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1. Introduction

The goal of these lectures is to give an exposition of the concept of an open
stationary set, an associated reflection principle (for lack of a better word), and a
list of examples of how this sort of consideration arises naturally in the context of
modern set theory. We will begin with a list of seemingly unrelated questions.

Question 1.1. Does PFA imply there is a well ordering of P(ω1) which is definable
over 〈H(ℵ2),∈〉 (with parameters)?

Question 1.2. Is it consistent that every Aronszajn line contains a Countryman
suborder?

Question 1.3. Is it consistent that for all c : [ω1]2 → 2 there exist A,B ∈ [ω1]ω1

such that c is constant on {{α, β} : α < β ∧ α ∈ A ∧ β ∈ B}?

Let us focus on the second question for a moment. Consider the following anal-
ogy. Recall that a forcing Q satisfies the countable chain condition (c.c.c.) if every
uncountable collection of conditions in Q contains two compatible conditions. Sim-
ilarly, a forcing Q satisfies Knaster’s Condition (Property K) if every uncountable
collection of conditions contains an uncountable subcollection of pairwise compati-
ble conditions. It is easily verified that the product of a c.c.c. forcing and one with
Property K is c.c.c.. A consequence of this is that a Property K forcing cannot
destroy a counterexample to Souslin’s Hypothesis. Hence while the forcing axiom
for c.c.c. forcings (a.k.a. MAℵ1) does imply Souslin’s Hypothesis, the forcing axiom
for Property K forcings is consistent with the failure of Souslin’s Hypothesis.

What if the common and widely successful methods for building proper forcings
inadvertently satisfied a stronger form of properness and that counterexamples to
Question 1.2 were preserved by this stronger condition?

It turns out that this is indeed the case and we will now formulate a combinatorial
obstruction of this sort. A f-sequence is a sequence 〈fα : α < ω1〉 of continuous
functions fα : α → ω such that if E ⊆ ω1 is closed and unbounded, there is a δ
such that fδ takes all values in ω on E ∩ δ. Notice that if f : δ → ω is continuous
and δ is a limit ordinal, then there is a cofinal C ⊆ δ of ordertype ω such that f(ξ)
depends only on |C∩ξ|. That is f is obtained by coloring the intervals in δ between
points of C. Jensen’s principle ♦ easily implies the existence of a f-sequence. Since
only the club filter is quantified over in the definition of a f-sequence, f-sequences
are preserved by c.c.c. forcing. This is because if E is a club in a c.c.c. forcing
extension, E contains a club from the ground model (this appears as an exercise in
[9]). In fact a much broader class of proper forcings preserve f-sequences; this will
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be discussed more later. In [12] it was shown that the existence of a f-sequence
implies the existence of an Aronszajn line with no Countryman suborder.

While Question 1.3 has a negative answer [16], the construction in [12] served as
a precursor to the ZFC construction of a coloring c as in Question 1.3 (even though
[12] was published considerably after [16]). We will see that a positive answer to
Question 1.1 holds and that this is related to the existence of a weak analogue of a
f-sequence which exists on [ω2]ω.

The focus of this note will be to examine a principle, MRP, which provides a
general framework for eliminating combinatorial obstructions such as f-sequences
and for tapping into additional strength of the Proper Forcing Axiom (PFA). After
defining the principle, we will present a number of case studies of how this principle
is applied.

The reader is assumed to have familiarity with set theory at the level of Kunen’s
[9]. Additional background can be found in [7]. In order to make the discussion of
consistency less cumbersome, we will generally assume unless otherwise stated that
the existence of a supercompact cardinal is consistent.

2. The club filter and stationary sets

Central to our discussion will be the “club filter” of countable sets on a given
uncountable set X. Henceforth, our convention is that X is an uncountable set, θ
is an uncountable regular cardinal, and [X]ω = {A ⊆ X : |A| = ℵ0}.

Definition 2.1. The Ellentuck topology on [X]ω is generated by the basic open
sets

[a,N ] = {A ∈ [X]ω : a ⊆ A ⊆ N}
where a ranges over [X]<ω and N ranges over [X]ω.

It is not difficult to show that in fact the basic open sets in this topology are
closed as well and hence that the topology is regular and Hausdorff.

Definition 2.2. A club1 in [X]ω is a subset that is Ellentuck closed and cofinal in
([X]ω,⊆).

Observe that if X = ω1, then ω1 is club when viewed as a subset of [ω1]ω. Hence
every closed unbounded subset of ω1 is club when viewed as a subset of [ω1]ω and
if E ⊆ [ω1]ω is club, then E ∩ ω1 is closed and unbounded.

The two other competing definitions of “club” which occur in the literature are
(i) sets of the form Ef and (ii) subsets E of [X]ω which are cofinal and closed
under unions of countable chains. The following facts show that this is an interme-
diate notion. In particular, the definition of stationary does not depend on which
definition is used.

Definition 2.3. S ⊆ [X]ω is stationary if S ∩ E 6= ∅ for every club E.

Fact 2.4. If f : X<ω → X and Ef = {M ∈ [X]ω : f“M<ω ⊆M}, then Ef is club.
Moreover if E is club, then there is a f : X<ω → X such that Ef ⊆ E.

If f is as in the above definition and f ′′M<ω ⊆M , then we say that M is closed
under f .

1Note that “club” is a misnomer since it suggests the meaning of being “closed and unbounded.”
In fact it means closed and cofinal.
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Fact 2.5. If E ⊆ [X]ω is club and N ⊆ E is countable and linearly ordered by ⊆,
then ∪N is in E.

The next fact states the quintessential properties of clubs and stationary sets.

Fact 2.6. A countable intersection of clubs is a club. Equivalently, a partition of
a stationary set into countably many pieces has a stationary piece.

3. Elementary submodels

Unless otherwise specified, θ will denote a regular uncountable cardinal.

Definition 3.1. H(θ) is the collection of all sets of hereditary cardinality less than
θ. We will identify H(θ) with the structure (H(θ),∈).

The following observations are useful. Some require proof (which we leave to the
reader).

(1) H(θ) is a set (not a proper class) of cardinality 2<θ.
(2) 〈H(θ),∈〉 satisfies ZFC except possibly the power set axiom.
(3) OrdH(θ) = θ.
(4) If A,B ∈ H(θ), then A×B ∈ H(θ).
(5) If A ∈ H(θ), then P(A) ⊆ H(θ). In particular, if A,B ∈ H(θ), then

|A| = |B| if and only if H(θ) |= |A| = |B|.
(6) H(θ+) is an element of H(2θ+).

Definition 3.2. We say M is a countable elementary submodel of H(θ) and write
M ≺ H(θ) if M ∈ [H(θ)]ω and, for every logical formula ϕ with parameters in M ,
M |= ϕ if and only if H(θ) |= ϕ.

Note our convention that M ≺ H(θ) always implies |M | = ℵ0. This is not
standard, but it will considerably simplify writing at times.

Fact 3.3. There is a function f : H(θ)<ω → H(θ) such that if M ∈ [H(θ)]ω and
M is closed under f , then M ≺ H(θ).

Fact 3.4. If M ≺ H(θ) and X ∈ H(θ) and X is definable from parameters in M ,
then X ∈M .

Fact 3.5. If M ≺ H(θ), then M ∩ ω1 is a countable ordinal that is not in M .

Fact 3.6. If X ∈ H(θ) is uncountable and A ∈ [H(θ)]≤ω, then {M ∩X : A ⊆M ≺
H(θ)} contains a club.

Fact 3.7. If A ∈ M ≺ H(θ) and A 6⊆ M , then A is uncountable. Also, if M ≺
H(θ), then, for all A ∈ M ∩ P(ω1), A is uncountable if and only if A ∩ M is
unbounded in ω1 ∩M .

Fact 3.8. If X,S ∈M ≺ H(θ) and S ⊆ [X]ω and M∩X ∈ S, then S is stationary.

Fact 3.9. {M : M ≺ H(θ+)} is in H(2θ+) but is not definable in H(θ+).

For more of the basics of Stationary sets, see Chapter 8 of Jech [7]. From this
point on it will be convenient to adopt the convention that, unless otherwise stated,
X is an uncountable set which is an element of H(θ).
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4. The strong reflection principle

Before formulating MRP, we will first define the simpler Strong Reflection Prin-
ciple (SRP) of Todorcevic [1]. We will then recall some conclusions and arguments
which will serve as a starting point for the development of MRP. The material in
this section is based on [1].

Recall that if M,N ≺ H(θ) and λ is a cardinal, we say that N λ-end extends
M if M ∩ λ = N ∩ λ and M ⊆ N . We will only be interested in ω1-end extensions
and will refer to them simply as end extensions. The following fact will be used
frequently.

Fact 4.1. If 〈Nξ : ξ < ω1〉 is a continuous ∈-increasing sequence of countable
elementary submodels of some H(θ), and N is a countable elementary submodel of
H(θ) with 〈Nξ : ξ < ω1〉 in N , then N end extends Nδ where δ = N ∩ ω1.

Proof. By Fact 3.7, Nξ is a subset of N for all ξ < δ. By continuity of 〈Nξ : ξ < ω1〉,
Nδ ⊆ N . Also, by continuity of 〈Nξ : ξ < ω1〉, the map ξ 7→ Nξ ∩ ω1 is continuous.
It follows from Fact 2.4 that E = {ξ < ω1 : Nξ∩ω1 = ξ} is a club. Since this club is
in N , it contains δ as an element by Fact 3.8 and hence Nδ ∩ω1 = δ = N ∩ω1. �

SRP asserts that if X ∈ H(θ) with X uncountable and S ⊆ [X]ω, then there
exists a continuous ∈-chain 〈Nξ : ξ < ω1〉 of elementary submodels of H(θ) such
that, for all ξ < ω1, X ∈ Nξ and we have Nξ ∩X ∈ S if and only if there exists an
end extension M of Nξ such that M ∩X ∈ S. We say such an 〈Nξ : ξ < ω1〉 is a
strong reflecting sequence of S. The power of the continuity assumption lies in the
ability to generate end extensions via Fact 4.1.

Recall that if S ⊆ [X]ω is stationary, then we say S reflects if there is a continuous
∈-chain 〈Nξ : ξ < ω1〉 of countable elementary submodels of H(θ) such that {ξ <
ω1 : Nξ ∩X ∈ S} is stationary. The following proposition justifies the “strong” in
Strong Reflection Principle.

Proposition 4.2. If S ⊆ [X]ω is stationary and 〈Nξ : ξ < ω1〉 strongly reflects S,
then Ξ = {ξ < ω1 : Nξ ∩X ∈ S} is stationary.

Proof. Suppose not and let E ⊆ ω1 be a club disjoint from Ξ. Choose M ≺ H(θ)
such that E, 〈Nξ : ξ < ω1〉 ∈M and M∩X ∈ S. By Fact 4.1, M is an end extension
of Nδ where δ = M ∩ω1. Notice also that δ is in E by Fact 3.8 and hence Nδ is not
in S. But this is a contradiction to our assumption that 〈Nξ : ξ < ω1〉 is a strong
reflecting sequence for S. �

Proposition 4.3. SRP implies that if Sξ (ξ < ω2) are stationary subsets of ω1,
then there are ξ < η such that Sξ ∩ Sη is stationary.

Proof. Let 〈Sξ : ξ < ω2〉 be given. Define Γ ⊆ [ω2]ω to be the collection of all P
such that P ∩ ω1 is an ordinal and there is an α in P such that P ∩ ω1 is in Sα.

Applying SRP, there is a continuous chain Nξ (ξ < ω1) of countable elementary
submodels of H(ℵ3), each containing 〈Sξ : ξ < ω2〉 as a member, and such that for
all ξ < ω1, if Nξ has an end extension N̄ with N ∩ ω2 in Γ, then Nξ ∩ ω2 is in Γ.
Since

⋃
ξ<ω1

Nξ has cardinality ω1, it suffices to show that if β < ω2, then there is
an α in some Nξ ∩ ω2 such that Sα ∩ Sβ is stationary. To this end, let β be given
and let N be a countable elementary submodel of H(ℵ3) such that 〈Nξ : ξ < ω1〉
and β are in N and δ = N ∩ ω1 is in Sβ . By Fact 4.1, N is an end extension of Nδ
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which is moreover in Γ. By assumption, Nδ is in Γ and therefore there is an α in
Nδ such that δ is in Sα. Finally, by Fact 3.8, Sα ∩Sβ is stationary since it contains
δ = N ∩ ω1. �

5. The Set Mapping Reflection Principle

Now we will turn to the Set Mapping Reflection Principle (MRP).

Definition 5.1. Let X, θ be fixed. Suppose Σ is a map such that dom(Σ) is a club
subset of {M : M ≺ H(θ)}, and Σ(M) ⊆ [X]ω for all M . We say Σ is an open set
mapping if Σ(M) is open (in the Ellentuck topology) for all M .

Typically, Σ(M) will actually be a subset of [M ∩X]ω.

Definition 5.2. We say S ⊆ [X]ω is M -stationary if, for all club E ∈M , S ∩M ∩
E 6= ∅. A set mapping Σ is open stationary if Σ(M) is open and M -stationary for
all M .

Notice that open subsets of [X]ω which are stationary are trivial in the sense that
their complements are closed and not cofinal in 〈[X]ω,⊆〉. But it is not difficult
to show that there are, for a given M , Σ0,Σ1 ⊆ [M ∩ X]ω which have empty
intersection and which are each open and M -stationary.

Example 5.3. Let X = ω1. For each M ≺ H(θ), choose α < M ∩ ω1 and set
Σ(M) = {γ ∈ [ω1]ω : α ∈ γ ⊆M ∩ ω1}. Then Σ is trivially open stationary.

Definition 5.4. We say a sequence of sets indexed by ordinals is a continuous
∈-chain if it is ⊆-continuous and ∈-increasing.

Definition 5.5. An open stationary set mapping Σ reflects if there exists a con-
tinuous ∈-chain 〈Nξ : ξ < ω1〉 such that, for all ν < ω1, Nν ∈ dom(Σ) and there
exists ν0 < ν such that Nξ ∩ X ∈ Σ(Nν) for all ξ satisfying ν0 < ξ < ν. We say
that such an 〈Nξ : ξ < ω1〉 is a reflecting sequence for Σ.

Definition 5.6. The Set Mapping Reflection Principle (MRP) is the assertion that
all open stationary set mappings reflect.

One can view MRP as asserting that every open stationary Σ contains a copy of
Example 5.3.

Theorem 5.7. MRP implies the existence of a well ordering of P(ω1)/NS which
is definable over (H(ℵ2),∈) with parameters.

Definition 5.8. Given A,B ⊆ ω1, define A ≡NS B to mean A4B is non stationary.

The following fact follows easily from the existence of a partition of ω1 into ω1

pairwise disjoint stationary sets.

Fact 5.9. There exist 2ℵ1-many ≡NS-equivalence classes.

Proof. (of Theorem 5.7) Fix 〈Cδ : δ ∈ Lim(ω1)〉 such that, for all δ, otp(Cδ) = ω
and Cδ is cofinal in δ. If A ⊆ B ∈ [Ord]≤ω, supA < supB, and B has no maximum,
then set w(A,B) = |π−1(Cδ) ∩ supA| where δ = otp(B) and π is the unique order
isomorphism from B to δ. Note that w(A,B) is necessarily finite.

Set X = ω2 and θ =
(
22ℵ1

)+

. Given M ≺ H(θ), define Σ<(M) to be the set of
A ∈ [ω2]ω for which the following conditions hold:

sup(A ∩ ω1) < sup(M ∩ ω1),
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supA < sup(M ∩ ω2),
w(A ∩ ω1,M ∩ ω1) < w(A,M ∩ ω2).

Analogously define Σ≥(M) with ≥ replacing < in the last inequality. Intuitively,
Σ<(M) consists of those countable subsets of M ∩ω2 whose intersection with ω2 is
“higher” in M ∩ ω2 than its intersection with ω1 is in M ∩ ω1.

Observe that Σ<(M) and Σ≥(M) are open. To see this, suppose that A ⊆M∩ω2

with
sup(A ∩ ω1) < sup(M ∩ ω1),

supA < sup(M ∩ ω2),
and let α and β be the least elements of A ∩ ω1 and A, respectively, such that

w(α,M ∩ ω1) = w(A ∩ ω1,M ∩ ω1)

w(A ∩ β,M ∩ ω2) = w(A,M ∩ ω2)
If A is in Σ<(M), then [{α, β}, A] ⊆ Σ<(M) and similarly for Σ≥(M).

Claim 5.10. Σ<(M) is M -stationary.

Proof. Let E ∈ M be club subset of [ω2]ω. Observe that there exists α < ω1 such
that {supA : A ∈ E ∧ A ∩ ω1 = α} is cofinal in ω2. Let α ∈ M be as above. Let
n = w(α,M ∩ ω1). Let β ∈ M ∩ ω2 satisfy w(β ∩M,ω2 ∩M) > n. Pick A ∈ E
such that A∩ω1 = α and supA > β. Since E ∈M , we may assume A ∈M . Thus,
A ∈ Σ<(M) ∩M ∩ E. �

Claim 5.11. Σ≥(M) is M -stationary.

Proof. Let E ∈M be club subset of [ω2]ω. Let N ∈M satisfy N be an elementary
submodels of H(2ℵ1

+) with |N | = ℵ1, and {E} ∪ ω1 ⊆ N . Observe that by
elementarity of M , sup(N ∩ ω2) is an element of M and hence sup(N ∩M ∩ ω2) <
sup(M ∩ ω2). Set

n = w(N ∩M ∩ ω2,M ∩ ω2)
and E0 = E ∩ N . Then w(A ∩ ω2,M ∩ ω2) ≤ n for all A ∈ E0 ∩M . Moreover,
E0 is club in [ω2 ∩ N ]ω; hence, {sup(A ∩ ω1) : A ∈ E0 ∩ M} is unbounded in
M ∩ ω1. Hence, there exists A ∈ E0 ∩M such that w(A∩ ω1,M ∩ ω1) ≥ n. Hence,
Σ≥(M) ∩M ∩ E 6= ∅. �

For each A ⊆ ω1, let ΣA(M) = Σ<(M) if M ∩ ω1 ∈ A and ΣA(M) = Σ≥(M)
if M ∩ ω1 6∈ A. Let 〈Nξ : ξ < ω1〉 reflect ΣA. Set δ =

⋃
ξ<ω1

Nξ ∩ ω2. Since
〈Nξ : ξ < ω1〉 is a continuous ∈-chain of elementary submodels of H(θ), we have
ω1 ⊆

⋃
ξ<ω1

Nξ ≺ H(θ) and {Nξ ∩ω2 : ξ < ω1} a club subset of [δ]ω. Hence, δ is an
ordinal such that cf(δ) = ω1 < δ < ω2. Moreover, δ satisfies the following property
φ(A, δ):

there is a club M ⊆ [δ]ω which is well ordered by ⊆ and is such
that for all limit ν < ω1 there is a ν0 < ν with ν is in A if and only
if

w(Mξ ∩ ω1,Mν ∩ ω1) < w(Mξ,Mν)
whenever ν0 < ξ < ν.

Here Mξ is the ξth element of M in its ⊆-increasing enumeration. If we let δA be
the least ordinal such that φ(A, δ) holds, then A 7→ δA is definable over H(ℵ2) with
parameter 〈Cν : ν ∈ Lim(ω1)〉. Hence it suffices to prove the following claim.
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Claim 5.12. If A and B are subsets of ω1 and φ(A, δ)∧ φ(B, δ) holds for some δ,
then A ≡NS B.

Proof. First observe that if N is a club witnessing φ(A, δ) and N ′ ⊆ N is also club,
then N ′ also witnesses φ(A, δ). Hence if φ(A, δ) ∧ φ(B, δ), there is a single club
〈Nξ : ξ < ω1〉 in [δ]ω which witnesses both φ(A, δ) and φ(B, δ). Let E = {Nξ ∩ω1 :
ξ < ω1}. It suffices to show that no limit point of E is in A4B. To see this, let ν
be a limit ordinal. Nν ∩ ω1 is in A iff there are arbitrarily large ξ < ν such that

w(Nξ ∩ ω1, Nν ∩ ω1) < w(Nξ ∩ ω2, Nν ∩ ω2)

iff Nν ∩ ω1 is in B. �

This also completes the proof of the theorem. �

Remark. The main result of [3] shows that the coding in the proof of Theorem 5.7
above necessarily yields 2ℵ0 = 2ℵ1 . Notice, however, that the forcing in Theorem
6.7 used to reflect an open stationary set mapping does not introduce new reals.

There is an analogous proof that SRP implies 2ℵ1 = ℵ2 which can be described
as follows. Suppose S is a stationary co-stationary subset of ω1. For each A ⊆ ω1,
set

ΓA = {X ∈ [ω2]ω : X ∩ ω1 ∈ A↔ otp(X) ∈ S}.
Woodin’s statement ψAC is the assertion that for every A ⊆ ω1 and for every
stationary co-stationary S ⊆ ω1, there is a δ < ω2 of cofinality ω1 and a club E
in [δ]ω which is contained in ΓA. Notice that for a given δ of cofinality ω1, if ΓA

and ΓB both contains a club in [δ]ω for A,B ⊆ ω1, then A and B differ by a non
stationary set. Hence ψAC implies 2ℵ1 = ℵ2.

6. PFA implies MRP

Let Q be a forcing (i.e., a poset with a maximum element). For us, p ≤ q means
p is stronger than q. The smallest θ for which “G ⊆ Q is generic over H(θ)” makes
sense is θ = |2Q|+, assuming the underlying set of Q is |Q|.
Definition 6.1. Q is proper if, for all setsX, forcing with Q preserves all stationary
subsets of [X]ω.

The following characterization due to Jech provides the standard method for
verifying a forcing Q is proper. In order to state this characterization in a concise
manner, it is helpful to make the following additional definition.

Definition 6.2. Suppose that Q is a forcing and M ≺ H(|2Q|+) with Q in M . A
condition q̄ in Q is (M,Q)-generic if whenever D ⊆ Q is a dense open set in M
and r ≤ q̄, there is an element of D ∩M compatible with r. Equivalently, q̄ forces
that Ġ ∩M is generic over M (here Ġ is the Q-name for the generic filter).

Proposition 6.3. A forcing Q is proper if and only if whenever P(Q) ∈M ≺ H(θ)
and q ∈ Q ∩M , there exists q̄ ≤ q which is (M,Q)-generic.

Remark. The assumption that P(Q) is in M is natural since then the collection
of all dense open subsets of Q is an element of M . The meaning of the statement
“P(Q) in M” should be clear but is somewhat subtle: we want the powerset of Q’s
underlying set (which we also denote by Q) to be in M , as well as the order on Q.
In the above proposition we can also fix θ to be minimal with the property that
P(Q) is in H(θ).
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Definition 6.4. The Proper Forcing Axiom (PFA) is the assertion that if Q is
proper and Dξ is predense in Q for all ξ < ω1, then there exists G ⊆ Q such that
G is a filter and G ∩Dξ 6= ∅ for all ξ < ω1.

The following two classes of forcings and their iterations (which are also proper
by a well known theorem of Shelah [17]) already are sufficient to yield many of the
consequences of PFA (including the failure of �(θ) and 2ℵ0 = ℵ2). For more about
proper forcing, see [6], [7], [17], [21].

Example 6.5. Every c.c.c. forcing is proper. To see this, note that the definition
of (M,Q)-generic remains unchanged if one replaces “dense open” with “maximal
antichain.” It then follows from Fact 3.7, that every condition in a c.c.c. forcing Q
is (M,Q)-generic for any relevant M .

Example 6.6. Every σ-closed forcing is proper. To see this, start with q0 = q ∈
M . Let {An}n<ω enumerate all predense sets in M . Construct 〈qn : n < ω〉
decreasing in Q ∩M such that qn+1 is below an element of An ∩M . Any lower
bound for {qn}n<ω is an (M,Q)-generic condition and such a lower bound exists
by assumption that Q is σ-closed.

The proof of the following theorem is a standard verification of properness.

Theorem 6.7. PFA implies MRP.

Proof. Let Σ be an open stationary set mapping (with X and θ as before). Let Q
be the set of all continuous ∈-chains 〈Nξ : ξ ≤ α〉 in dom(Σ) for which α < ω1 and,
for all limit ν ≤ α, there exists ν0 < ν such that Nξ ∩X ∈ Σ(Nν) for all ξ ∈ ν \ ν0.
That is Q consists of all countable partial reflecting sequences for Σ. Order Q by
extension. The following claim implies that it suffices to prove that Q is proper.

Claim 6.8. Given that Q is proper, {q ∈ Q : α ∈ dom(q)} is dense for all α < ω1.

Proof. The set {q ∈ Q : x ∈
⋃

ran(q)} is dense for all x ∈ H(θ); hence, 1 
Ȟ(θ) =

⋃
q∈Ġ

⋃
ran(q). Since Q is proper, it does not collapse ω1, so, since H(θ)

is uncountable, 1  α ∈ dom(
⋃
Ġ) for all α < ω1. �

Set λ = 2<θ and let Σ, Q ∈ M ≺ H(2λ+). Fix q0 ∈ Q ∩M . Observe that if
〈qn : n < ω〉 is a decreasing sequence in Q ∩M such that each qn+1 is below some
element of Dn, the nth dense subset of Q in M , and qω =

⋃
n<ω qn = 〈Nξ : ξ < α〉,

then
⋃

ξ<αNξ = M ∩ H(θ) because, for all x ∈ M ∩ H(θ), the set of p ∈ Q such
that x ∈

⋃
ran(p) is dense in Q. So, to prove Q is proper, it suffices to show that

Nξ ∩ X ∈ Σ(M ∩ H(θ)) for all ξ ∈ α \ dom(q0), for then qω ∪ {〈α,M ∩ H(θ)〉}
will be an (M,Q)-generic element of Q below q0. Therefore, it suffices to show
that, given qn ∈ Q ∩M , there exists qn+1 ∈ Dn ∩M such that qn+1 ≤ qn and
qn+1(ξ) ∩X ∈ Σ(M ∩H(θ)) for all ξ ∈ dom(qn+1) \ dom(qn).

Using M -stationarity of Σ(M ∩ H(θ)), let N ∈ M satisfy Dn, qn, Q,Σ ∈ N ≺
H(λ+) and N ∩ X ∈ Σ(M ∩ H(θ)). Using openness of Σ(M ∩ H(θ)), let a ∈
[N ∩X]<ω satisfy [a,N ∩X] ⊆ Σ(M ∩H(θ)). Set q = qn ∪ {〈dom(qn), P 〉} where
P ∈ N ∩ dom(Σ) and qn(max(dom(qn))) ∪ a ⊆ P . Since q,Dn, Q ∈ N , there
exists qn+1 ∈ Dn ∩N such that qn+1 ≤ q. Since Dn, q,Q,N ∈M , we may assume
qn+1 ∈ M . Since qn+1 ∈ N and a ⊆ P , every ξ ∈ dom(qn+1) \ dom(qn) satisfies
qn+1(ξ) ∈ [a,N ∩X]. �

Now consider the following strengthening of properness.
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Definition 6.9. A forcing Q is ω-proper if, given q ∈ Q and an ∈-chain 〈Ni : i < ω〉
of elementary submodel of H(|2Q|+) such that q,Q ∈ N0, there exists q̄ ≤ q such
that q̄ is (Ni, Q)-generic for all i < ω.

To see the relevance of ω-proper, consider the club of those M ≺ H(θ+) (for
some fixed θ) which is a union of an increasing chain of Mi ≺M of elements of M .
If N is an elementary submodel of H(2θ+) and we define

Σ(N) = [H(θ+)]ω \ {Ni : i < ω}
where Ni is the increasing sequence chosen for N ∩H(θ+), then any forcing which
reflects Σ, can not be ω-proper. This is so even if we weaken ω-properness to weak
ω-properness where we require only the existence of a q̄ which forces that

{i < ω : Ġ ∩Ni is Ni-generic}
is infinite (this definition is due to Eisworth and Nyikos [4]). This observation can
be cast into a theorem (due to Shelah) as follows.

Theorem 6.10. (Weakly) ω-proper forcings preserve (weak) club guessing se-
quences on ω1. Moreover weakly ω-proper forcings preserve f-sequences.

Proof. We will only prove the theorem for club guessing sequences. Let 〈Cα : α <
ω1〉 be club guessing. Let Q be ω-proper, Ḋ be a Q-name for a club subset of ω1 and
q be in Q. It suffices to find an extension of q which forces that Ḋ contains some
Cα. Let 〈Mξ : ξ < ω1〉 be a continuous ∈-chain in H(|2Q|+) such that Q ∈M0. Set

E = {ξ < ω1 : ω1 ∩Mξ = ξ}.
Hence, Cδ ⊆ E for some δ < ω1. Let Ni = Mξi

where 〈ξi : i < ω〉 is an increasing
enumeration of Cδ. Then every q̄ that is (Ni, Q)-generic for i < ω forces Cδ ⊆ Ḋ
as desired. �

It is worth noting that the ε-collapse forcing of Baumgartner (which forms the
cornerstone of Todorcevic’s “models as side conditions” method [19], [21]), can also
be shown to be weakly ω-proper. Very few applications of PFA prior to [14] required
more than the forcing axiom for weakly ω-proper forcings.

7. Influence of MRP on the club filter

In this section we will consider how the assumption MRP influences the combi-
natorics of the club filter. The first is hardly more than an observation.

Definition 7.1. If X and Y are countable subsets of ω1 which are closed in their
supremum, then we say X measures Y if there is a ξ < supX such that X \ ξ is
either contained in or disjoint from Y .

We define measuring to be the assertion that for every sequence 〈Dα : α < ω1〉
with Dα ⊆ α closed for all α < ω1, there is a club E ⊆ ω1 such that E ∩ α
measures Dα whenever α is a limit point of E. Notice that measuring implies the
non existence of f-sequences: if 〈fα : α < ω1〉 is a f-sequence, then for any i,
〈f−1

α (i) : α < ω1〉 is not measured by any club.

Theorem 7.2. MRP implies measuring.

Proof. This is not hard to verify; we will prove a more general statement in the
next section. �
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We will justify the name “measuring” momentarily. First it will be helpful make
a definition and prove a few claims.

Definition 7.3. If M ≺ H(θ), we say that a club E ⊆ ω1 diagonalizes M ’s club
filter if δ = M ∩ω1 is a limit point of E and whenever D ⊆ ω1 is a club in M , there
is a δ0 < δ such that E ∩ (δ0, δ) ⊆ D.

Claim 7.4. If 〈Nξ : ξ < ω1〉 is a continuous ∈-chain of countable elementary
submodels of some H(θ) for θ ≥ ω2, then E = {Nξ ∩ ω1 : ξ < ω1} diagonalizes the
club filter of Nν whenever ν < ω1 is a limit ordinal.

Proof. If ν is a limit ordinal and D ⊆ ω1 is a club in Nν , then by continuity of
the sequence there is a ξ < ν such that D is in Nξ. By Fact 3.8, Nη ∩ ω1 is in D
whenever ξ < η. It follows that if δ = Nν ∩ ω1 and δ0 = Nξ ∩ ω1, then

E ∩ (δ0, δ) = {Nη ∩ ω1 : ξ < η < ν}
is contained in D. �

Claim 7.5. If E diagonalizes the club filter of M , then [ω1]ω \E is M -stationary.

Proof. Suppose D ⊆ ω1 is a club in M . Since the limit points D′ of D is also a club
in M , (D \D′)∩E is bounded in M ∩ω1 and hence D \ (D′ ∩E) is non-empty. �

Proposition 7.6. The following are equivalent:
(1) Measuring holds.
(2) If M is a countable elementary submodel of H(ℵ2) and Y ⊆ M ∩ ω1 is

closed and in Hull(M ∪ {M ∩ ω1}), then there is a club E ⊆ ω1 in M such
that E ∩M is either contained in or disjoint from Y (i.e. Y is measured
by the club filter of M).

Proof. To see the forward implication, suppose measuring holds and let M and Y
be given. Since Y is in the Skolem hull of M ∪{M ∩ω1}, there is a function f in M
defined on ω1 such that f(M ∩ω1) = Y . Without loss of generality, f(α) is a closed
subset of α for each α < ω1. Applying measuring in M , there is a club E ⊆ ω1 such
that E ∩ α measures f(α) for each α which is a limit point of E. By elementarity,
M ∩ω1 is a limit point of E. By removing an initial part of E if necessary, we may
assume that E ∩M is either contained in or disjoint from Y .

To see the reverse implication, suppose 〈Yα : α < ω1〉 is a sequence such that for
all α < ω1, Yα is a closed subset of α.

Let 〈Nξ : ξ < ω1〉 be a continuous ∈-chain of countable elementary submodels
such that 〈Yα : α < ω1〉 is in N0. Let E = {Nξ ∩ ω1 : ξ < ω1}. By Claim 7.4,
E diagonalizes the club filter of Nν whenever ν is a limit ordinal. Also, if δ is a
limit point of E, then there is a limit ordinal ν such that Nν ∩ ω1 = δ. By our
assumption (2), there is a club D in Nν which is either contained in or disjoint from
Yδ. It follows that E ∩ δ measures Yδ. �

Measuring is arguably the simplest consequence of PFA which is not known to
be (in)consistent with CH.

Problem 7.7. Is measuring consistent with CH?

Eisworth and Nyikos have shown that measuring for sequences of clopen Yα ⊆ α
is consistent with CH [4]. It is similarly known by [17] that measuring for sequences
〈Yα : α < ω1〉 on which the ordertype function is regressive is consistent with CH.
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Now we consider a coherence property of the club filter considered by Larson
[11].

Definition 7.8. Let (+) denote the statement that there exists a stationary S ⊆
[H(ℵ2)]ω such that, for all M,M ′ ∈ S, if M ∩ω1 = M ′ ∩ω1, then, for every E ∈M
and E′ ∈ M ′ such that E and E′ are club subsets of ω1, the set E ∩ E′ ∩M ∩ ω1

is cofinal in M ∩ ω1. Let (−) denote ¬(+).

Larson[11] showed that (+) follows from club guessing on ω1. Very recently
Tetsuya Ishiu has shown that (+) is consistent with the failure of club guessing
(even in the presence of CH).

Theorem 7.9. MRP implies (−).

Proof. Fix a stationary set S. We will show that S does not witness (+). Suppose
that M is such that S ∈M ≺ H(2ℵ1

+). Ask:

(∗) Is there an end extension M̃ of M such that M̃ ∩ H(ℵ2) ∈ S and there
exists a club EM ⊆ ω1 such that EM ∈ M̃ and EM diagonalizes the club
filter of M?

If “no,” then set Σ(M) = [ω1]ω. If “yes,” then set Σ(M) = [ω1]ω \ EM for some
such EM . In either case, Σ(M) is open. Moreover, Σ(M) is M -stationary by the
above observation.

Suppose 〈Nξ : ξ < ω1〉 reflects Σ. Let 〈Nξ : ξ < ω1〉 ∈ M ≺ H(2ℵ1
+) and

M ∩ H(ℵ2) ∈ S. By Fact 4.1, M end extends Nδ where δ = M ∩ ω1. Also
E = {Nξ ∩ω1 : ξ < ω1} is in M and by Claim 7.4 diagonalizes the club filter of Nδ.
Hence the answer to (∗) is “yes” for Nδ. Therefore there exist an end extension
M̃ ∈ S of Nδ and a club E′ ∈ M̃ such that E′ diagonalizes the club filter of Nδ

and Σ(Nδ) = [ω1]ω \ E′. Hence, for some ξ < δ, we have Nν ∩ ω1 6∈ E′ for all
ν ∈ δ \ ξ; hence, E ∩ E′ ∩ δ is bounded in δ. The sets M ∩H(ℵ2) and M̃ ∩H(ℵ2)
now demonstrate that S does not witness (+). �

8. The influence of MRP beyond H(ℵ2)

In this section we will study the influence of MRP on sets higher up in the
cumulative hierarchy. It is based on work of Viale.

Let κ be an uncountable regular cardinal. Suppose I is an ideal of closed subsets
of κ (in the order topology). I.e., for all I0, I1 ∈ I, we have I0 closed, every closed
subset of I0 in I, and I0 ∪ I1 ∈ I. Consider the following three conditions on I:

(I1) If β < κ, then there exists J ∈ [I]≤ω such that β + 1 =
⋃
J .

(I2) If X ∈ [κ]ω, then I � X is countably generated. I.e., there exists J ∈ [I]ω

such that, for all I ∈ I, there exists J ∈ J such that I ∩X ⊆ J ∩X.
(I3) If Z ⊆ κ is unbounded, then there exists Y ∈ [Z]ω such that Y 6⊆ I for all

I ∈ I.
Recall that the Singular Cardinals Hypothesis (SCH) is the assertion that if λ is

a singular strong limit cardinal, then 2λ = λ+. By a theorem of Silver [18], if SCH
fails at λ and cf(λ) is uncountable, then there is a stationary set of singular µ < λ
such that SCH fails at µ. In particular, if λ is the least singular cardinal such that
2λ > λ+, then cf(λ) = ω.

Theorem 8.1. If SCH fails, then there exist κ and I satisfying (I1), (I2), and
(I3).
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Proof. Assume SCH fails. Then there exists µ such that ω = cf(µ) < µ = 2<µ and
µ+ < 2µ. Set κ = µ+ and let µ = supn<ω µn. For all β < κ, let β + 1 =

⋃
n<ω E

β
n

where 〈Eβ
n : n < ω〉 is an ascending sequence of closed subsets of κ such that

|Eβ
n | ≤ µn for all n. By modifying the sequence, arrange that Eβ

n+1 ⊇
⋃

α∈Eβ
n∩β E

α
n

for all n. Let I be the ideal generated by {Eβ
n : n < ω ∧ β < κ}. Then (I1) is

trivially true. For (I2), fix X ∈ [κ]ω. Then, for all β < κ, {Eβ
n ∩ X : n < ω}

generates an ideal Iβ
X on P(X). Moreover, if β < β′, then Iβ

X ⊆ Iβ′

X . Since
cf(κ) > 22ℵ0 , as β increases, this restricted ideal eventually stabilizes to I � X.
Therefore, {Eβ

n ∩X}n<ω generates I � X if β is large enough. Finally, (I3) holds
simply because |I| = 2<µ · µ+ < 2µ = µω = cf(〈[µ+]ω,⊆〉). �

Theorem 8.2. MRP implies that there does not exist a regular cardinal κ and an
ideal I on κ which satisfies (I1), (I2), and (I3).

Proof. Seeking a contradiction, suppose κ and I satisfy (I1), (I2), and (I3). For
each α ∈ Lim(ω1), fix a cofinal Cα ⊆ α such that otp(Cα) = ω. Fix, for each
M ≺ H(2κ+), a ⊆-increasing sequence 〈IM

n : n < ω〉 of elements of I which
generates I � M . Let Σ(M) be the set of N ∈ [κ]ω for which sup(N ∩ω1) < M ∩ω1

and supN 6∈ IM
n where n = |CM∩ω1 ∩N |.

Claim 8.3. Σ(M) is open and M -stationary.

Proof. To see that Σ(M) is open, suppose thatN is in Σ(M) and let α be an element
of N ∩ω1 which is an upper bound for N ∩Cδ where δ = M ∩ω1. Since β = supN
is not in IM

n , where n = |Cδ ∩ N |, there is a β0 in N such that (β0, β) ∩ IM
n = ∅.

Then [{α, β0}, N ] ⊆ Σ(M).
To see that Σ(M) is M -stationary, suppose E ∈M is a club subset of [κ]ω. Fix

α < M ∩ ω1 such that Γ = {supA : A ∈ E ∧ A ∩ ω1 = α} is cofinal in κ. Set
E′ = {A ∈ E : A ∩ ω1 = α}. Using (I3), pick X ∈ [Γ]ω ∩M such that X is not
contained in any I ∈ I. Pick β ∈ X \ IM

n where n = |Cδ ∩ α| where δ = M ∩ ω1.
Then β ∈ M because X ∈ M and X is countable. Pick A ∈ E′ ∩M such that
supA = β. Then A ∈ Σ(M) ∩M ∩ E. Thus, Σ(M) is M -stationary. �

Suppose 〈Nξ : ξ < ω1〉 is a reflecting sequence and let E = {sup(Nξ ∩ κ) : ξ <
ω1}. Using (I1), pick I ∈ I such that I ∩ E is cofinal in E. Let δ be such that
Ξ = {ξ < δ : sup(Nξ ∩ κ) ∈ I} is cofinal in δ. Then there exists n such that
I ∩ Nδ ⊆ INδ

n . Pick ξ ∈ Ξ such that |CNδ∩ω1 ∩ Nξ| ≥ n and Nξ ∩ κ ∈ Σ(Nδ).
Then sup(Nξ ∩ κ) 6∈ INδ

|Nξ∩Cδ| and therefore not in INδ
n by our assumption that

〈INδ

k : k < ω〉 is ⊆-increasing. Hence sup(Nξ ∩ κ) 6∈ I, in contradiction with how
we chose ξ. �

Corollary 8.4. MRP implies SCH.

Now recall the definition of �(κ).2

Definition 8.5. �(κ) asserts that there exists a sequence 〈Cα : α ∈ Lim(κ)〉
satisfying the following conditions:

(1) Cα is closed and cofinal in α.
(2) If α ∈ Lim(Cβ), then Cα = Cβ ∩ α.

2�κ and �(κ) are different principles. They are related in the sense that �(κ+) is a formal
weakening of �κ.
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(3) There is no closed and cofinal E ⊆ κ such that Cβ = E ∩ β for all β ∈
Lim(E).

We can similarly use this route to show that MRP implies �(κ) fails.

Theorem 8.6. [22] If �(κ) holds, then there exists I satisfying (I1), (I2), and
(I3).

Proof. Fix a �(κ) sequence 〈Cα : α < κ〉 and, following [20], define

%2(α, α) = 0

%2(α, β) = 1 + %2(α,minCβ \ α)
whenever α < β < κ. Notice that %2(α, β) ≤ 1 if and only if α is in Cβ . It is
sufficient to show that the ideal I generated by the sets

Iβ,n = {α ∈ β : %2(α, β) ≤ n}
satisfies (I1)-(I3). The following identity clarifies the relationship between I and
the ideal generated by 〈Cα : α < κ〉:

Iβ,n+1 = Iβ,n ∪
⋃

γ∈Iβ,n

Cγ \ sup(Iβ,n ∩ γ).

That I satisfies (I1) is trivial, since for every α < β, %2(α, β) < ω. The following
are standard properties of %2 [20]:

(1) for all α < β < κ, the set {|ρ2(ξ, α)− ρ2(ξ, β)| : ξ < α} is bounded in ω.
(2) %2[Z]2 is unbounded in ω for every Z unbounded in κ;

To see that I satisfies (I2), notice that, for all α < β < κ and n < ω, we have
Iβ,n ∩ α ⊆ Iα,k for some k < ω, and Iα,k ⊆ Iβ,l for some l < ω. Hence, if X ∈ [κ]ω

and β ≥ sup(X), then {Iβ,n∩X : n < ω} generates I � X. For (I3), suppose Z ⊆ κ
is unbounded. Then %2[Z]2 is unbounded in ω and in particular there is a β < κ
such that %2[Z ∩ β]2 is unbounded in ω. It follows that Z ∩ β is not contained in
an element of I. �

For the sake of demonstration, we will now give a direct proof that MRP implies
the failure of �.

Theorem 8.7. For all regular κ, MRP implies ¬�(κ).

Proof. Suppose not; let 〈Cα : α < κ〉 witness �(κ). For all M ≺ H(2κ+) such
that 〈Cα : α < κ〉 ∈ M , set Σ(M) equal to the set of N ∈ [κ]ω for which supN <
sup(M ∩ κ) and supN 6∈ Csup(M∩κ). Suppose 〈Nξ : ξ < ω1〉 reflects Σ. Set
E0 = {sup(Nξ ∩ κ)}ξ<ω1 . Then E0 is closed and cofinal in some δ with cf(δ) = ω1.
Let E = Cδ ∩E0. Suppose ν ∈ Lim(E). Let η < ω1 be such that ν = sup(Nη ∩ κ).
Then Cν = Cδ ∩ ν and η ∈ Lim(ω1). Let η0 < η be such that Nξ ∩ κ ∈ Σ(Nη) for
all ξ ∈ η \ η0. Let ν′ ∈ E be such that sup(Nη0 ∩ κ) ≤ ν′ < sup(Nν ∩ κ). Then
there exists ξ ∈ η \ η0 such that ν′ = sup(Nξ ∩ κ). Since Nξ ∩ κ ∈ Σ(Nν), we have
sup(Nξ ∩κ) 6∈ Cν . But sup(Nξ ∩κ) ∈ E ∩ ν ⊆ Cδ ∩ ν = Cν , which is absurd. Thus,
it suffices to show that Σ is open stationary.

Fix M ∈ dom(Σ) and N ∈ Σ(M). Then supN 6∈ Csup(M∩κ); hence, there exists
α ∈ N such that (α, supN)∩Csup(M∩κ) = ∅; hence, [{α}, N ] ⊆ Σ(M). Thus, Σ(M)
is open. Next, let E ∈M be a club subset of [κ]ω. Set Γ = {supA : A ∈ E}, which is
closed and cofinal in κ. Then it suffices to show that Γ∩M 6⊆ Csup(M∩κ). Seeking a
contradiction, suppose Γ∩M ⊆ Csup(M∩κ). Then, for all {α < β} ∈ [Lim(Γ∩M)]2,
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we have Cα = Csup(M∩κ) ∩ α and Cβ = Csup(M∩κ) ∩ β; whence, Cα = Cβ ∩ α.
By elementarity, we have Cα = Cβ ∩ α for all {α < β} ∈ [Lim(Γ)]2. Therefore,
C =

⋃
α∈Lim(Γ) Cα is closed and cofinal in κ and Cα = C ∩ α for all α ∈ Lim(C),

in contradiction with (3) of the definition of �(κ). �

9. The 0-1 law for open set mappings

Let Σ be an open set mapping (for some X, θ). Are there some conditions that,
in the presence of MRP or some stronger assumption, ensure that every Σ(M) is
trivial, i.e., either Σ(M) is not M -stationary or contains E ∩ M for some club
E ⊆ [X]ω? Note that Σ< and Σ≥ are an example of nontriviality since they are
everywhere disjoint open stationary set mappings.

Definition 9.1. The 0-1 law for open set mappings asserts that, if Σ is an open
set mapping defined on a club in H(θ) and for all M ∈ dom(Σ),

(1) for all P ∈ Σ(M) and all end extensions P of P , we have P ∈ Σ(M), and,
(2) for all end extensions M of M in dom(Σ), we have Σ(M)∩M = Σ(M)∩M ,

then there exists a club E∗ ⊆ dom(Σ) such that, for all M ∈ E∗, there exists a club
E ⊆ [X]ω such that E ∈M and either E ∩M ⊆ Σ(M) or E ∩M ∩ Σ(M) = ∅.

Example 9.2. [8] Let T be an ω1-tree and B be the set of uncountable maximal
chains in T . Suppose {tδ,n}n<ω is the δth level of T . Define Σn(M) to be the set
of N ∈ [H(ℵ2)]ω for which either N is not an elementary submodel of H(ℵ2), or
there exists b ∈ N ∩B such that tδ,n � (N ∩ ω1) ∈ b where δ = M ∩ ω1. If each Σn

satisfies the 0-1 law, then T has at most ℵ1-many branches. In fact more generally,
if B is a collection of uncountable downward <T -closed subsets of T which have
pairwise countable intersection, then if each Σn satisfies the 0-1 law, B has at most
ℵ1 many elements. This latter statement is known as Aronszajn tree saturation. It
is equivalent to the corresponding statement in which T is Aronszajn.

In order to prove the 0-1 law, we will need a strengthening of MRP.

Definition 9.3. Let SMRP (Strong Mapping Reflection Principle) assert that if
Σ is an open stationary set mapping on some domain S ⊆ [H(θ)]ω that is not
necessarily club, then there is a strong reflecting sequence 〈Nξ : ξ < ω1〉 for S
such that, for all ν ∈ Lim(ω1), if Nν ∈ S, then there exists ν0 < ν such that
Nξ ∩X ∈ Σ(Nν) for all ξ ∈ ν \ ν0.

MM implies SMRP. If dom(Σ) is a club, then SMRP is just MRP. If Σ is always
trivial, then SMRP is just SRP.

Theorem 9.4. SMRP implies the 0-1 law for open set mappings.

Proof. Let Σ satisfying (1) and (2) be given. Let S denote the set of M ∈ dom(Σ)
for which Σ(M) is M -stationary. Let 〈Nξ : ξ < ω1〉 strongly reflect S and reflect Σ
in the sense of SMRP. Set

E∗ = {M ∈ dom(Σ) : 〈Nξ : ξ < ω1〉 ∈M}.
Let M ∈ E∗ be arbitrary. If Σ(M) is not M -stationary, then there is trivially a club
E ⊆ [X]ω such that E ∈ M and E ∩M ∩ Σ(M) = ∅. Therefore, we may assume
Σ(M) is M -stationary. Then Nδ ∈ S where δ = M ∩ω1 because M ∩ω1 = Nδ ∩ω1.
Let δ0 < δ be such that Nξ∩X ∈ Σ(Nδ) for all ξ ∈ δ \δ0. Define E0 to be the set of
all N in [H(θ)]ω such that N ∩ω1 is a limit ordinal and for all ξ < N ∩ω1, Nξ ⊆ N
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and δ0 ∈ N . If N ∈ E0 ∩M , then N end extends Nξ for some ξ ∈ δ \ δ0. Since
δ0 < ξ, Nξ∩X ∈ Σ(Nδ) and therefore Nξ∩X ∈ Σ(M) by (2). Hence N∩X ∈ Σ(M)
by (1). If we set E = {N ∩X : N ∈ E0}, then E is a club subset of [X]ω, E ∈M ,
and E ∩M ⊆ Σ(M). �

Remark. It is often the case that an open set mapping Σ satisfies the following
additional hypothesis: if N is an end extension of N and Σ(N) is N -stationary,
then Σ(N) is N -stationary. This is satisfied, for instance, in the open set mappings
defined in Example 9.2 and in [15]. It follows from the above argument that MRP
implies the 0-1 law for open set mappings which satisfy this additional condition.

10. Open Problems

Here I have collected some open problems which are related to MRP.
While MRP implies 2ℵ0 = 2ℵ1 = ℵ2, the forcing to reflect a single open stationary

set mapping does not introduce new reals. Many of these forcings are moreover
completely proper (see Eisworth and Moore’s lecture notes in this volume). It is
not known whether the forcing axiom for completely proper forcings is consistent
with CH and the corresponding fragments of MRP already seem to capture much
of the generality of this question. An important special case of this is the following.

Problem 10.1. Is measuring consistent with CH?

Similarly, we would like to know how much of MRP is consistent with 2ℵ0 > ℵ2.
Aspero and Mota have announced that measuring is consistent with 2ℵ0 > ℵ2.

A common theme with many of SRP’s consequences is that they are typical
examples of what MM implies but PFA was not known to imply. Most of the
remaining consequences of SRP can not follow from PFA because, in general, they
can not be forced with a proper forcing notion (in contrast to PFA). Some, however,
follow from MRP via a proof similar to that used in the case of SRP. The following
is an open problem in this vein.

Problem 10.2. Does MRP imply that there is a Q and a generic elementary
embedding j : V →M ⊆ V Q such that crit(j) = ω1 and M<ω1 ⊆M?

If NSω1 is saturated, then there is such a generic embedding if we take Q =
P(ω1)/NSω1 . In particular, the problem has a positive answer if one replaces MRP
with SRP. Also, if there is a Woodin cardinal, then the “countable tower” Q<δ

is such a forcing (see [10]). This latter example makes it very difficult to prove a
negative answer to this question. While this would not serve to give a better lower
bound on the consistency strength of PFA, it would be interesting if there are other
ways to establish lower bounds on the consistency strength of PFA which do not
involve the failure of � (and are at least at the level of a Mahlo cardinal).

Problem 10.3. What is the consistency strength of the 0-1 law for open set map-
pings?

The 0-1 law implies that there are no Kurepa trees and hence that ω2 is inac-
cessible to subsets of ω1. This seems to be the best known lower bound.

Let Q0 be a forcing of size ℵ1 and A be a collection of ℵ1 many maximal an-
tichains of Q0. We say that Q0 A-embeds into Q if there is a injection f : Q0 → Q
which preserves order, compatibility, incompatibility, and the maximality of ele-
ments of A. Many problems concerning applications of forcing axioms reduce to
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the question of when a given pair (Q0,A) as above can be A-embedded into a proper
forcing Q. In [15], MRP was useful in providing an answer to this in a special case.
It seems natural (though ambitious) to ask if it is possible to use MRP to prove a
general result of this form.

Problem 10.4. Assume MRP and let Q0 be a partial order and A a collection
of maximal antichains of Q0 such that |Q0|, |A| ≤ ℵ1. Is there an informative
necessary and sufficient condition for when Q0 can be A-embedded into a proper
forcing Q?

For instance, is there an upper bound on the cardinality of such Q which is
expressible in terms of the i function? For those Q0 which can be A-embedded
into a proper Q, is there a canonical form that Q can be assumed to take? Does
the answer to these questions change if “proper” is replaced by “preserves NSω1?”

11. Further reading

The notion of set mapping reflection was introduced in [14] in order to prove
that BPFA implies that there is a well ordering of R which is definable over H(ℵ2)
(and consequently that L(P(ω1)) satisfies the Axiom of Choice). This paper also
establishes that PFA implies MRP and that MRP implies the failure of �(κ) at
all regular κ > ω1. Caicedo and Veličković [2] built on these ideas to show that
BPFA implies there is a well ordering of R which is ∆1-definable with parameters
in H(ℵ2) (the complexity of the well ordering presented in Theorem 5.7 is ∆2).
Given the parameters, this complexity is optimal.

In [15], Moore used MRP in conjunction with BPFA to prove that every Aron-
szajn line contains a Countryman suborder. The 0-1 law was isolated from that
proof and serves as the sole use of MRP in that paper. In [8], König, Larson, Moore,
and Veličković further analyzed the role of the 0-1 law [15]. While the end goal was
to reduce the consistency strength of the results of [15], much of [8] concerns a study
of Aronszajn tree saturation. In particular, it is shown that MRP implies A-tree
saturation and that the conjunction of A-tree saturation and BPFA implies that
every Aronszajn line contains a Countryman suborder. It is not known whether
the existence of a non-saturated Aronszajn tree implies that there is an Aronszajn
line with no Countryman suborder.

The analysis of Aronszajn tree saturation was used explicitly in [13] to establish
the consistent existence of a universal Aronszajn line. Similar combinatorial argu-
ments were used by Ishiu and Moore [5] to characterize—assuming PFA+—when
a linear order contains an Aronszajn suborder. In [12], Moore showed that some
non-trivial application of MRP is needed for the results of [15]. (In particular, if
every Aronszajn line contains a Countryman suborder, then club guessing fails).
Viale [23] proved that MRP implies the Singular Cardinals Hypothesis.
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