Appalachian Set Theory Workshop on Coherent Sequences Lectures by Stevo Todorcevic Notes taken by Roberto Pichardo Mendoza

1 Introduction

2 Preliminaries

Let's begin by defining the basic structure for our work. A *C*-sequence is a sequence $\langle C_{\alpha} : \alpha < \omega_1 \rangle$ so that the following holds for any $\alpha < \omega_1$,

1. $C_{\alpha+1} = \{\alpha\}$, and

2. if α is a non-zero limit ordinal, then

- (a) $\sup C_{\alpha} = \alpha$
- (b) o.t. $(C_{\alpha}) = \omega$, where o.t. stands for order type, and
- (c) C_{α} does not contain any successor ordinal.

For the rest of the notes C_{α} will always denote the α th term of our C-sequence.

The porpouse of this section is to stablish some of the basic structures and properties linked to a C-sequence. We start with the upper and full lower trace.

2.1 Definition. Let $\alpha < \beta < \omega_1$.

- 1. The upper trace of the walk from β to α is defined as $\text{Tr}(\alpha, \beta) = \langle \beta_i : i \leq n \rangle$, where
 - (a) $\beta_0 = \beta$,
 - (b) $\beta_n = \alpha$, and
 - (c) $\beta_{i+1} = \min(C_{\beta_i} \setminus \alpha)$, for i < n.

2. The full lower trace of the walk from β to α is defined recursively as

$$F(\alpha,\beta) := F(\alpha,\min(C_{\beta} \setminus \alpha)) \cup \bigcup \{F(\xi,\alpha) : \xi \in C_{\beta} \cap \alpha\},\$$

and $F(\alpha, \alpha) := \{\alpha\}.$

Note that $Tr(\alpha, \beta)$ is a decreasing sequence.

The following statements can be proven by induction on γ .

2.2 Proposition. If $\alpha \leq \beta \leq \gamma$, then

- 1. $F(\alpha, \gamma) \subseteq F(\alpha, \beta) \cup F(\beta, \gamma)$.
- 2. $F(\alpha, \beta) \subseteq F(\alpha, \gamma) \cup F(\beta, \gamma)$.

Assume that c is a function with domain $[\omega_1]^2$. We will use the symbol $c(\alpha, \beta)$ to denote $c(\{\alpha, \beta\})$ when $\alpha < \beta$. It will be a common practice to use recursion to define the value of $c(\alpha, \beta)$, and sometimes the expression $c(\alpha, \alpha)$ will be involved!

If s and t are sequences, $s \frown t$ is the concatenation of s followed by t.

2.3 Definition. The *full code* of the walk is the function $\rho_0 : [\omega_1]^2 \to \omega^{<\omega}$ given by

$$\rho_0(\alpha,\beta) := \langle |C_\beta \cap \alpha| \rangle^{\frown} \rho_0(\alpha,\min(C_\beta \setminus \alpha)),$$

and $\rho_0(\alpha, \alpha) := \emptyset$.

Note that if we know the full code, then we can get the upper trace by

$$Tr(\alpha,\beta) = \{\xi : \rho_0(\xi,\beta) \sqsubseteq \rho_0(\alpha,\beta)\}$$

where $s \sqsubseteq t$ means that s is an initial segment of the sequence t.

2.4 Lemma. Let $\xi < \alpha < \beta$. If $\overline{\alpha_{\xi}} := \min(F(\alpha, \beta) \setminus \xi)$, then

1.
$$\rho_0(\xi, \alpha) = \rho_0(\overline{\alpha_{\xi}}, \alpha) \frown \rho_0(\xi, \overline{\alpha_{\xi}}).$$

2.
$$\rho_0(\xi,\beta) = \rho_0(\overline{\alpha_{\xi}},\beta) \frown \rho_0(\xi,\overline{\alpha_{\xi}}).$$

The right lexicographical order, $<_r,$ on $\omega^{<\omega}$ is the linear ordering defined by letting

$$s <_r t$$
 iff $t \sqsubset s$ or $s(m) < t(m)$, where $m := \min\{i : s(i) \neq t(i)\}$.

2.5 Lemma. If $\xi_0 < \xi_1 < \beta$, then $\rho_0(\xi_0, \beta) <_r \rho_0(\xi_1, \beta)$. In other words, the function $\rho(\cdot, \beta) \upharpoonright \alpha$ is strictly increasing when $\alpha \leq \beta$.

Given $\alpha \leq \beta < \omega_1$, let $\rho_{0\beta} \upharpoonright \alpha := \{\rho_0(\xi, \beta) : \xi < \alpha\}$. Now define

$$T(\rho_0) := \{ \rho_{0\beta} \upharpoonright \alpha : \alpha \le \beta < \omega_1 \}$$

and order it by end-extension, i.e. for all $a, b \in T(\rho_0)$ let $a <_e b$ iff

 $a \subset b$ and $(\forall x \in a)(\forall y \in b \setminus a)(x <_r y)$.

Then we have the following result.

2.6 Proposition. $T(\rho_0)$ is an Aronszajn tree.

2.7 Definition. Let $Tr(\alpha, \beta) = \langle \beta_i : i \leq n \rangle$. The lower trace of the walk from β to α is the increasing sequence $L(\alpha, \beta) = \langle \lambda_i : i < n \rangle$, where

$$\lambda_i = \max\{\max(C_{\xi} \cap \alpha) : \rho_0(\xi, \beta) \sqsubseteq \rho_0(\beta_i, \beta)\}$$

for any i < n.

Observe that $L(\alpha, \beta) \subseteq F(\alpha, \beta)$.

Let a and b be two sets (or sequences) of ordinals. The symbol a < b means that any ordinal from a is smaller than any element of b. We will write $a < \alpha$ instead of $a < \{\alpha\}$.

2.8 Proposition. If $L(\alpha, \beta) < \xi < \alpha < \beta$, then $\rho_0(\xi, \beta) = \rho_0(\alpha, \beta) \cap \rho_0(\xi, \alpha)$.

3 Second Session

3.1 Definition. The maximal weight of the walk is the function $\rho_1 : [\omega_1]^2 \to \omega$ given by

 $\rho_1(\alpha,\beta) := \max\{|C_\beta \cap \alpha|, \rho_1(\alpha,\min(C_\beta \setminus \alpha))\},\$

and $\rho_1(\alpha, \alpha) = 0$.

In other words, $\rho_1(\alpha, \beta)$ is the largest integer appearing in the sequence $\rho_0(\alpha, \beta)$.

3.2 Proposition. For all $\alpha < \beta < \omega_1$ and $n < \omega$, the following sets are finite

- 1. $\{\xi < \alpha : \rho_1(\xi, \alpha) \neq \rho_1(\xi, \beta)\}.$
- 2. $\{\xi < \alpha : \rho_1(\xi, \alpha) \le n\}.$

If s and t are sequences with the same domain, then $s =^{*} t$ means that $\{\xi : s(\xi) \neq t(\xi)\}$ is finite.

3.3 Proposition. The set $T(\rho_1) := \{t \in \omega^{<\omega_1} : t =^* \rho_1(\cdot, \operatorname{dom}(t))\}$ ordered by the relative ordering from $\omega^{<\omega_1}$ is an \mathbb{R} -embeddable (i.e. there exists an increasing map from $T(\rho_1)$ to \mathbb{R}) Aronszajn tree.

Let T be an arbitrary tree. Given $x, y \in T$, define

$$\Delta(x, y) := \text{o.t.}(\{t \in T : t \le x \land t \le y\}).$$

One should view Δ as some sort of distance function on T by interpreting inequalities like $\Delta(x, y) > \Delta(x, z)$ as saying that x is closer to y than z. A map $g \subseteq T \times T$ is *Lipschtiz*, if g is level preserving and $\Delta(g(x), g(y)) \ge \Delta(x, y)$ for all $x, y \in \text{dom}(g)$. Finally, T is *Lipschtiz* if every function $f \subseteq T \times T$ with uncountable domain which is level preserving is Lipschiz on an uncountable subset of dom(f) or f^{-1} is Lipschiz on an uncountable subset of its domain. **3.4 Proposition.** $T(\rho_0)$ and $T(\rho_1)$ are Lipschitz trees.

3.5 Question. Let T be a tree. Does

 $\mathcal{U}(T) := \{ A \subseteq \omega_1 : (\exists X \subseteq T) (|X| > \omega \land \{ \Delta(x, y) : x, y \in X \} \subseteq A) \}$

extend the club filter? The conjecture is no.

Remember that a set $X \subseteq \mathbb{R}$ has strong measure zero if for every sequence of positive real numbers $\langle \varepsilon_n : n < \omega \rangle$ there is a sequence $\langle I_n : n < \omega \rangle$ of open intervals so that $X \subseteq \bigcup_n I_n$ and the diameter of I_n is at most ε_n . This metric property has several closely related topological notions. For example *Rothberger's property C''*: for every sequence $\langle \mathcal{U}_n : n < \omega \rangle$ of open covers of a space X one can choose $U_n \in \mathcal{U}_n$ for each n so that $X = \bigcup_n U_n$.

3.6 Proposition. $T(\rho_1)$ has property C'' when considered with the topology generated by the sets $\{s \in T(\rho_1) : t \subseteq s\}, t \in T(\rho_1)$.

4 Third Session

4.1 Definition. The *number of steps* of the minimal walk from β to α is defined by

$$\rho_2(\alpha,\beta) := \rho_2(\alpha,\min(C_\beta \setminus \alpha)) + 1,$$

and $\rho_2(\alpha, \alpha) := 0$. In other words, $\rho_2(\alpha, \beta)$ is the size of $\text{Tr}(\alpha, \beta)$.

Observe that $\rho_2 : [\omega_1]^2 \to \omega$. This is an interesting map which is particularly useful on higher cardinalities.

4.2 Definition. The last step function $\rho_3 : [\omega_1]^2 \to 2$ is defined by letting $\rho_3(\alpha,\beta) = 1$ iff the last element of the sequence $\rho_0(\alpha,\beta)$ is $\rho_1(\alpha,\beta)$. In other words, we let $\rho_3(\alpha,\beta) = 1$ only in case the last step of the walk from β to α comes with the maximal weight.

The key idea to prove the next result is Lemma 2.4.

4.3 Proposition. ρ_3 satisfies the following

1. For all $\alpha < \beta < \omega_1$,

$$\rho_3(\ \cdot\ ,\beta) =^* \rho_3(\ \cdot\ ,\beta) \upharpoonright \alpha,$$

in other words, the set $\{\xi < \alpha : \rho_3(\xi, \alpha) \neq \rho_3(\xi, \beta)\}$ is finite.

2. There is no function $h: \omega_1 \to 2$ so that $h \upharpoonright \alpha =^* \rho_3(\cdot, \alpha)$ for every $\alpha < \omega_1$.

Now observe that $T(\rho_3) := \{\rho_3(\cdot, \beta) \upharpoonright \alpha : \alpha \leq \beta < \omega_1\}$ is a tree with the relative ordering from $2^{<\omega_1}$.

4.4 Proposition. The following holds.

- 1. $T(\rho_3)$ is an Aronszajn tree.
- 2. $T(\rho_3)$ is not necessarily \mathbb{R} -embeddable.
- 3. Every uncountable $X \subseteq T(\rho_3)$ contains an uncountable $Y \subseteq X$ such that the cartesian square $(Y \times Y, <_{\ell})$ is the union of countable many antichains, where $<_{\ell}$ is the lexicographical ordering.

We say that a function $c : [\omega_1]^2 \to \omega$ is unbounded if for any uncountable subset $A \subseteq \omega_1$, the set $c''[A]^2$ is unbounded in ω . The number of steps function satisfies this condition and even more:

4.5 Lemma. For every uncountable familiy A consisting of pairwise disjoint finite subsets of ω_1 and for all $n < \omega$ there exists an uncountable $B \subseteq A$ so that for any pair $a, b \in B$ with a < b we have

$$(\forall \alpha \in a) (\forall \beta \in b) (\rho_2(\alpha, \beta) > n).$$

5 Fourth Session

The work we have done for ω_1 can be generalized for any cardinal number θ as follows.

5.1 Definition. $\langle C_{\alpha} : \alpha < \theta \rangle$ is a *C*-sequence in θ if for any $\alpha < \theta$ we have

- 1. C_{α} is a club in α whenever α is a limit ordinal,
- 2. $C_{\alpha+1} = \{\alpha\}$, and
- 3. for all $\beta \in C_{\alpha}$, if o.t. $(C_{\alpha} \cap \beta)$ is a successor, then β is a successor too.

From now on, $\langle C_{\alpha} : \alpha < \theta \rangle$ will be always a *C*-sequence on θ .

Observe that our definition of $Tr(\alpha, \beta)$ makes perfect sense when $\alpha < \beta < \theta$. In the case of ρ_0 a slight modification is needed:

$$\rho_0(\alpha,\beta) := \langle \text{o.t.}(C_\beta \cap \alpha) \rangle^\frown \rho_0(\alpha,\min(C_\beta \setminus \alpha)),$$

and $\rho_0(\alpha, \alpha) := \emptyset$. Note that $\rho_0 : [\theta]^2 \to \theta^{<\omega}$.

A quick review of the notions involved in the definition of the tree $T(\rho_0)$ shows that all of them make sense when one changes ω_1 by θ (and $\theta^{<\omega}$ by $\omega^{<\omega}$ in the case of the right lexicographical ordering).

The maximal weight and the number of steps functions are defined by

- 1. $\rho_1(\alpha,\beta) := \max\{\text{o.t.}(C_\beta \cap \alpha), \rho_1(\alpha,\min(C_\beta \setminus \alpha))\}$ with boundary value $\rho_1(\alpha,\alpha) := 0$, and
- 2. $\rho_2(\alpha, \beta) := \rho_2(\alpha, \min(C_\beta \setminus \alpha)) + 1$ with boundary value $\rho_2(\alpha, \alpha) := 0$,

respectively

Without any doubt the C-sequence $C_{\alpha} = \alpha$ is the most trivial choice. The following notion of triviality seems to be only marginally different.

5.2 Definition. $\langle C_{\alpha} : \alpha < \theta \rangle$ is *trivial* if there exists a club $C \subseteq \theta$ so that

$$(\forall \alpha < \theta) (\exists \beta \ge \alpha) (C \cap \alpha \subseteq C_{\beta}).$$

5.3 Theorem. The following are equivalent for any regular uncountable θ .

- 1. $\langle C_{\alpha} : \alpha < \theta \rangle$ is not trivial.
- 2. For every family A of θ pairwise disjoint finite subsets of θ and every integer n, there exists a subfamily B of A of size θ such that $\rho_2(\alpha, \beta) > n$ for all $\alpha \in a, \beta \in b$, and a < b in B.

5.4 Question. Can you characterize weak compactness of θ by the following property: For all $f : [\theta]^2 \to 3$ there exists an unbounded $X \subseteq \theta$ so that $f''[X]^2 \neq 3$?

Let x and y be arbitrary subsets of θ . Define

$$\operatorname{osc}(x, y) := |(x \setminus (\sup(x \cap y) + 1))/ \sim |,$$

where \sim is the equivalence relation on $x \setminus (\sup(x \cap y) + 1)$ defined by letting $\alpha \sim \beta$ iff the closed interval determined by α and β contains no point from y. So, if x and y are disjoint, $\operatorname{osc}(x, y)$ is simply the number of convex pieces in which the set x is split by the set y. The oscillation map has proven to be a useful device in various schemes for coding information.

5.5 Definition. A family $\mathfrak{X} \subseteq \mathfrak{P}(\theta)$ is unbounded if for every club $C \subseteq \theta$ there exists $x \in \mathfrak{X}$ and an increasing sequence $\langle \delta_n : n < \omega \rangle \subseteq C$ such that $\sup(x \cap \delta_n) < \delta_n$ and $[\delta_n, \delta_{n+1}) \cap x \neq \emptyset$, for all $n < \omega$.

This notion of unboundedness has proven to be the key behind a number of results asserting the complex behaviour of the oscillation map on \mathfrak{X}^2 .

5.6 Lemma. If \mathfrak{X} is an unbounded family consisting of closed and unbounded subsets of θ , then for every positive integer n there exist $x, y \in \mathfrak{X}$ such that osc(x, y) = n.

Let $\Gamma \subseteq \theta$ be arbitrary. We say that $\langle C_{\alpha} : \alpha \in \Gamma \rangle$ is a *stationary subsequence* if the set

$$\bigcup_{\alpha \in \Gamma} \{\xi < \theta : \sup(C_{\alpha} \cap \xi) = \xi\}$$

is stationary in θ .

5.7 Lemma. Any stationary subsequence of a nontrivial *C*-sequence is an unbounded family.

6 Fifth Session

It is known that nontrivial *C*-sequences exist only on successor cardinals. In fact it is possible to show that nontrivial *C*-sequences exist for some inaccessible cardinals quite high in the Mahlo-hierarchy. To show how close this is to the notion of weak compactness, we will give the following characterization.

6.1 Theorem. The following are equivalent for an inaccessible θ .

- 1. θ is weakly compact.
- 2. For any C-sequence $\langle C_{\alpha} : \alpha < \theta \rangle$ there is a club C such that

$$(\forall \alpha) (\exists \beta \ge \alpha) (C_{\beta} \cap \alpha = C \cap \alpha)$$

It turns out that in the previous result we cannot replace (2) by every C-sequence on θ is trivial. One can show this using a model of Kunen [5].

One of the most basic questions frequently asked about set-theoretical trees is the question whether they contain a *cofinal branch*, a branch that intersects every level of the tree. The fundamental importance of this question has already been realized in the work of Kurepa [6] and then later in the work of Erdős and Tarski in their respective attempts to develop the theory of partition calculus [2] and large cardinals. A tree T of height equal to some regular cardinal θ may not have a cofinal branch for a very special reason as the following definition indicates.

6.2 Definition. Let $T = \langle T, \langle T \rangle$ be a tree.

- 1. A function $f: T \to T$ is regressive if $f(t) <_T t$ for every $t \in T$ that is not a minimal node of T.
- 2. If T has height θ , then T is *special* if there is a regressive map $f: T \to T$ such that $f^{-1}[t]$ can be covered by less than θ antichains in T.

When $\theta = \omega_1$, this definition reduces to the old concept of special tree: a tree that can be decomposed into countably many antichains. Moreover, we have that if $\theta = \kappa^+$ and T has height θ , then T is special if and only if T is the union of at mos κ antichains.

Recall the well-known characterization of weakly compact cardinals due to Tarski and his collaborators: a strongly inaccesssible cardinal θ is weakly compact iff there are no Aronszajn trees of height θ . Using C-sequences we can prove the following.

6.3 Theorem. The following are equivalent for a strongly inaccessible θ :

1. θ is Mahlo.

2. There are no special Aronszajn trees of height θ .

For each set $X \subseteq \theta$, denote by X' the set of all limit points of X.

6.4 Definition. A C-sequence $\langle C_{\alpha} : \alpha < \theta \rangle$ is a \Box -sequence if it is coherent, i.e. we have $C_{\alpha} = C_{\beta} \cap \alpha$ whenever $\alpha \in C'_{\beta}$.

Observe that our notion of triviality and the condition mentioned in Theorem 6.1 coincide in the realm of \Box -sequences:

6.5 Lemma. A \Box -sequence $\langle C_{\alpha} : \alpha < \theta \rangle$ is trivial if and only if there is a club $C \subseteq \theta$ so that $C_{\alpha} = C \cap \alpha$ for all $\alpha \in C'$.

It is known that ω_1 admits a nontrivial \Box -sequence. Define the function $\Lambda : [\theta]^2 \to \theta$ by

$$\Lambda(\alpha,\beta) := \max(\{0\} \cup (C_{\beta} \cap (\alpha+1))').$$

With the aid of Λ we are ready to define $F : [\theta]^2 \to [\theta]^{<\omega}$, the full lower trace function:

$$F(\alpha,\beta) := F(\alpha,\min(C_{\beta} \setminus \alpha)) \cup \bigcup \{F(\xi,\alpha) : \xi \in C_{\beta} \cap [\Lambda(\alpha,\beta),\alpha)\},\$$

with $F(\alpha, \alpha) := \{\alpha\}$ for all $\alpha < \theta$.

Under the assumptions that $\langle C_{\alpha} : \alpha < \theta \rangle$ is a nontrivial \Box -sequence and θ is a regular uncountable cardinal, Proposition 2.2 and Lemma 2.4 hold, and therefore we get the following result.

6.6 Corollary. For any nontrivial \Box -sequence on a regular uncountable θ we have

$$\sup_{\xi < \alpha} |\rho_2(\xi, \alpha) - \rho_2(\xi, \beta)| < \infty$$

for all $\alpha < \beta < \theta$.

Proof. Apply Lemma 2.4 to obtain

$$\sup_{\xi < \alpha} |\rho_2(\xi, \alpha) - \rho_2(\xi, \beta)| \le \sup_{\xi \in F(\alpha, \beta)} |\rho_2(\xi, \alpha) - \rho_2(\xi, \beta)|.$$

It is a known fact that there is no function $h: \theta \to \omega$ so that

$$\sup_{\xi < \alpha} |\rho_2(\xi, \alpha) - h(\xi)| < \infty$$

for all $\alpha < \theta$.

Let \mathfrak{I} be an ideal of subsets of some set S. Recall that \mathfrak{I} is a *P*-ideal if for every sequence $\langle A_n : n < \omega \rangle \subseteq \mathfrak{I}$ there is $B \in \mathfrak{I}$ so that $A_n \setminus B$ is finite for all $n < \omega$. A set $X \subseteq S$ is orthogonal to \mathfrak{I} (in symbols, $X \perp \mathfrak{I}$) if $X \cap A$ is finite for all $A \in \mathfrak{I}$.

The following statement is known as the *P*-ideal Dichotomy: For every *P*-ideal \Im of countable subsets of some set *S* either

1. There is an uncountable $X \subseteq S$ such that $[X]^{\omega} \subseteq \mathcal{I}$, or

2. S can be decomposed into countably many sets orthogonal to \mathcal{I} .

The *P*-ideal dichotomy is a consequence of the Proper Forcing Axiom and, moreover, it does not contradict the Continuum Hypothesis [8].

6.7 Theorem. If θ is regular and uncountable, then the *P*-ideal Dichotomy implies that a nontrivial \Box -sequence can exist only on $\theta = \omega_1$.

Proof. The family

$$\mathfrak{I} := \left\{ A \in [\theta]^{\omega} : (\forall \alpha < \theta) (\forall \Delta \in [A \cap \alpha]^{\omega}) \left(\sup_{\xi \in \Delta} \rho_2(\xi, \alpha) = \infty \right) \right\}$$

is a *P*-ideal of countable subsets of θ . Thus we have two possibilities:

1. There is an uncountable $X \subseteq \theta$ so that $[X]^{\omega} \subseteq \mathfrak{I}$, or

2. There is a decomposition $\theta = \bigcup_n O_n$ so that $O_n \perp \mathfrak{I}$ for all $n < \omega$.

If (1) holds, Corollary 6.6 implies that $X \cap \alpha$ is countable for each $\alpha < \theta$ and thus θ must have cofinality ω_1 . Therefore $\theta = \omega_1$.

Now assume (2) is true. Fix $k < \omega$ so that O_k is unbounded in θ . Since $O_k \perp \mathfrak{I}$ we have that $\rho_2(\cdot, \alpha)$ is bounded in $O_k \cap \alpha$ for each $\alpha < \theta$. Hence there exist an unbounded set $\Gamma \subseteq \theta$ and an integer m such that $\rho_2(\alpha, \beta) \leq m$ for any $\beta \in \Gamma$ and $\alpha \in O_k \cap \beta$. Theorem 5.3 implies that the \square -sequence we started with must be trivial. \square

The tightness of a point x in a topological space X, t(x, X), is equal to κ if κ is the minimal cardinal such that for any set $A \subseteq X \setminus \{x\}$, if $x \in \overline{A}$ (the clousure of A), then there exists $B \in [A]^{\leq \kappa}$ so that $x \in \overline{B}$. The tightness of X is $\sup\{t(x, X) : x \in X\}$.

The sequential fan with θ edges is the space obtained on $(\theta \times \omega) \cup \{\infty\}$ by declaring ∞ as the only nonisolated point, while a typical neighborhood for ∞ has the form

$$U_f := \{ (\alpha, n) : \alpha < \theta, \ n \ge f(\alpha) \} \cup \{ \infty \},\$$

where $f: \theta \to \omega$ is arbitrary. We will denote this space by S_{θ} .

6.8 Theorem. Let θ be regular and uncountable. If there is a nontrivial \Box -sequence on θ , then the tightness of (∞, ∞) in the topological product $S^2_{\theta} := S_{\theta} \times S_{\theta}$ is equal to θ .

Proof. Assume that $\langle C_{\alpha} : \alpha < \theta \rangle$ is a nontrivial \Box -sequence on θ and define $d : [\theta]^2 \to \omega$ by

$$d(\alpha,\beta) := \sup_{\xi \le \alpha} |\rho_2(\xi,\alpha) - \rho_2(\xi,\beta)|.$$

For each $\gamma \leq \theta$ let $W_{\gamma} := \{((\alpha, d(\alpha, \beta)), (\beta, d(\alpha, \beta))) : \alpha < \beta < \gamma\}$. W_{θ} is a subset of $S_{\theta}^2 \setminus \{(\infty, \infty)\}$ of size θ and $(\infty, \infty) \in \overline{W_{\theta}}$. On the other hand,

 $(\infty, \infty) \notin \overline{W_{\xi}}$ for all $\xi < \theta$. Finally, if $B \in [W_{\theta}]^{<\theta}$, then there exists $\gamma < \theta$ so that $B \subseteq W_{\gamma}$ and hence B does not accumulate to (∞, ∞) .

Since ω_1 supports a nontrivial \Box -sequence, the previous result leads to the following result of Gruenhage and Tanaka [3].

6.9 Corollary. $S_{\omega_1}^2$ is not countably tight.

We have seen that the case $\theta = \omega_1$ is quite special when one considers the problem of existence of various nontrivial \Box -sequences on θ . It should be noted that a similar result about the problem of the tightness of S_{θ}^2 is not available. In particular, it is not known whether the *P*-ideal dichotomy or a similar consistent hypothesis of set theory implies that the tightness of the square of, say, S_{ω_2} is smaller than ω_2 . It is interesting that considerably more is known about the dual question, the question of initial compactness of the Tychonoff cube ω^{θ} . For example, if one defines $B_{\alpha\beta} := \{f \in \omega^{\theta} : f(\alpha), f(\beta) \leq d(\alpha, \beta)\}$ ($\alpha < \beta < \theta$) one gets an open cover of ω^{θ} without a subcover of size $< \theta$. However, for small θ such as $\theta = \omega_2$ one is able to find such a cover of ω^{θ} without any additional set-theoretic assumption and in particular without the assumption that θ carries a nontrivial \Box -sequence.

6.10 Question. What is the tightness of $S_{\omega_2}^2$?

7 Sixth Session

From now on let's fix a \Box -sequence $\langle C_{\alpha} : \alpha < \theta \rangle$ on a regular uncountable cardinal θ . We are going to discuss some properties of the distance function $\rho : [\theta]^2 \to \theta$ defined by

$$\rho(\alpha,\beta) := \max\{\text{o.t.}(C_{\beta} \cap \alpha), \rho(\alpha,\min(C_{\beta} \setminus \alpha)), \rho(\xi,\alpha) : \xi \in C_{\beta} \cap [\Lambda(\alpha,\beta),\alpha)\}$$

where we stipulate $\rho(\alpha, \alpha) = 0$ for all $\alpha < \theta$. ρ has the following subadditive properties.

7.1 Lemma. If $\alpha < \beta < \theta$ then

- 1. $\rho(\alpha, \gamma) \leq \max\{\rho(\alpha, \beta), \rho(\beta, \gamma)\}$
- 2. $\rho(\alpha, \beta) \leq \max\{\rho(\alpha, \gamma), \rho(\beta, \gamma)\}$

Let $D: [\theta]^2 \to [\theta]^{<\theta}$ be defined by

$$D(\alpha,\beta) := \{\xi < \alpha : \rho(\xi,\alpha) \le \rho(\alpha,\beta)\}.$$

Note that $D(\alpha, \beta) = \{\xi < \alpha : \rho(\xi, \beta) \le \rho(\alpha, \beta)\}$ so we could take the formula

$$D\{\alpha,\beta\} = \{\xi < \min\{\alpha,\beta\} : \rho(\xi,\alpha) \le \rho(\alpha,\beta)\}$$

as our definition of $D\{\alpha, \beta\}$ when there is no implicit assumption about the ordering between α and β as there is whenever we write $D(\alpha, \beta)$.

Recall that a cardinal κ is λ -inaccessible if $\nu^{\tau} < \kappa$ for all $\nu < \kappa$ and $\tau < \lambda$.

7.2 Lemma. If κ is λ -inaccessible for some $\lambda < \kappa$ and $\theta = \kappa^+$, then for every family $A \subseteq [\theta]^{<\lambda}$ with $|A| = \kappa$ there exists $B \in [A]^{\kappa}$ such that for all $a, b \in B$ and all $\alpha \in a \setminus b, \beta \in b \setminus a$, and $\gamma \in a \cap b$:

- 1. $\alpha, \beta > \gamma$ implies $D\{\alpha, \gamma\} \cup D\{\beta, \gamma\} \subseteq D\{\alpha, \beta\}$,
- 2. $\beta > \gamma$ implies $D\{\alpha, \gamma\} \subseteq D\{\alpha, \beta\}$,
- 3. $\alpha > \gamma$ implies $D\{\beta, \gamma\} \subseteq D\{\alpha, \beta\}$, and
- 4. $\gamma > \alpha, \beta$ implies $D\{\alpha, \gamma\} \subseteq D\{\alpha, \beta\}$ or $D\{\beta, \gamma\} \subseteq D\{\alpha, \beta\}$.

A function $f : [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has property Δ if for every uncountable set A of finite subsets of ω_2 there exists a and b in A such that for all $\alpha \in a \setminus b$, $\beta \in b \setminus a$, and $\gamma \in a \cap b$:

- 1. $\alpha, \beta > \gamma$ implies $\gamma \in f\{\alpha, \beta\}$.
- 2. $\beta > \gamma$ implies $f\{\alpha, \gamma\} \subseteq f\{\alpha, \beta\}$.
- 3. $\alpha > \gamma$ implies $f\{\beta, \gamma\} \subseteq f\{\alpha, \beta\}$.

This definition is due to Baumgartner and Shelah [1] who have used it in their well-known forcing construction. It should be noted that they were also able to force a function with the property Δ using a σ -closed ω_2 -cc poset.

As shown above the function D has property Δ . However Lemma 7.2 shows that D has many other properties that are of independent interest and that are likely to be needed in other forcing constructions of this sort. The papers of Koszmider [4] and Rabus [7] are good examples of further work in this area.

There are some generalizations of the ρ -functions we have analyzed. Recall that an ordinal α divides an ordinal γ if there there is β such that $\gamma = \alpha \cdot \beta$, i.e. γ can be written as the union of an increasing β -sequence of intervals of order type α . Let $\kappa \leq \theta$ be a fixed infinite regular cardinal. Let $\Lambda_{\kappa} : [\theta]^2 \to \theta$ be defined by

$$\Lambda_{\kappa}(\alpha,\beta) := \max\{\xi \in C_{\beta} \cap (\alpha+1) : \kappa \text{ divides } \text{ o.t.}(C_{\beta} \cap \xi)\}.$$

Observe that the function Λ we introduced before is Λ_{ω} , i.e. $\Lambda = \Lambda_{\omega}$. Our object of study is the function $\rho^{\kappa} : [\theta]^2 \to \theta$ defined recursively by

$$\rho^{\kappa}(\alpha,\beta) := \sup\{ \text{o.t.}(C_{\beta} \cap [\Lambda_{\kappa}(\alpha,\beta),\alpha), \rho^{\kappa}(\alpha,\min(C_{\beta} \setminus \alpha)), \\ \rho^{\kappa}(\xi,\alpha) : \xi \in C_{\beta} \cap [\Lambda_{\kappa}(\alpha,\beta),\alpha) \},$$

and $\rho^{\kappa}(\alpha, \alpha) = 0$ for all $\alpha < \theta$.

7.3 Lemma. If $\alpha < \beta < \theta$ then

1.
$$\rho^{\kappa}(\alpha, \gamma) \le \max\{\rho^{\kappa}(\alpha, \beta), \rho^{\kappa}(\beta, \gamma)\}$$

2. $\rho^{\kappa}(\alpha,\beta) \leq \max\{\rho^{\kappa}(\alpha,\gamma),\rho^{\kappa}(\beta,\gamma)\}$

For $\alpha < \beta < \theta$ and $\nu < \kappa$ set

 $\alpha <^{\kappa}_{\nu} \beta$ if and only if $\rho^{\kappa}(\alpha, \beta) \leq \nu$.

The following result is a corollary of Lemma 7.3.

7.4 Proposition.

- 1. $(\theta, <^{\kappa}_{\nu})$ is a tree for all $\nu < \kappa$.
- 2. If $\nu < \mu < \kappa$ then $<^{\kappa}_{\nu} \subseteq <^{\kappa}_{\mu}$.
- 3. $\in \uparrow \theta = \bigcup_{\nu < \kappa} <^{\kappa}_{\nu}$.

References

- J. Baumgartner and S. Shelah, *Remarks on superatomic Boolean algebras*, Ann. Pure Appl. Logic, 33:109-129, 1987.
- [2] P. Erdős and A. Tarski, On some problems involving inaccessible cardinals. In Y. Bar-Hillel, E. Poznanski, M. Rabin, and A. Robinson, editors, Essays on the Foundations of Mathematics, pages 50-82. Magnes Press, 1961.
- [3] G. Gruenhage and Y. Tanaka Products of k-spaces. Trans. Amer. Math. Soc., 273:299-308, 1982.
- [4] P. Koszmider, Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc., 351:3073-3117, 1999.
- [5] K. Kunen, Saturated ideals. J. Symbolic Logic, 43:65-76, 1978.
- [6] D. Kurepa, Ensembles ordonnés et ramifés. Publ. Math. Univ. Belgrade, 4:1-138, 1935.
- [7] M. Rabus, An ω_2 -minimal Boolean algebra, Trans. Amer. Math. Soc., 348:3235-3244, 1996.
- [8] S. Todorčević, A dichotomy for P-ideals of countable sets, Fund. Math., 166:251-267, 2000.
- [9] S. Todorčević, Walks on Ordinals and Their Characteristics, Progress in Mathematics, Vol. 263, Birkhäuser, 2007.