter? The conjecture is no.

Remember that a set X ⊆ R has strong measure zero if for every sequence
of positive real numbers 〈εn : n < ω〉 there is a sequence 〈In : n < ω〉 of
open intervals so that X ⊆

⋃
n In and the diameter of In is at most εn. This

metric property has several closely related topological notions. For example
Rothberger’s property C ′′: for every sequence 〈Un : n < ω〉 of open covers of a
space X one can choose Un ∈ Un for each n so that X =

⋃
n Un.

3.6 Proposition. T (ρ1) has property C ′′ when considered with the topology
generated by the sets {s ∈ T (ρ1) : t ⊆ s}, t ∈ T (ρ1).

4 Third Session

4.1 Definition. The number of steps of the minimal walk from β to α is defined
by

ρ2(α, β) := ρ2(α,min(Cβ \ α)) + 1,

and ρ2(α, α) := 0. In other words, ρ2(α, β) is the size of Tr(α, β).

Observe that ρ2 : [ω1]2 → ω. This is an interesting map which is particularly
useful on higher cardinalities.

4.2 Definition. The last step function ρ3 : [ω1]2 → 2 is defined by letting
ρ3(α, β) = 1 iff the last element of the sequence ρ0(α, β) is ρ1(α, β). In other
words, we let ρ3(α, β) = 1 only in case the last step of the walk from β to α
comes with the maximal weight.

The key idea to prove the next result is Lemma 2.4.

4.3 Proposition. ρ3 satisfies the following

1. For all α < β < ω1,

ρ3( · , β) =∗ ρ3( · , β) � α,

in other words, the set {ξ < α : ρ3(ξ, α) 6= ρ3(ξ, β)} is finite.

2. There is no function h : ω1 → 2 so that h � α =∗ ρ3( · , α) for every
α < ω1.

Now observe that T (ρ3) := {ρ3( · , β) � α : α ≤ β < ω1} is a tree with the
relative ordering from 2<ω1 .
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4.4 Proposition. The following holds.

1. T (ρ3) is an Aronszajn tree.

2. T (ρ3) is not necessarily R-embeddable.

3. Every uncountable X ⊆ T (ρ3) contains an uncountable Y ⊆ X such that
the cartesian square (Y ×Y,<`) is the union of countable many antichains,
where <` is the lexicographical ordering.

We say that a function c : [ω1]2 → ω is unbounded if for any uncountable
subset A ⊆ ω1, the set c′′[A]2 is unbounded in ω. The number of steps function
satisfies this condition and even more:

4.5 Lemma. For every uncountable familiy A consisting of pairwise disjoint
finite subsets of ω1 and for all n < ω there exists an uncountable B ⊆ A so that
for any pair a, b ∈ B with a < b we have

(∀α ∈ a)(∀β ∈ b)(ρ2(α, β) > n).

5 Fourth Session

The work we have done for ω1 can be generalized for any cardinal number θ as
follows.

5.1 Definition. 〈Cα : α < θ〉 is a C-sequence in θ if for any α < θ we have

1. Cα is a club in α whenever α is a limit ordinal,

2. Cα+1 = {α}, and

3. for all β ∈ Cα, if o.t.(Cα ∩ β) is a succesor, then β is a succesor too.

From now on, 〈Cα : α < θ〉 will be always a C-sequenece on θ.
Observe that our definition of Tr(α, β) makes perfect sense when α < β < θ.

In the case of ρ0 a slight modification is needed:

ρ0(α, β) := 〈o.t.(Cβ ∩ α)〉_ρ0(α,min(Cβ \ α)),

and ρ0(α, α) := ∅. Note that ρ0 : [θ]2 → θ<ω.
A quick review of the notions involved in the definition of the tree T (ρ0)

shows that all of them make sense when one changes ω1 by θ (and θ<ω by ω<ω

in the case of the right lexicographical ordering).
The maximal weight and the number of steps functions are defined by

1. ρ1(α, β) := max{o.t.(Cβ ∩ α), ρ1(α,min(Cβ \ α)} with boundary value
ρ1(α, α) := 0, and

2. ρ2(α, β) := ρ2(α,min(Cβ \ α)) + 1 with boundary value ρ2(α, α) := 0,

5



respectively
Without any doubt the C-sequence Cα = α is the most trivial choice. The

following notion of triviality seems to be only marginally different.

5.2 Definition. 〈Cα : α < θ〉 is trivial if there exists a club C ⊆ θ so that

(∀α < θ)(∃β ≥ α)(C ∩ α ⊆ Cβ).

5.3 Theorem. The following are equivalent for any regular uncountable θ.

1. 〈Cα : α < θ〉 is not trivial.

2. For every family A of θ pairwise disjoint finite subsets of θ and every
integer n, there exists a subfamily B of A of size θ such that ρ2(α, β) > n
for all α ∈ a, β ∈ b, and a < b in B.

5.4 Question. Can you characterize weak compactness of θ by the following
property: For all f : [θ]2 → 3 there exists an unbounded X ⊆ θ so that
f ′′[X]2 6= 3?

Let x and y be arbitrary subsets of θ. Define

osc(x, y) := |(x \ (sup(x ∩ y) + 1))/ ∼ |,

where ∼ is the equivalence relation on x \ (sup(x ∩ y) + 1) defined by letting
α ∼ β iff the closed interval determined by α and β contains no point from y.
So, if x and y are disjoint, osc(x, y) is simply the number of convex pieces in
which the set x is split by the set y. The oscillation map has proven to be a
useful device in various schemes for coding information.

5.5 Definition. A family X ⊆ P(θ) is unbounded if for every club C ⊆ θ
there exists x ∈ X and an increasing sequence 〈δn : n < ω〉 ⊆ C such that
sup(x ∩ δn) < δn and [δn, δn+1) ∩ x 6= ∅, for all n < ω.

This notion of unboundedness has proven to be the key behind a number of
results asserting the complex behaviour of the oscillation map on X2.

5.6 Lemma. If X is an unbounded family consisting of closed and unbounded
subsets of θ, then for every positive integer n there exist x, y ∈ X such that
osc(x, y) = n.

Let Γ ⊆ θ be arbitrary. We say that 〈Cα : α ∈ Γ〉 is a stationary subsequence
if the set ⋃

α∈Γ

{ξ < θ : sup(Cα ∩ ξ) = ξ}

is stationary in θ.

5.7 Lemma. Any stationary subsequence of a nontrivial C-sequence is an un-
bounded family.
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6 Fifth Session

It is known that nontrivial C-sequences exist only on successor cardinals. In
fact it is possible to show that nontrivial C-sequences exist for some inaccessible
cardinals quite high in the Mahlo-hierarchy. To show how close this is to the
notion of weak compactness, we will give the following characterization.

6.1 Theorem. The following are equivalent for an inaccessible θ.

1. θ is weakly compact.

2. For any C-sequence 〈Cα : α < θ〉 there is a club C such that

(∀α)(∃β ≥ α)(Cβ ∩ α = C ∩ α)

It turns out that in the previous result we cannot replace (2) by every C-
sequence on θ is trivial. One can show this using a model of Kunen [5].

One of the most basic questions frequently asked about set-theoretical trees
is the question whether they contain a cofinal branch, a branch that intersects
every level of the tree. The fundamental importance of this question has already
been realized in the work of Kurepa [6] and then later in the work of Erdős and
Tarski in their respective attempts to develop the theory of partition calculus
[2] and large cardinals. A tree T of height equal to some regular cardinal θ may
not have a cofinal branch for a very special reason as the following definition
indicates.

6.2 Definition. Let T = 〈T,<T 〉 be a tree.

1. A function f : T → T is regressive if f(t) <T t for every t ∈ T that is not
a minimal node of T .

2. If T has height θ, then T is special if there is a regressive map f : T → T
such that f−1[t] can be covered by less than θ antichains in T .

When θ = ω1, this definition reduces to the old concept of special tree: a
tree that can be decomposed into countably many antichains. Moreover, we
have that if θ = κ+ and T has height θ, then T is special if and only if T is the
union of at mos κ antichains.

Recall the well-known characterization of weakly compact cardinals due to
Tarski and his collaborators: a strongly inaccesssible cardinal θ is weakly com-
pact iff there are no Aronszajn trees of height θ. Using C-sequences we can
prove the following.

6.3 Theorem. The following are equivalent for a strongly inaccesssible θ:

1. θ is Mahlo.

2. There are no special Aronszajn trees of height θ.

For each set X ⊆ θ, denote by X ′ the set of all limit points of X.

7



6.4 Definition. A C-sequence 〈Cα : α < θ〉 is a �-sequence if it is coherent,
i.e. we have Cα = Cβ ∩ α whenever α ∈ C ′β .

Observe that our notion of triviality and the condition mentioned in Theorem
6.1 coincide in the realm of �-sequences:

6.5 Lemma. A �-sequence 〈Cα : α < θ〉 is trivial if and only if there is a club
C ⊆ θ so that Cα = C ∩ α for all α ∈ C ′.

It is known that ω1 admits a nontrivial �-sequence.
Define the function Λ : [θ]2 → θ by

Λ(α, β) := max({0} ∪ (Cβ ∩ (α+ 1))′).

With the aid of Λ we are ready to define F : [θ]2 → [θ]<ω, the full lower trace
function:

F (α, β) := F (α,min(Cβ \ α)) ∪
⋃
{F (ξ, α) : ξ ∈ Cβ ∩ [Λ(α, β), α)},

with F (α, α) := {α} for all α < θ.
Under the assumptions that 〈Cα : α < θ〉 is a nontrivial �-sequence and

θ is a regular uncountable cardinal, Proposition 2.2 and Lemma 2.4 hold, and
therefore we get the following result.

6.6 Corollary. For any nontrivial �-sequence on a regular uncountable θ we
have

sup
ξ<α
|ρ2(ξ, α)− ρ2(ξ, β)| <∞

for all α < β < θ.

Proof. Apply Lemma 2.4 to obtain

sup
ξ<α
|ρ2(ξ, α)− ρ2(ξ, β)| ≤ sup

ξ∈F (α,β)

|ρ2(ξ, α)− ρ2(ξ, β)|.

It is a known fact that there is no function h : θ → ω so that

sup
ξ<α
|ρ2(ξ, α)− h(ξ)| <∞

for all α < θ.
Let I be an ideal of subsets of some set S. Recall that I is a P -ideal if for

every sequence 〈An : n < ω〉 ⊆ I there is B ∈ I so that An \ B is finite for all
n < ω. A set X ⊆ S is orthogonal to I (in symbols, X⊥I) if X ∩A is finite for
all A ∈ I.

The following statement is known as the P -ideal Dichotomy : For every P -
ideal I of countable subsets of some set S either

1. There is an uncountable X ⊆ S such that [X]ω ⊆ I, or
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2. S can be decomposed into countably many sets orthogonal to I.

The P -ideal dichotomy is a consequence of the Proper Forcing Axiom and,
moreover, it does not contradict the Continuum Hypothesis [8].

6.7 Theorem. If θ is regular and uncountable, then the P -ideal Dichotomy
implies that a nontrivial �-sequence can exist only on θ = ω1.

Proof. The family

I :=

{
A ∈ [θ]ω : (∀α < θ)(∀∆ ∈ [A ∩ α]ω)

(
sup
ξ∈∆

ρ2(ξ, α) =∞

)}

is a P -ideal of countable subsets of θ. Thus we have two possibilities:

1. There is an uncountable X ⊆ θ so that [X]ω ⊆ I, or

2. There is a decomposition θ =
⋃
nOn so that On⊥I for all n < ω.

If (1) holds, Corollary 6.6 implies that X ∩ α is countable for each α < θ
and thus θ must have cofinality ω1. Therefore θ = ω1.

Now assume (2) is true. Fix k < ω so that Ok is unbounded in θ. Since
Ok⊥I we have that ρ2( · , α) is bounded in Ok ∩ α for each α < θ. Hence there
exist an unbounded set Γ ⊆ θ and an integer m such that ρ2(α, β) ≤ m for any
β ∈ Γ and α ∈ Ok ∩ β. Theorem 5.3 implies that the �-sequence we started
with must be trivial.

The tightness of a point x in a topological space X, t(x,X), is equal to κ
if κ is the minimal cardinal such that for any set A ⊆ X \ {x}, if x ∈ A (the
clousure of A), then there exists B ∈ [A]≤κ so that x ∈ B. The tightness of X
is sup{t(x,X) : x ∈ X}.

The sequential fan with θ edges is the space obtained on (θ × ω) ∪ {∞} by
declaring ∞ as the only nonisolated point, while a typical neighborhood for ∞
has the form

Uf := {(α, n) : α < θ, n ≥ f(α)} ∪ {∞},

where f : θ → ω is arbitrary. We will denote this space by Sθ.

6.8 Theorem. Let θ be regular and uncountable. If there is a nontrivial �-
sequence on θ, then the tightness of (∞,∞) in the topological product S2

θ :=
Sθ × Sθ is equal to θ.

Proof. Assume that 〈Cα : α < θ〉 is a nontrivial �-sequence on θ and define
d : [θ]2 → ω by

d(α, β) := sup
ξ≤α
|ρ2(ξ, α)− ρ2(ξ, β)|.

For each γ ≤ θ let Wγ := {((α, d(α, β)), (β, d(α, β))) : α < β < γ}. Wθ

is a subset of S2
θ \ {(∞,∞)} of size θ and (∞,∞) ∈ Wθ. On the other hand,
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(∞,∞) /∈ Wξ for all ξ < θ. Finally, if B ∈ [Wθ]<θ, then there exists γ < θ so
that B ⊆Wγ and hence B does not accumulate to (∞,∞).

Since ω1 supports a nontrivial �-sequence, the previous result leads to the
following result of Gruenhage and Tanaka [3].

6.9 Corollary. S2
ω1

is not countably tight.

We have seen that the case θ = ω1 is quite special when one considers the
problem of existence of various nontrivial �-sequences on θ. It should be noted
that a similar result about the problem of the tightness of S2

θ is not available. In
particular, it is not known whether the P -ideal dichotomy or a similar consistent
hypothesis of set theory implies that the tightness of the square of, say, Sω2 is
smaller than ω2. It is interesting that considerably more is known about the
dual question, the question of initial compactness of the Tychonoff cube ωθ. For
example, if one defines Bαβ := {f ∈ ωθ : f(α), f(β) ≤ d(α, β)} (α < β < θ)
one gets an open cover of ωθ without a subcover of size < θ. However, for small
θ such as θ = ω2 one is able to find such a cover of ωθ without any additional
set-theoretic assumption and in particular without the assumption that θ carries
a nontrivial �-sequence.

6.10 Question. What is the tightness of S2
ω2

?

7 Sixth Session

From now on let’s fix a �-sequence 〈Cα : α < θ〉 on a regular uncountable
cardinal θ. We are going to discuss some properties of the distance function
ρ : [θ]2 → θ defined by

ρ(α, β) := max{o.t.(Cβ ∩ α), ρ(α,min(Cβ \ α)), ρ(ξ, α) : ξ ∈ Cβ ∩ [Λ(α, β), α)},

where we stipulate ρ(α, α) = 0 for all α < θ. ρ has the following subadditive
properties.

7.1 Lemma. If α < β < θ then

1. ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ}

2. ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ}

Let D : [θ]2 → [θ]<θ be defined by

D(α, β) := {ξ < α : ρ(ξ, α) ≤ ρ(α, β)}.

Note that D(α, β) = {ξ < α : ρ(ξ, β) ≤ ρ(α, β)} so we could take the formula

D{α, β} = {ξ < min{α, β} : ρ(ξ, α) ≤ ρ(α, β)}

as our definition of D{α, β} when there is no implicit assumption about the
ordering between α and β as there is whenever we write D(α, β).

Recall that a cardinal κ is λ-inaccessible if ντ < κ for all ν < κ and τ < λ.
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7.2 Lemma. If κ is λ-inaccessible for some λ < κ and θ = κ+, then for every
family A ⊆ [θ]<λ with |A| = κ there exists B ∈ [A]κ such that for all a, b ∈ B
and all α ∈ a \ b, β ∈ b \ a, and γ ∈ a ∩ b:

1. α, β > γ implies D{α, γ} ∪D{β, γ} ⊆ D{α, β},

2. β > γ implies D{α, γ} ⊆ D{α, β},

3. α > γ implies D{β, γ} ⊆ D{α, β}, and

4. γ > α, β implies D{α, γ} ⊆ D{α, β} or D{β, γ} ⊆ D{α, β}.

A function f : [ω2]2 → [ω2]≤ω has property ∆ if for every uncountable set
A of finite subsets of ω2 there existst a and b in A such that for all α ∈ a \ b,
β ∈ b \ a, and γ ∈ a ∩ b:

1. α, β > γ implies γ ∈ f{α, β}.

2. β > γ implies f{α, γ} ⊆ f{α, β}.

3. α > γ implies f{β, γ} ⊆ f{α, β}.

This definition is due to Baumgartner and Shelah [1] who have used it in
their well-known forcing construction. It should be noted that they were also
able to force a function with the property ∆ using a σ-closed ω2-cc poset.

As shown above the function D has property ∆. However Lemma 7.2 shows
that D has many other properties that are of independent interest and that are
likely to be needed in other forcing constructions of this sort. The papers of
Koszmider [4] and Rabus [7] are good examples of further work in this area.

There are some generalizations of the ρ-functions we have analyzed. Recall
that an ordinal α divides an ordinal γ if there there is β such that γ = α · β,
i.e. γ can be written as the union of an increasing β-sequence of intervals of
order type α. Let κ ≤ θ be a fixed infinite regular cardinal. Let Λκ : [θ]2 → θ
be defined by

Λκ(α, β) := max{ξ ∈ Cβ ∩ (α+ 1) : κ divides o.t.(Cβ ∩ ξ)}.

Observe that the function Λ we introduced before is Λω, i.e. Λ = Λω.
Our object of study is the function ρκ : [θ]2 → θ defined recursively by

ρκ(α, β) := sup{o.t.(Cβ ∩ [Λκ(α, β), α), ρκ(α,min(Cβ \ α)),
ρκ(ξ, α) : ξ ∈ Cβ ∩ [Λκ(α, β), α)},

and ρκ(α, α) = 0 for all α < θ.

7.3 Lemma. If α < β < θ then

1. ρκ(α, γ) ≤ max{ρκ(α, β), ρκ(β, γ}

2. ρκ(α, β) ≤ max{ρκ(α, γ), ρκ(β, γ}
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For α < β < θ and ν < κ set

α <κν β if and only if ρκ(α, β) ≤ ν.

The following result is a corollary of Lemma 7.3.

7.4 Proposition.

1. (θ,<κν ) is a tree for all ν < κ.

2. If ν < µ < κ then <κν⊆<κµ.

3. ∈� θ =
⋃
ν<κ <

κ
ν .
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