Appalachian Set Theory Workshop on Coherent Sequences Lectures by Stevo Todorcevic Notes taken by Roberto Pichardo Mendoza

1 Introduction

2 Preliminaries

Let's begin by defining the basic structure for our work. A C-sequence is a sequence $\left\langle C_{\alpha}: \alpha<\omega_{1}\right\rangle$ so that the following holds for any $\alpha<\omega_{1}$,

1. $C_{\alpha+1}=\{\alpha\}$, and
2. if α is a non-zero limit ordinal, then
(a) $\sup C_{\alpha}=\alpha$
(b) o.t. $\left(C_{\alpha}\right)=\omega$, where o.t. stands for order type, and
(c) C_{α} does not contain any succesor ordinal.

For the rest of the notes C_{α} will always denote the α th term of our C sequence.

The porpouse of this section is to stablish some of the basic structures and properties linked to a C-sequence. We start with the upper and full lower trace.
2.1 Definition. Let $\alpha<\beta<\omega_{1}$.

1. The upper trace of the walk from β to α is defined as $\operatorname{Tr}(\alpha, \beta)=\left\langle\beta_{i}: i \leq\right.$ $n\rangle$, where
(a) $\beta_{0}=\beta$,
(b) $\beta_{n}=\alpha$, and
(c) $\beta_{i+1}=\min \left(C_{\beta_{i}} \backslash \alpha\right)$, for $i<n$.
2. The full lower trace of the walk from β to α is defined recursively as

$$
F(\alpha, \beta):=F\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right) \cup \bigcup\left\{F(\xi, \alpha): \xi \in C_{\beta} \cap \alpha\right\}
$$

and $F(\alpha, \alpha):=\{\alpha\}$.
Note that $\operatorname{Tr}(\alpha, \beta)$ is a decreasing sequence.
The following statements can be proven by induction on γ.
2.2 Proposition. If $\alpha \leq \beta \leq \gamma$, then

1. $F(\alpha, \gamma) \subseteq F(\alpha, \beta) \cup F(\beta, \gamma)$.
2. $F(\alpha, \beta) \subseteq F(\alpha, \gamma) \cup F(\beta, \gamma)$.

Assume that c is a function with domain $\left[\omega_{1}\right]^{2}$. We will use the symbol $c(\alpha, \beta)$ to denote $c(\{\alpha, \beta\})$ when $\alpha<\beta$. It will be a common practice to use recursion to define the value of $c(\alpha, \beta)$, and sometimes the expression $c(\alpha, \alpha)$ will be involved!

If s and t are sequences, $s \frown t$ is the concatenation of s followed by t.
2.3 Definition. The full code of the walk is the function $\rho_{0}:\left[\omega_{1}\right]^{2} \rightarrow \omega^{<\omega}$ given by

$$
\rho_{0}(\alpha, \beta):=\langle | C_{\beta} \cap \alpha| \rangle \frown \rho_{0}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right),
$$

and $\rho_{0}(\alpha, \alpha):=\emptyset$.
Note that if we know the full code, then we can get the upper trace by

$$
\operatorname{Tr}(\alpha, \beta)=\left\{\xi: \rho_{0}(\xi, \beta) \sqsubseteq \rho_{0}(\alpha, \beta)\right\}
$$

where $s \sqsubseteq t$ means that s is an initial segment of the sequence t.
2.4 Lemma. Let $\xi<\alpha<\beta$. If $\overline{\alpha_{\xi}}:=\min (F(\alpha, \beta) \backslash \xi)$, then

1. $\rho_{0}(\xi, \alpha)=\rho_{0}\left(\overline{\alpha_{\xi}}, \alpha\right)^{\frown} \rho_{0}\left(\xi, \overline{\alpha_{\xi}}\right)$.
2. $\rho_{0}(\xi, \beta)=\rho_{0}\left(\overline{\alpha_{\xi}}, \beta\right) \frown \rho_{0}\left(\xi, \overline{\alpha_{\xi}}\right)$.

The right lexicographical order, $<_{r}$, on $\omega^{<\omega}$ is the linear ordering defined by letting

$$
s<_{r} t \text { iff } t \sqsubset s \text { or } s(m)<t(m), \text { where } m:=\min \{i: s(i) \neq t(i)\} .
$$

2.5 Lemma. If $\xi_{0}<\xi_{1}<\beta$, then $\rho_{0}\left(\xi_{0}, \beta\right)<_{r} \rho_{0}\left(\xi_{1}, \beta\right)$. In other words, the function $\rho(\cdot, \beta) \upharpoonright \alpha$ is strictly increasing when $\alpha \leq \beta$.

Given $\alpha \leq \beta<\omega_{1}$, let $\rho_{0 \beta} \upharpoonright \alpha:=\left\{\rho_{0}(\xi, \beta): \xi<\alpha\right\}$. Now define

$$
T\left(\rho_{0}\right):=\left\{\rho_{0 \beta} \upharpoonright \alpha: \alpha \leq \beta<\omega_{1}\right\}
$$

and order it by end-extension, i.e. for all $a, b \in T\left(\rho_{0}\right)$ let $a<_{e} b$ iff

$$
a \subset b \text { and }(\forall x \in a)(\forall y \in b \backslash a)\left(x<_{r} y\right)
$$

Then we have the following result.
2.6 Proposition. $T\left(\rho_{0}\right)$ is an Aronszajn tree.
2.7 Definition. Let $\operatorname{Tr}(\alpha, \beta)=\left\langle\beta_{i}: i \leq n\right\rangle$. The lower trace of the walk from β to α is the increasing sequence $L(\alpha, \beta)=\left\langle\lambda_{i}: i<n\right\rangle$, where

$$
\lambda_{i}=\max \left\{\max \left(C_{\xi} \cap \alpha\right): \rho_{0}(\xi, \beta) \sqsubseteq \rho_{0}\left(\beta_{i}, \beta\right)\right\}
$$

for any $i<n$.
Observe that $L(\alpha, \beta) \subseteq F(\alpha, \beta)$.
Let a and b be two sets (or sequences) of ordinals. The symbol $a<b$ means that any ordinal from a is smaller than any element of b. We will write $a<\alpha$ instead of $a<\{\alpha\}$.
2.8 Proposition. If $L(\alpha, \beta)<\xi<\alpha<\beta$, then $\rho_{0}(\xi, \beta)=\rho_{0}(\alpha, \beta) \frown \rho_{0}(\xi, \alpha)$.

3 Second Session

3.1 Definition. The maximal weight of the walk is the function $\rho_{1}:\left[\omega_{1}\right]^{2} \rightarrow \omega$ given by

$$
\rho_{1}(\alpha, \beta):=\max \left\{\left|C_{\beta} \cap \alpha\right|, \rho_{1}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right)\right\},
$$

and $\rho_{1}(\alpha, \alpha)=0$.
In other words, $\rho_{1}(\alpha, \beta)$ is the largest integer appearing in the sequence $\rho_{0}(\alpha, \beta)$.
3.2 Proposition. For all $\alpha<\beta<\omega_{1}$ and $n<\omega$, the following sets are finite

1. $\left\{\xi<\alpha: \rho_{1}(\xi, \alpha) \neq \rho_{1}(\xi, \beta)\right\}$.
2. $\left\{\xi<\alpha: \rho_{1}(\xi, \alpha) \leq n\right\}$.

If s and t are sequences with the same domain, then $s=^{*} t$ means that $\{\xi: s(\xi) \neq t(\xi)\}$ is finite.
3.3 Proposition. The set $T\left(\rho_{1}\right):=\left\{t \in \omega^{<\omega_{1}}: t={ }^{*} \rho_{1}(\cdot, \operatorname{dom}(t))\right\}$ ordered by the relative ordering from $\omega^{<\omega_{1}}$ is an \mathbb{R}-embeddable (i.e. there exists an increasing map from $T\left(\rho_{1}\right)$ to \mathbb{R}) Aronszajn tree.

Let T be an arbitrary tree. Given $x, y \in T$, define

$$
\Delta(x, y):=\text { o.t. }(\{t \in T: t \leq x \wedge t \leq y\})
$$

One should view Δ as some sort of distance function on T by interpreting inequalities like $\Delta(x, y)>\Delta(x, z)$ as saying that x is closer to y than z. A map $g \subseteq T \times T$ is Lipschtiz, if g is level preserving and $\Delta(g(x), g(y)) \geq \Delta(x, y)$ for all $x, y \in \operatorname{dom}(g)$. Finally, T is Lipschtiz if every function $f \subseteq T \times T$ with uncountable domain which is level preserving is Lipschitz on an uncountable subset of $\operatorname{dom}(f)$ or f^{-1} is Lipschitz on an uncountable subset of its domain.
3.4 Proposition. $T\left(\rho_{0}\right)$ and $T\left(\rho_{1}\right)$ are Lipschitz trees.
3.5 Question. Let T be a tree. Does

$$
\mathcal{U}(T):=\left\{A \subseteq \omega_{1}:(\exists X \subseteq T)(|X|>\omega \wedge\{\Delta(x, y): x, y \in X\} \subseteq A)\right\}
$$

extend the club filter? The conjecture is no.
Remember that a set $X \subseteq \mathbb{R}$ has strong measure zero if for every sequence of positive real numbers $\left\langle\varepsilon_{n}: n<\omega\right\rangle$ there is a sequence $\left\langle I_{n}: n<\omega\right\rangle$ of open intervals so that $X \subseteq \bigcup_{n} I_{n}$ and the diameter of I_{n} is at most ε_{n}. This metric property has several closely related topological notions. For example Rothberger's property $C^{\prime \prime}$: for every sequence $\left\langle\mathcal{U}_{n}: n<\omega\right\rangle$ of open covers of a space X one can choose $U_{n} \in \mathcal{U}_{n}$ for each n so that $X=\bigcup_{n} U_{n}$.
3.6 Proposition. $T\left(\rho_{1}\right)$ has property $C^{\prime \prime}$ when considered with the topology generated by the sets $\left\{s \in T\left(\rho_{1}\right): t \subseteq s\right\}, t \in T\left(\rho_{1}\right)$.

4 Third Session

4.1 Definition. The number of steps of the minimal walk from β to α is defined by

$$
\rho_{2}(\alpha, \beta):=\rho_{2}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right)+1,
$$

and $\rho_{2}(\alpha, \alpha):=0$. In other words, $\rho_{2}(\alpha, \beta)$ is the size of $\operatorname{Tr}(\alpha, \beta)$.
Observe that $\rho_{2}:\left[\omega_{1}\right]^{2} \rightarrow \omega$. This is an interesting map which is particularly useful on higher cardinalities.
4.2 Definition. The last step function $\rho_{3}:\left[\omega_{1}\right]^{2} \rightarrow 2$ is defined by letting $\rho_{3}(\alpha, \beta)=1$ iff the last element of the sequence $\rho_{0}(\alpha, \beta)$ is $\rho_{1}(\alpha, \beta)$. In other words, we let $\rho_{3}(\alpha, \beta)=1$ only in case the last step of the walk from β to α comes with the maximal weight.

The key idea to prove the next result is Lemma 2.4
4.3 Proposition. ρ_{3} satisfies the following

1. For all $\alpha<\beta<\omega_{1}$,

$$
\rho_{3}(\cdot, \beta)={ }^{*} \rho_{3}(\cdot, \beta) \upharpoonright \alpha,
$$

in other words, the set $\left\{\xi<\alpha: \rho_{3}(\xi, \alpha) \neq \rho_{3}(\xi, \beta)\right\}$ is finite.
2. There is no function $h: \omega_{1} \rightarrow 2$ so that $h \upharpoonright \alpha={ }^{*} \rho_{3}(\cdot, \alpha)$ for every $\alpha<\omega_{1}$.

Now observe that $T\left(\rho_{3}\right):=\left\{\rho_{3}(\cdot, \beta) \upharpoonright \alpha: \alpha \leq \beta<\omega_{1}\right\}$ is a tree with the relative ordering from $2^{<\omega_{1}}$.
4.4 Proposition. The following holds.

1. $T\left(\rho_{3}\right)$ is an Aronszajn tree.
2. $T\left(\rho_{3}\right)$ is not necessarily \mathbb{R}-embeddable.
3. Every uncountable $X \subseteq T\left(\rho_{3}\right)$ contains an uncountable $Y \subseteq X$ such that the cartesian square $\left(Y \times Y,<_{\ell}\right)$ is the union of countable many antichains, where $<_{\ell}$ is the lexicographical ordering.

We say that a function $c:\left[\omega_{1}\right]^{2} \rightarrow \omega$ is unbounded if for any uncountable subset $A \subseteq \omega_{1}$, the set $c^{\prime \prime}[A]^{2}$ is unbounded in ω. The number of steps function satisfies this condition and even more:
4.5 Lemma. For every uncountable familiy A consisting of pairwise disjoint finite subsets of ω_{1} and for all $n<\omega$ there exists an uncountable $B \subseteq A$ so that for any pair $a, b \in B$ with $a<b$ we have

$$
(\forall \alpha \in a)(\forall \beta \in b)\left(\rho_{2}(\alpha, \beta)>n\right) .
$$

5 Fourth Session

The work we have done for ω_{1} can be generalized for any cardinal number θ as follows.
5.1 Definition. $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ is a C-sequence in θ if for any $\alpha<\theta$ we have

1. C_{α} is a club in α whenever α is a limit ordinal,
2. $C_{\alpha+1}=\{\alpha\}$, and
3. for all $\beta \in C_{\alpha}$, if o.t. $\left(C_{\alpha} \cap \beta\right)$ is a succesor, then β is a succesor too.

From now on, $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ will be always a C-sequenece on θ.
Observe that our definition of $\operatorname{Tr}(\alpha, \beta)$ makes perfect sense when $\alpha<\beta<\theta$. In the case of ρ_{0} a slight modification is needed:

$$
\rho_{0}(\alpha, \beta):=\left\langle\text { o.t. }\left(C_{\beta} \cap \alpha\right)\right\rangle \frown \rho_{0}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right),
$$

and $\rho_{0}(\alpha, \alpha):=\emptyset$. Note that $\rho_{0}:[\theta]^{2} \rightarrow \theta<\omega$.
A quick review of the notions involved in the definition of the tree $T\left(\rho_{0}\right)$ shows that all of them make sense when one changes ω_{1} by θ (and $\theta^{<\omega}$ by $\omega^{<\omega}$ in the case of the right lexicographical ordering).

The maximal weight and the number of steps functions are defined by

1. $\rho_{1}(\alpha, \beta):=\max \left\{\right.$ o.t. $\left(C_{\beta} \cap \alpha\right), \rho_{1}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right\}$ with boundary value $\rho_{1}(\alpha, \alpha):=0$, and
2. $\rho_{2}(\alpha, \beta):=\rho_{2}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right)+1$ with boundary value $\rho_{2}(\alpha, \alpha):=0$,
respectively
Without any doubt the C-sequence $C_{\alpha}=\alpha$ is the most trivial choice. The following notion of triviality seems to be only marginally different.
5.2 Definition. $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ is trivial if there exists a club $C \subseteq \theta$ so that

$$
(\forall \alpha<\theta)(\exists \beta \geq \alpha)\left(C \cap \alpha \subseteq C_{\beta}\right)
$$

5.3 Theorem. The following are equivalent for any regular uncountable θ.

1. $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ is not trivial.
2. For every family A of θ pairwise disjoint finite subsets of θ and every integer n, there exists a subfamily B of A of size θ such that $\rho_{2}(\alpha, \beta)>n$ for all $\alpha \in a, \beta \in b$, and $a<b$ in B.
5.4 Question. Can you characterize weak compactness of θ by the following property: For all $f:[\theta]^{2} \rightarrow 3$ there exists an unbounded $X \subseteq \theta$ so that $f^{\prime \prime}[X]^{2} \neq 3$?

Let x and y be arbitrary subsets of θ. Define

$$
\operatorname{osc}(x, y):=|(x \backslash(\sup (x \cap y)+1)) / \sim|
$$

where \sim is the equivalence relation on $x \backslash(\sup (x \cap y)+1)$ defined by letting $\alpha \sim \beta$ iff the closed interval determined by α and β contains no point from y. So, if x and y are disjoint, $\operatorname{osc}(x, y)$ is simply the number of convex pieces in which the set x is split by the set y. The oscillation map has proven to be a useful device in various schemes for coding information.
5.5 Definition. A family $\mathfrak{X} \subseteq \mathcal{P}(\theta)$ is unbounded if for every club $C \subseteq \theta$ there exists $x \in \mathfrak{X}$ and an increasing sequence $\left\langle\delta_{n}: n<\omega\right\rangle \subseteq C$ such that $\sup \left(x \cap \delta_{n}\right)<\delta_{n}$ and $\left[\delta_{n}, \delta_{n+1}\right) \cap x \neq \emptyset$, for all $n<\omega$.

This notion of unboundedness has proven to be the key behind a number of results asserting the complex behaviour of the oscillation map on \mathfrak{X}^{2}.
5.6 Lemma. If \mathfrak{X} is an unbounded family consisting of closed and unbounded subsets of θ, then for every positive integer n there exist $x, y \in \mathfrak{X}$ such that $\operatorname{osc}(x, y)=n$.

Let $\Gamma \subseteq \theta$ be arbitrary. We say that $\left\langle C_{\alpha}: \alpha \in \Gamma\right\rangle$ is a stationary subsequence if the set

$$
\bigcup_{\alpha \in \Gamma}\left\{\xi<\theta: \sup \left(C_{\alpha} \cap \xi\right)=\xi\right\}
$$

is stationary in θ.
5.7 Lemma. Any stationary subsequence of a nontrivial C-sequence is an unbounded family.

6 Fifth Session

It is known that nontrivial C-sequences exist only on successor cardinals. In fact it is possible to show that nontrivial C-sequences exist for some inaccessible cardinals quite high in the Mahlo-hierarchy. To show how close this is to the notion of weak compactness, we will give the following characterization.
6.1 Theorem. The following are equivalent for an inaccessible θ.

1. θ is weakly compact.
2. For any C-sequence $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ there is a club C such that

$$
(\forall \alpha)(\exists \beta \geq \alpha)\left(C_{\beta} \cap \alpha=C \cap \alpha\right)
$$

It turns out that in the previous result we cannot replace (2) by every C sequence on θ is trivial. One can show this using a model of Kunen [5].

One of the most basic questions frequently asked about set-theoretical trees is the question whether they contain a cofinal branch, a branch that intersects every level of the tree. The fundamental importance of this question has already been realized in the work of Kurepa [6] and then later in the work of Erdős and Tarski in their respective attempts to develop the theory of partition calculus [2] and large cardinals. A tree T of height equal to some regular cardinal θ may not have a cofinal branch for a very special reason as the following definition indicates.
6.2 Definition. Let $T=\left\langle T,<_{T}\right\rangle$ be a tree.

1. A function $f: T \rightarrow T$ is regressive if $f(t)<_{T} t$ for every $t \in T$ that is not a minimal node of T.
2. If T has height θ, then T is special if there is a regressive map $f: T \rightarrow T$ such that $f^{-1}[t]$ can be covered by less than θ antichains in T.

When $\theta=\omega_{1}$, this definition reduces to the old concept of special tree: a tree that can be decomposed into countably many antichains. Moreover, we have that if $\theta=\kappa^{+}$and T has height θ, then T is special if and only if T is the union of at mos κ antichains.

Recall the well-known characterization of weakly compact cardinals due to Tarski and his collaborators: a strongly inaccesssible cardinal θ is weakly compact iff there are no Aronszajn trees of height θ. Using C-sequences we can prove the following.
6.3 Theorem. The following are equivalent for a strongly inaccesssible θ :

1. θ is Mahlo.
2. There are no special Aronszajn trees of height θ.

For each set $X \subseteq \theta$, denote by X^{\prime} the set of all limit points of X.
6.4 Definition. A C-sequence $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ is a \square-sequence if it is coherent, i.e. we have $C_{\alpha}=C_{\beta} \cap \alpha$ whenever $\alpha \in C_{\beta}^{\prime}$.

Observe that our notion of triviality and the condition mentioned in Theorem 6.1 coincide in the realm of \square-sequences:
6.5 Lemma. A \square-sequence $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ is trivial if and only if there is a club $C \subseteq \theta$ so that $C_{\alpha}=C \cap \alpha$ for all $\alpha \in C^{\prime}$.

It is known that ω_{1} admits a nontrivial \square-sequence.
Define the function $\Lambda:[\theta]^{2} \rightarrow \theta$ by

$$
\Lambda(\alpha, \beta):=\max \left(\{0\} \cup\left(C_{\beta} \cap(\alpha+1)\right)^{\prime}\right)
$$

With the aid of Λ we are ready to define $F:[\theta]^{2} \rightarrow[\theta]^{<\omega}$, the full lower trace function:

$$
F(\alpha, \beta):=F\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right) \cup \bigcup\left\{F(\xi, \alpha): \xi \in C_{\beta} \cap[\Lambda(\alpha, \beta), \alpha)\right\}
$$

with $F(\alpha, \alpha):=\{\alpha\}$ for all $\alpha<\theta$.
Under the assumptions that $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ is a nontrivial \square-sequence and θ is a regular uncountable cardinal, Proposition 2.2 and Lemma 2.4 hold, and therefore we get the following result.
6.6 Corollary. For any nontrivial \square-sequence on a regular uncountable θ we have

$$
\sup _{\xi<\alpha}\left|\rho_{2}(\xi, \alpha)-\rho_{2}(\xi, \beta)\right|<\infty
$$

for all $\alpha<\beta<\theta$.
Proof. Apply Lemma 2.4 to obtain

$$
\sup _{\xi<\alpha}\left|\rho_{2}(\xi, \alpha)-\rho_{2}(\xi, \beta)\right| \leq \sup _{\xi \in F(\alpha, \beta)}\left|\rho_{2}(\xi, \alpha)-\rho_{2}(\xi, \beta)\right| .
$$

It is a known fact that there is no function $h: \theta \rightarrow \omega$ so that

$$
\sup _{\xi<\alpha}\left|\rho_{2}(\xi, \alpha)-h(\xi)\right|<\infty
$$

for all $\alpha<\theta$.
Let \mathcal{J} be an ideal of subsets of some set S. Recall that \mathcal{J} is a P-ideal if for every sequence $\left\langle A_{n}: n<\omega\right\rangle \subseteq \mathcal{J}$ there is $B \in \mathcal{J}$ so that $A_{n} \backslash B$ is finite for all $n<\omega$. A set $X \subseteq S$ is orthogonal to \mathcal{J} (in symbols, $X \perp \mathcal{J}$) if $X \cap A$ is finite for all $A \in \mathcal{J}$.

The following statement is known as the P-ideal Dichotomy: For every P ideal J of countable subsets of some set S either

1. There is an uncountable $X \subseteq S$ such that $[X]^{\omega} \subseteq \mathcal{J}$, or
2. S can be decomposed into countably many sets orthogonal to J.

The P-ideal dichotomy is a consequence of the Proper Forcing Axiom and, moreover, it does not contradict the Continuum Hypothesis [8].
6.7 Theorem. If θ is regular and uncountable, then the P-ideal Dichotomy implies that a nontrivial \square-sequence can exist only on $\theta=\omega_{1}$.

Proof. The family

$$
\mathcal{J}:=\left\{A \in[\theta]^{\omega}:(\forall \alpha<\theta)\left(\forall \Delta \in[A \cap \alpha]^{\omega}\right)\left(\sup _{\xi \in \Delta} \rho_{2}(\xi, \alpha)=\infty\right)\right\}
$$

is a P-ideal of countable subsets of θ. Thus we have two possibilities:

1. There is an uncountable $X \subseteq \theta$ so that $[X]^{\omega} \subseteq \mathcal{J}$, or
2. There is a decomposition $\theta=\bigcup_{n} O_{n}$ so that $O_{n} \perp \mathcal{J}$ for all $n<\omega$.

If (1) holds, Corollary 6.6 implies that $X \cap \alpha$ is countable for each $\alpha<\theta$ and thus θ must have cofinality ω_{1}. Therefore $\theta=\omega_{1}$.

Now assume (2) is true. Fix $k<\omega$ so that O_{k} is unbounded in θ. Since $O_{k} \perp \mathcal{J}$ we have that $\rho_{2}(\cdot, \alpha)$ is bounded in $O_{k} \cap \alpha$ for each $\alpha<\theta$. Hence there exist an unbounded set $\Gamma \subseteq \theta$ and an integer m such that $\rho_{2}(\alpha, \beta) \leq m$ for any $\beta \in \Gamma$ and $\alpha \in O_{k} \cap \beta$. Theorem 5.3 implies that the \square-sequence we started with must be trivial.

The tightness of a point x in a topological space $X, t(x, X)$, is equal to κ if κ is the minimal cardinal such that for any set $A \subseteq X \backslash\{x\}$, if $x \in \bar{A}$ (the clousure of A), then there exists $B \in[A] \leq \kappa$ so that $x \in \bar{B}$. The tightness of X is $\sup \{t(x, X): x \in X\}$.

The sequential fan with θ edges is the space obtained on $(\theta \times \omega) \cup\{\infty\}$ by declaring ∞ as the only nonisolated point, while a typical neighborhood for ∞ has the form

$$
U_{f}:=\{(\alpha, n): \alpha<\theta, n \geq f(\alpha)\} \cup\{\infty\}
$$

where $f: \theta \rightarrow \omega$ is arbitrary. We will denote this space by S_{θ}.
6.8 Theorem. Let θ be regular and uncountable. If there is a nontrivial \square sequence on θ, then the tightness of (∞, ∞) in the topological product $S_{\theta}^{2}:=$ $S_{\theta} \times S_{\theta}$ is equal to θ.

Proof. Assume that $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ is a nontrivial \square-sequence on θ and define $d:[\theta]^{2} \rightarrow \omega$ by

$$
d(\alpha, \beta):=\sup _{\xi \leq \alpha}\left|\rho_{2}(\xi, \alpha)-\rho_{2}(\xi, \beta)\right| .
$$

For each $\gamma \leq \theta$ let $W_{\gamma}:=\{((\alpha, d(\alpha, \beta)),(\beta, d(\alpha, \beta))): \alpha<\beta<\gamma\}$. W_{θ} is a subset of $S_{\theta}^{2} \backslash\{(\infty, \infty)\}$ of size θ and $(\infty, \infty) \in \overline{W_{\theta}}$. On the other hand,
$(\infty, \infty) \notin \overline{W_{\xi}}$ for all $\xi<\theta$. Finally, if $B \in\left[W_{\theta}\right]^{<\theta}$, then there exists $\gamma<\theta$ so that $B \subseteq W_{\gamma}$ and hence B does not accumulate to (∞, ∞).

Since ω_{1} supports a nontrivial \square-sequence, the previous result leads to the following result of Gruenhage and Tanaka 3].
6.9 Corollary. $S_{\omega_{1}}^{2}$ is not countably tight.

We have seen that the case $\theta=\omega_{1}$ is quite special when one considers the problem of existence of various nontrivial \square-sequences on θ. It should be noted that a similar result about the problem of the tightness of S_{θ}^{2} is not available. In particular, it is not known whether the P-ideal dichotomy or a similar consistent hypothesis of set theory implies that the tightness of the square of, say, $S_{\omega_{2}}$ is smaller than ω_{2}. It is interesting that considerably more is known about the dual question, the question of initial compactness of the Tychonoff cube ω^{θ}. For example, if one defines $B_{\alpha \beta}:=\left\{f \in \omega^{\theta}: f(\alpha), f(\beta) \leq d(\alpha, \beta)\right\}(\alpha<\beta<\theta)$ one gets an open cover of ω^{θ} without a subcover of size $<\theta$. However, for small θ such as $\theta=\omega_{2}$ one is able to find such a cover of ω^{θ} without any additional set-theoretic assumption and in particular without the assumption that θ carries a nontrivial \square-sequence.
6.10 Question. What is the tightness of $S_{\omega_{2}}^{2}$?

7 Sixth Session

From now on let's fix a \square-sequence $\left\langle C_{\alpha}: \alpha<\theta\right\rangle$ on a regular uncountable cardinal θ. We are going to discuss some properties of the distance function $\rho:[\theta]^{2} \rightarrow \theta$ defined by
$\rho(\alpha, \beta):=\max \left\{\right.$ o.t. $\left.\left(C_{\beta} \cap \alpha\right), \rho\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right), \rho(\xi, \alpha): \xi \in C_{\beta} \cap[\Lambda(\alpha, \beta), \alpha)\right\}$,
where we stipulate $\rho(\alpha, \alpha)=0$ for all $\alpha<\theta$. ρ has the following subadditive properties.
7.1 Lemma. If $\alpha<\beta<\theta$ then

1. $\rho(\alpha, \gamma) \leq \max \{\rho(\alpha, \beta), \rho(\beta, \gamma\}$
2. $\rho(\alpha, \beta) \leq \max \{\rho(\alpha, \gamma), \rho(\beta, \gamma\}$

Let $D:[\theta]^{2} \rightarrow[\theta]^{<\theta}$ be defined by

$$
D(\alpha, \beta):=\{\xi<\alpha: \rho(\xi, \alpha) \leq \rho(\alpha, \beta)\} .
$$

Note that $D(\alpha, \beta)=\{\xi<\alpha: \rho(\xi, \beta) \leq \rho(\alpha, \beta)\}$ so we could take the formula

$$
D\{\alpha, \beta\}=\{\xi<\min \{\alpha, \beta\}: \rho(\xi, \alpha) \leq \rho(\alpha, \beta)\}
$$

as our definition of $D\{\alpha, \beta\}$ when there is no implicit assumption about the ordering between α and β as there is whenever we write $D(\alpha, \beta)$.

Recall that a cardinal κ is λ-inaccessible if $\nu^{\tau}<\kappa$ for all $\nu<\kappa$ and $\tau<\lambda$.
7.2 Lemma. If κ is λ-inaccessible for some $\lambda<\kappa$ and $\theta=\kappa^{+}$, then for every family $A \subseteq[\theta]^{<\lambda}$ with $|A|=\kappa$ there exists $B \in[A]^{\kappa}$ such that for all $a, b \in B$ and all $\alpha \in a \backslash b, \beta \in b \backslash a$, and $\gamma \in a \cap b$:

1. $\alpha, \beta>\gamma$ implies $D\{\alpha, \gamma\} \cup D\{\beta, \gamma\} \subseteq D\{\alpha, \beta\}$,
2. $\beta>\gamma$ implies $D\{\alpha, \gamma\} \subseteq D\{\alpha, \beta\}$,
3. $\alpha>\gamma$ implies $D\{\beta, \gamma\} \subseteq D\{\alpha, \beta\}$, and
4. $\gamma>\alpha, \beta$ implies $D\{\alpha, \gamma\} \subseteq D\{\alpha, \beta\}$ or $D\{\beta, \gamma\} \subseteq D\{\alpha, \beta\}$.

A function $f:\left[\omega_{2}\right]^{2} \rightarrow\left[\omega_{2}\right] \leq \omega$ has property Δ if for every uncountable set A of finite subsets of ω_{2} there existst a and b in A such that for all $\alpha \in a \backslash b$, $\beta \in b \backslash a$, and $\gamma \in a \cap b:$

1. $\alpha, \beta>\gamma$ implies $\gamma \in f\{\alpha, \beta\}$.
2. $\beta>\gamma$ implies $f\{\alpha, \gamma\} \subseteq f\{\alpha, \beta\}$.
3. $\alpha>\gamma$ implies $f\{\beta, \gamma\} \subseteq f\{\alpha, \beta\}$.

This definition is due to Baumgartner and Shelah [1] who have used it in their well-known forcing construction. It should be noted that they were also able to force a function with the property Δ using a σ-closed ω_{2}-cc poset.

As shown above the function D has property Δ. However Lemma 7.2 shows that D has many other properties that are of independent interest and that are likely to be needed in other forcing constructions of this sort. The papers of Koszmider [4] and Rabus [7] are good examples of further work in this area.

There are some generalizations of the ρ-functions we have analyzed. Recall that an ordinal α divides an ordinal γ if there there is β such that $\gamma=\alpha \cdot \beta$, i.e. γ can be written as the union of an increasing β-sequence of intervals of order type α. Let $\kappa \leq \theta$ be a fixed infinite regular cardinal. Let $\Lambda_{\kappa}:[\theta]^{2} \rightarrow \theta$ be defined by

$$
\Lambda_{\kappa}(\alpha, \beta):=\max \left\{\xi \in C_{\beta} \cap(\alpha+1): \kappa \text { divides o.t. }\left(C_{\beta} \cap \xi\right)\right\} .
$$

Observe that the function Λ we introduced before is Λ_{ω}, i.e. $\Lambda=\Lambda_{\omega}$.
Our object of study is the function $\rho^{\kappa}:[\theta]^{2} \rightarrow \theta$ defined recursively by

$$
\begin{gathered}
\rho^{\kappa}(\alpha, \beta):=\sup \left\{\text { o.t. } \left(C_{\beta} \cap\left[\Lambda_{\kappa}(\alpha, \beta), \alpha\right), \rho^{\kappa}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right),\right.\right. \\
\left.\rho^{\kappa}(\xi, \alpha): \xi \in C_{\beta} \cap\left[\Lambda_{\kappa}(\alpha, \beta), \alpha\right)\right\},
\end{gathered}
$$

and $\rho^{\kappa}(\alpha, \alpha)=0$ for all $\alpha<\theta$.
7.3 Lemma. If $\alpha<\beta<\theta$ then

1. $\rho^{\kappa}(\alpha, \gamma) \leq \max \left\{\rho^{\kappa}(\alpha, \beta), \rho^{\kappa}(\beta, \gamma\}\right.$
2. $\rho^{\kappa}(\alpha, \beta) \leq \max \left\{\rho^{\kappa}(\alpha, \gamma), \rho^{\kappa}(\beta, \gamma\}\right.$

For $\alpha<\beta<\theta$ and $\nu<\kappa$ set

$$
\alpha<_{\nu}^{\kappa} \beta \text { if and only if } \rho^{\kappa}(\alpha, \beta) \leq \nu .
$$

The following result is a corollary of Lemma 7.3 .

7.4 Proposition.

1. $\left(\theta,<_{\nu}^{\kappa}\right)$ is a tree for all $\nu<\kappa$.
2. If $\nu<\mu<\kappa$ then $<_{\nu}^{\kappa} \subseteq<_{\mu}^{\kappa}$.
3. $\in \upharpoonright \theta=\bigcup_{\nu<\kappa}<_{\nu}^{\kappa}$.

References

[1] J. Baumgartner and S. Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Logic, 33:109-129, 1987.
[2] P. Erdős and A. Tarski, On some problems involving inaccessible cardinals. In Y. Bar-Hillel, E. Poznanski, M. Rabin, and A. Robinson, editors, Essays on the Foundations of Mathematics, pages 50-82. Magnes Press, 1961.
[3] G. Gruenhage and Y. Tanaka Products of k-spaces. Trans. Amer. Math. Soc., 273:299-308, 1982.
[4] P. Koszmider, Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc., 351:3073-3117, 1999.
[5] K. Kunen, Saturated ideals. J. Symbolic Logic, 43:65-76, 1978.
[6] D. Kurepa, Ensembles ordonnés et ramifés. Publ. Math. Univ. Belgrade, 4:1-138, 1935.
[7] M. Rabus, An ω_{2}-minimal Boolean algebra, Trans. Amer. Math. Soc., 348:3235-3244, 1996.
[8] S. Todorčević, A dichotomy for P-ideals of countable sets, Fund. Math., 166:251-267, 2000.
[9] S. Todorčević, Walks on Ordinals and Their Characteristics, Progress in Mathematics, Vol. 263, Birkhäuser, 2007.

