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1 Introduction

The term ”square” refers not just to one but to an entire family of combinatorial principles.
The strongest is denoted by ”◻” or by ”Global ◻,” and there are many interesting weakenings
of this notion. Before introducing any particular square principle, we provide some motivating
applications. In this section, the term ”square” will serve as a generic term for ”some
particular square principle.”

• Jensen introduced square principles based on work regarding the fine structure of L.
In his first application, he showed that, in L, there exist κ-Suslin trees for every
uncountable cardinal κ that is not weakly compact.

• Let T be a countable theory with a distinguished predicate R. A model of T is said to
be of type (λ,µ) if the cardinality of the model is λ and the cardinality of the model’s
interpretation of R is µ. For cardinals α,β, γ, and δ, (α,β) → (γ, δ) is the assertion
that for every countable theory T , if T has a model of type (α,β), then it has a model
of type (γ, δ). Chang showed that under GCH, (ℵ1,ℵ0) → (κ+, κ) holds for every
regular cardinal κ. Jensen later showed that under GCH+square, (ℵ1,ℵ0) → (κ+, κ)
holds for every singular cardinal κ as well.

• Square can be used to produce examples of incompactness, i.e. structures such that
every substructure of a smaller cardinality has a certain property but the entire structure
does not:

– Square allows for the construction of a family of countable sets such that every
subfamily of smaller cardinality has a transversal (i.e. a 1−1 choice function) but
the entire family does not.

– Assuming square, one can construct a first countable topological space such that
every subspace of smaller cardinality is metrizable but the entire space is not.

– We say that an abelian group G is free if, for some index set I,

G ≈∑
i∈I

Z

where ∑ denotes the direct sum. Square can be used to construct a group G
such that G is not free but every subgroup of smaller cardinality is.

– We say that an abelian group G is free+ if, for some index set I,

G ⊆∏
i∈I

Z
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where ∏ denotes the direct product. Square can be used to construct a group G
such that G is not free+ but every subgroup of smaller cardinality is.

This chapter will further explore these and other applications of squares as well as the
consistency strengths of the failures of certain square principles. In sections 2 and 3, we
introduce basic square principles and derive some immediate consequences thereof. In section
4, we present forcing arguments to separate the strengths of different square principles.
Section 5 deals with scales and their interactions with squares. In section 6, we provide
two examples of incompactness that can be derived from square principles. In section 7, we
present a stronger version of Jensen’s original construction of Suslin trees from squares. In
section 8, we consider the consistency strengths of the failures of square principles. Section
9 contains results regarding weak squares at singular cardinals.

2 Jensen’s Original Square Principle

Definition Let κ be a cardinal. ◻κ is the assertion that there exists a sequence ⟨Cα ∣
α limit, κ < α < κ+⟩ such that for all α,β limit with κ < α < β < κ+, we have the following:

1. Cα is a closed, unbounded subset of α

2. otp(Cα) < α

3. (Coherence) If α is a limit point of Cβ, then Cβ ∩ α = Cα.

Such a sequence is called a ◻κ-sequence and can be thought of as a canonical way of
witnessing that the ordinals between κ and κ+ are singular.

We start with a few easy observations about ◻κ-sequences.

Proposition 2.1 If ◻κ holds, then there is a ◻κ-sequence ⟨Dα ∣ α limit, κ < α < κ+⟩ such
that for all α, otp(Dα) ≤ κ. In addition, if κ is singular, then we can require that for all α,
otp(Dα) < κ.

Proof Suppose that ⟨Cα ∣ α limit, κ < α < κ+⟩ is a ◻κ-sequence. We will define ⟨Dα ∣
α limit, α < κ+⟩ so that ⟨Dα ∣ α limit, κ < α < κ+⟩ works. For κ < α < κ+, let C∗

α = Cα ∖ κ.
We first define Dκ to be any club subset of κ of order-type cf(κ) (if κ is regular, we can
let Dκ = κ). If δ is a limit point of Dκ, let Dδ = Dκ ∩ δ. For all other limit ordinals
δ < κ, let Dδ = δ ∖ sup(Dκ ∩ δ). Recursively define Dα ⊆ C∗

α for κ < α < κ+ by letting
Dα = {γ ∣ γ ∈ C∗

α,otp(Cα ∩ γ) ∈ Dotp(C∗
α)}. It is easy to check by induction on α that

⟨Dα ∣ α limit, κ < α < κ+⟩ is as desired.

Notice that, if ⟨Dα ∣ α limit, κ < α < κ+⟩ is a ◻κ-sequence as given in Proposition
2.1, if we let D∗

α = α for limit α ≤ κ and D∗
α = Dα ∖ κ for κ < α < κ+, α limit, then

⟨D∗
α ∣ α limit, α < κ+⟩ satisfies, for all limit α < β < κ+:

1. D∗
α is a club in α
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2. otp(D∗
α) ≤ κ

3. If α is a limit point of D∗
β, then D∗

β ∩ α =D∗
α.

Therefore, ◻κ is equivalent to the existence of such a sequence ⟨D∗
α ∣ α limit, α < κ+⟩, and

we will sometimes refer to such a sequence as a ◻κ-sequence.
Soon after introducing this square principle, Jensen showed that, in L, ◻κ holds for every

infinite cardinal κ. In fact, it is the case that in certain other canonical inner models (all
Mitchell-Steel core models, for example), ◻κ holds for every infinite cardinal κ. The proof
that ◻κ holds in L can be found in [4] and [7]. For more recent work concerning other inner
models, see [10].

3 Weak Squares

A natural question to ask is whether one can weaken the square principle and still get
interesting combinatorial results. One such weakening of square is given by the following
notion, introduced by Schimmerling.

Definition ◻κ,λ is the assertion that there exists a sequence ⟨Cα ∣ α limit, κ < α < κ+⟩ such
that for all α, ∣Cα∣ ≤ λ and for every C ∈ Cα,

1. C is a club in α

2. otp(C) ≤ κ

3. If β is a limit point of C, then C ∩ β ∈ Cβ

◻κ,<λ is defined similarly, except, for each α, we require ∣Cα∣ < λ.

Note that ◻κ,λ weakens as λ grows. ◻κ,1 is simply ◻κ. ◻κ,κ is often called weak square
and written as ◻∗κ. ◻κ,κ+ is often called silly square. It is a theorem of ZFC that ◻κ,κ+ holds
for every infinite cardinal κ: for every limit α such that κ < α < κ+, let Cα be a club in α.
For limit β such that κ < β < κ+, let Cβ = {Cα ∩ β ∣ α limit, β < α < κ+}. It is easy to verify
that ⟨Cβ ∣ β limit, κ < β < κ+⟩ is a ◻κ,κ+-sequence.

Definition Let κ be an infinite cardinal. A κ+-Aronszajn tree T is special if there is a
function f ∶ T → κ such that, for all x, y ∈ T , if x <T y, then f(x) /= f(y).

Theorem 3.1 There is a special κ+-Aronszajn tree if and only if ◻∗κ holds.

Proof We will prove only the forward direction. The proof of the reverse direction can be
found in [1].

Let T be a special κ+-Aronszajn tree, as witnessed by f ∶ T → κ. Let Uα denote the
nodes of T in level α. By thinning out the tree if necessary, we can assume without loss of
generality that the nodes in a branch below a limit level β uniquely determine the node of
the branch at level β. For α limit, κ < α < κ+, we define Cα as follows.
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Let x ∈ Uα. We will construct, for some γ ≤ κ, ⟨xβ ∣ β < γ⟩, an increasing sequence in
the tree such that, for every β < γ, xβ <T x. Let x0 be the root of the tree. If xα has
been chosen and xα <T x, let δα=min({f(y) ∣ xα <T y <T x}. Let xα+1 be the unique y
such that xα < y < x and f(y) = δα. If α is a limit ordinal and xβ has been chosen for
every β < α, let xα be the least upper bound of {xβ ∣ β < α}. Continue this construction
as long as xα < x and sup({δβ ∣ β < α}) < κ. In fact, we claim that if xα <T x, then
sup({δβ ∣ β < α} < κ. Suppose for sake of contradiction that there is α such that xα <T x
but sup({δβ ∣ β < α} = κ. Then f(xα) < δβ for some β < α, contradicting the choice of δβ.
Therefore, we can continue the construction until we reach γ ≤ κ such that xγ = x.

Now let Cx = {level(xα) ∣ α < γ}. It is easy to verify that Cx is a club in α and that
otp(Cx) = γ ≤ κ. Let Cα = {Cx ∣ x ∈ Uα}. Since T is Aronszajn, ∣Cα∣ ≤ κ. It remains to
check the coherence condition. Let β be a limit point of Cx. Then β is the level of some xβ,
where ⟨xα ∣ α < γ⟩ is the sequence leading up to x used to define Cx. Let ⟨yα ∣ α < γ′⟩ be
the sequence leading up to xβ used to define Cxβ . Notice that when defining ⟨yα ∣ α < γ′⟩,
we went through the same steps as we went through when defining ⟨xα ∣ α < γ⟩, so it is easy
to check by induction that, for all α < β, xα = yα, so Cxβ = Cx ∩ β, so Cx ∩ β ∈ Cβ.

Definition A κ+-tree T is normal if it satisfies the following properties:

1. T has a unique least element.

2. For every x ∈ T , x has κ-many immediate successors in T .

3. For every α < β < κ+ and every x in level α of T , there is a y in level β of T such that
x <T y.

4. For every limit ordinal β < κ+, if x and y are in level β of T and {z ∣ z <T x} = {z ∣
z <T y}, then x = y.

We now show that if κ is a regular cardinal, then ◻∗κ automatically holds under sufficient
cardinal arithmetic assumptions.

Theorem 3.2 Suppose that κ<κ = κ. Then there is a normal special κ+-Aronszajn tree.

Proof Let Q be the set <ωκ equipped with the lexicographic ordering. That is, if s, t ∈ Q,
then s <l t iff

1. There is n ∈ dom(s) ∩ dom(t) such that s(n) < t(n) and s ↾ n = t ↾ n or

2. dom(s) < dom(t) and t ↾ dom(s) = s.

We will construct a special κ+-Aronszajn tree T . For α < κ+, the α-th level of the tree
will be denoted Uα. For all α < κ+, Uα will consist of increasing sequences from Q of length
α + 1. The tree will be ordered so that for all x, y ∈ T , x ≤T y iff x ⊆ y. T cannot have
a branch of length κ+, as such a branch would correspond to an increasing sequence from
Q of length κ+. This is a contradiction, since ∣Q∣ = κ. Thus, T will be an Aronszajn tree
provided that Uα /= ∅ and ∣Uα∣ ≤ κ for all α < κ+. It will also follow that T is special: Fix
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a bijection F between Q and κ. If x ∈ Uα for some α < κ+, let f(x) = F (x(α)). Then f
witnesses that T is special.

We will construct Uα by recursion on α < κ+ so that each Uα satisfies the following
conditions:

1. ∣Uα∣ ≤ κ.

2. For every β < α and x ∈ Uβ, if ∣x(β)∣ = n + 1, there is y ∈ Uα such that x ⊂ y and
y(α) ≤l (x(β) ↾ n) ⌢⟨x(β)(n) + 1⟩.

Let U0 = {⟨⟨0⟩⟩}. If α = β + 1, let Uα = {x⌢s ∣ x ∈ Uβ, x(β) <l s}. It is clear that Uα
satisfies conditions 1 and 2.

Suppose α is a limit ordinal of cofinality < κ. Let Tα denote the tree below level α. We
say b is a branch through Tα if b is an increasing α-sequence from Q such that, for all
β < α, b ↾ (β + 1) ∈ Tα and such that there exists sup(ran(b)) ∈ Q. Let Uα = {b ⌢⟨s⟩ ∣
b is a branch through Tα and sup(ran(b)) = s}. Uα satisfies condition 1 because κ<κ = κ,
so there are at most κ many branches through Tα. We claim that Uα also satisfies condition
2.

To show this, fix β < α and x ∈ Uβ with ∣x(β)∣ = n + 1. Fix an increasing, continuous
seqence of ordinals ⟨αγ ∣ γ < cf(α)⟩ cofinal in α such that α0 = β. For γ < cf(α), let
sγ = x(β) ⌢⟨γ⟩. Note that ⟨sγ ∣ γ < cf(α)⟩ is strictly increasing and s = sup({sγ ∣ γ <
cf(α)}) = x(β) ⌢⟨cf(α)⟩. Now we will define a sequence ⟨xγ ∣ γ < cf(α)⟩ such that:

1. For all γ < cf(α), xγ ∈ Uαγ or xγ ∈ Uαγ+1.

2. For all γ < cf(α), xγ(αγ) = sγ or xγ(αγ + 1) = sγ .

3. For all δ < γ < cf(α), xδ ⊂ xγ .

We go by recursion on γ < cf(α). Let x0 = x ⌢⟨s0⟩. If γ = γ′ + 1, then let x̄γ ∈ Uαγ be
such that xγ′ ⊂ x̄γ and x̄γ(αγ) ≤l sγ . Such an x̄γ exists because Uαγ satisfies condition
2. If x̄γ(αγ) = sγ , let xγ = x̄γ . Otherwise, let xγ = x̄γ ⌢⟨sγ⟩. If γ is a limit ordinal, then

⋃δ<γ xδ is a branch through Tγ , and sup(ran(⋃δ<γ xδ)) = sγ . By the way we constructed
Uγ , (⋃δ<γ xδ)⌢⟨sγ⟩ ∈ Uγ . Let xγ = (⋃δ<γ xδ) ⌢⟨sγ⟩.

Now b = ⋃γ<cf(α) xγ is a branch through Tα and sup(ran(b)) = s. Let y = b⌢⟨s⟩. It is easy
to see that y is as desired, so Uα satisfies condition 2.

Finally, suppose α is a limit ordinal of cofinality κ. Note that we can not extend all
branches through Tα, as there are possibly more than κ many of them. We claim that for
each β < α and x ∈ Uβ, if ∣x(β)∣ = n + 1, there is a branch b through Tα such that x ⊂ b
and sup(ran(b)) = (x(β) ↾ n) ⌢⟨x(β)(n) + 1⟩. To show this, fix an increasing, continuous
sequence of ordinals ⟨αγ ∣ γ < κ⟩ cofinal in α such that α0 = β. For γ < κ, let sγ = x(β) ⌢⟨γ⟩.
⟨sγ ∣ γ < κ⟩ is increasing and s = sup({sγ ∣ γ < κ}) = (x(β) ↾ n) ⌢⟨x(β)(n) + 1⟩. Exactly as
above, define a sequence ⟨xγ ∣ γ < κ⟩ such that:

1. For all γ < κ, xγ ∈ Uαγ or xγ ∈ Uαγ+1.

2. For all γ < κ, xγ(αγ) = sγ or xγ(αγ + 1) = sγ .
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3. For all δ < γ < κ, xδ ⊂ xγ .

Then b = ⋃γ<κ xγ is a branch through Tα such that x ⊂ b and sup(ran(b)) = s. Now, for
each x ∈ Tα, choose such a branch, bx. Let Uα = {bx⌢⟨s⟩ ∣ x ∈ Tα, sup(ran(bx)) = s}. By
construction, Uα is easily seen to satisfy conditions 1 and 2. This completes the construction
of T . It is easy to see that T is in fact a normal tree, thus concluding the proof of the theorem.

We would like to understand the extent to which these weak squares are sufficient to obtain
some of the implications of the original square principle. We are interested in particular in
some combinatorial principles that serve as intermediaries between the square principles
and their applications in algebra, topology, and other fields. A basic example of such a
combinatorial principle is given by stationary reflection.

Definition Let µ be an uncountable, regular cardinal, and let S ⊆ µ be stationary. We say
that S reflects at α if α < µ, cf(α) > ω, and S ∩ α is stationary in α. S does not reflect if
there is no α < µ such that S reflects at α.

Proposition 3.3 Suppose that ◻κ holds. Then for every stationary S ⊆ κ+, there is a
stationary S∗ ⊆ S such that S∗ does not reflect.

Proof Let ⟨Cα ∣ α limit, κ < α < κ+⟩ be a ◻κ-sequence. Let S ⊆ κ+ be stationary. By
thinning out S if necessary, we may assume that S consists entirely of limit ordinals and that
S ⊆ κ+ ∖ κ. Define a function f ∶ S → κ by letting f(α) = otp(Cα) for all α ∈ S. Then f is
a regressive function, so, by Fodor’s Lemma, there is a stationary S∗ ⊆ S and a µ ≤ κ such
that for all α ∈ S∗, otp(Cα) = µ. Now suppose for sake of contradiction that there is β < κ+
such that cf(β) > ω and S∗ ∩β is stationary. Let C

′
β be the set of limit points of Cβ. Then,

since C
′
β is a club in β, C

′
β ∩ S

∗ is unbounded in β. Let γ1 < γ2 ∈ C
′
β ∩ S

∗. Cβ ∩ γ1 = Cγ1
and Cβ ∩ γ2 = Cγ2 , so Cγ1 ⫋ Cγ2 . But this is a contradiction, since otp(Cγ1) = otp(Cγ2).

Notice that we have actually shown something more: for every limit α such that κ < α < κ+,
C

′
α∩S∗ consists of at most one point. Note also that if, for every limit α such that κ < α < κ+,

we define Dα = C
′
α∖γ if γ ∈ C ′

α∩S∗ and Dα = C
′
α otherwise, then ⟨Dα ∣ α limit, κ < α < κ+⟩

is a ◻κ-sequence. We thus obtain the following corollary, which plays an important role in
Jensen’s proof that, in L, κ+ Suslin trees exist for every infinite cardinal κ:

Corollary 3.4 Suppose that ◻κ holds. Then for every stationary S ⊆ κ+, there is a non-
reflecting stationary S∗ ⊆ S and a ◻κ-sequence ⟨Dα ∣ α limit, κ < α < κ+⟩ such that, for
every α, Dα ∩ S∗ = ∅.

4 Separating Squares

In this section, we show that, for an uncountable cardinal κ and cardinals µ, ν such that
1 ≤ µ < ν ≤ κ, ◻κ,µ and ◻κ,ν are in fact distinct principles. We first introduce two forcing
posets.
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The first, denoted S(κ,λ), adds a ◻κ,λ-sequence while preserving all cardinals up to and
including κ+, where κ is an uncountable cardinal and 1 ≤ λ ≤ κ. Conditions of S(κ,λ) are
functions s such that:

1. dom(s) = {β ≤ α ∣ β is a limit ordinal} for some limit ordinal α < κ+.

2. For all β ∈ dom(s), 1 ≤ ∣s(β)∣ ≤ λ.

3. For all β ∈ dom(s), s(β) is a set of clubs in β of order type ≤ κ. If cf(β) < κ, then
s(β) is a set of clubs β of order type < κ.

4. For all β ∈ dom(s), if C ∈ s(β) and γ is a limit point of C, then C ∩ γ ∈ s(γ).

For all s, t ∈ S(κ,λ), t ≤ s iff t end-extends s (i.e. s ⊆ t).

Fact 4.1 S(κ,λ) is κ+-distributive.

We next introduce a forcing poset that kills a square sequence.

Definition Let
Ð→
C = ⟨Cα ∣ α < κ+⟩ be a ◻κ,λ-sequence in V . Let W be an outer model of V .

Then C ∈W threads
Ð→
C iff C is a club in κ+ and for every limit point α of C, C ∩α ∈ Cα. It

is clear from order-type considerations that if there is C ∈W such that C threads
Ð→
C , then

Ð→
C is not a ◻κ,λ-sequence in W .

Given a ◻κ,λ-sequence
Ð→
C = ⟨Cα ∣ α < κ+⟩, let γ be a regular cardinal such that γ ≤ κ. We

will define a threading poset Tγ(
Ð→
C ). Conditions of the poset are sets c such that:

1. c is a closed, bounded subset of κ+.

2. c has order type < γ.

3. For all limit points β of c, c ∩ β ∈ Cβ.

For all c, d ∈ Tγ(
Ð→
C ), d ≤ c iff d end-extends c (i.e. d ∩ (max(c) + 1) = d).

If
Ð→
C is introduced by forcing with S(κ,λ), then Tγ(

Ð→
C ) behaves quite nicely.

Lemma 4.2 Suppose κ is an uncountable cardinal, λ is a cardinal such that 1 ≤ λ ≤ κ,

and γ is a regular cardinal ≤ κ. Let S = S(κ,λ), and let T = Tγ(
Ð→
C )V S , where

Ð→
C is the

◻κ,λ-sequence added by forcing with S. Then

1. S ∗T has a dense γ-closed subset.

2. T adds a set of order type γ which threads
Ð→
C , and (κ+)V has cofinality γ in V S∗T.

Namely, the dense γ-closed subset of S ∗ T is the set of conditions (s, ċ) such that, for
some c ∈ V , s ⊩ ċ = č and max(dom(s)) = max(c). The proof of the above Lemma can be
found in [2]. We will also need the following Lemma:
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Lemma 4.3 Let ρ, κ, and λ be cardinals such that ρ is regular and ρ < κ < λ. Suppose that,
in V Coll(ρ,<κ) , P is a ρ-closed poset and ∣P∣ < λ. Let i be the canonical complete embedding
of Coll(ρ,< κ) into Coll(ρ,< λ) (namely, i is the identity map). Then i can be extended to
a complete embedding j of Coll(ρ,< κ) ∗ P into Coll(ρ,< λ) so that the quotient forcing,
Coll(ρ,< λ)/j[Coll(ρ,< κ) ∗ P] is ρ-closed in V j[Coll(ρ,<κ)∗P]..

Theorem 4.4 Let ρ be a regular, uncountable cardinal and let µ > ρ be Mahlo. Then ◻ρ,<ρ
fails in V Coll(ρ,<µ).

Proof Let G be Coll(ρ,< µ)-generic over V and suppose for sake of contradiction that
Ð→
C = ⟨Cα ∣ α < µ⟩ is a ◻ρ,<ρ-sequence in V [G]. For α < µ, let G ↾ α denote the pointwise
image of G under the canonical projection from Coll(ρ,< µ) onto Coll(ρ,< α). By a
standard nice names argument, the set {α < µ ∣ for all β < α, Cβ ∈ V [G ↾ α]} is club
in µ. Thus, since µ is Mahlo, there is an inaccessible κ < µ such that for every β < κ,
Cβ ∈ V [G ↾ κ]. Since G ↾ κ is Coll(ρ,< κ)-generic over V , κ = ρ+ in V [G ↾ κ]. It can easily
be verified that ⟨Cβ ∣ β < κ⟩ is a ◻ρ,<ρ-sequence in V [G ↾ κ]. Note that the quotient forcing
Coll(ρ,< µ)/Coll(ρ,< κ) is ρ-closed. Note also that the sequence ⟨Cβ ∣ β < κ⟩ is threaded
in V [G], namely by any element of Cκ. The following Lemma therefore suffices to prove the
theorem:

Lemma 4.5 Suppose λ is a regular, uncountable cardinal,
Ð→
D = ⟨Dα ∣ α < λ+⟩ is a ◻λ,<λ-

sequence, and P is a λ-closed forcing poset. Then P does not add a thread through
Ð→
D .

Proof Assume for sake of contradiction that Ḋ is a P-name such that ⊩P “Ḋ is club in λ+

and for all limit points α ∈ Ḋ, Ḋ∩α ∈ Dα”. First suppose that λ is not strongly inaccessible.
Let γ be the least cardinal such that 2γ ≥ λ. We will construct ⟨ps ∣ s ∈ ≤γ2⟩ and ⟨αβ ∣ β ≤ γ⟩
such that:

1. For all s, t ∈ ≤γ2 such that s ⊆ t, we have ps, pt ∈ P and pt ≤ ps.

2. ⟨αβ ∣ β ≤ γ⟩ is a strictly increasing, continuous sequence of ordinals less than λ+.

3. For all s ∈ <γ2, there is α < α∣s∣+1 such that ps⌢⟨0⟩ and ps⌢⟨1⟩ decide the statement

“α ∈ Ḋ” in opposite ways.

4. For all limit ordinals β ≤ γ and all s ∈ β2, ps ⊩ “αβ is a limit point of Ḋ”, and there
is Ds ∈ Dαβ such that ps ⊩ “Ḋ ∩ αβ =Ds”.

Assume for a moment that we have successfully constructed these sequences. For all
s ∈ γ2, there is Ds ∈ Dαγ such that ps ⊩ “αγ is a limit point of Ḋ and Ḋ ∩ αβ = Ds”. But

if s, t ∈ γ2, s /= t, then there is α < αγ such that ps and pt decide the statement “α ∈ Ḋ” in
opposite ways, so Ds /=Dt. But, since 2γ ≥ λ, this contradicts the fact that ∣Dαγ ∣ < λ.

We now turn to the construction of ⟨ps ∣ s ∈ ≤γ2⟩ and ⟨αβ ∣ β ≤ γ⟩. Let p⟨⟩ = 1P and

α0 = 0. Fix β < γ and suppose that ⟨ps ∣ s ∈ β2⟩ and αβ are given. Fix s ∈ β2. Since
⊩P “Ḋ is club in λ+”, we can find p′s ≤ ps and α > αβ such that p′s ⊩ “α ∈ Ḋ”. Since
⊩P “Ḋ /∈ V ”, we can find αs > α and p0, p1 ≤ p′ such that p0 and p1 decide the statement
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“αs ∈ Ḋ” in opposite ways. Let ps⌢⟨0⟩ = p0 and ps⌢⟨1⟩ = p1. Do this for all s ∈ β2, and let

αβ = sup{αs ∣ s ∈ β2}. 2β < λ, so αβ < λ+.
Suppose β ≤ γ is a limit ordinal and that ⟨ps ∣ s ∈ <β2⟩ and ⟨αδ ∣ δ < β⟩ have been

constructed. Let αβ = sup{αδ ∣ δ < β⟩}. Fix s ∈ β2. As P is λ-closed, we can find a p ∈ P
such that, for every δ < β, p ≤ ps↾δ. Note that for every δ < β, there is α > αδ such that
ps↾δ+1 ⊩ “α ∈ Ḋ”. Thus, p ⊩ “αβ is a limit point of Ḋ”, so p ⊩ “Ḋ ∩ αβ ∈ Dαβ”. Find

p′ ≤ p and Ds ∈ Dαβ such that p′ ⊩ “Ḋ ∩αβ =Ds”. Let ps = p′. It is easy to see that this is
as desired.

Now suppose that λ is strongly inaccessible. We modify the previous argument slightly.
First, use Fodor’s Lemma to fix a γ < λ and a stationary S ⊆ λ+ such that, for every α ∈ S,
∣Dα∣ ≤ γ. Construct sequences ⟨ps ∣ s ∈ ≤γ2⟩ and ⟨αβ ∣ β ≤ γ⟩ exactly as in the previous case.
For each s ∈ γ2, let Es = {α > αγ ∣ there is q ≤ ps such that q ⊩ “α is a limit point of Ḋ”}.
Since ⊩P “Ḋ is club in λ+”, each Es contains a club, so E = ⋂s∈γ2Es contains a club in λ+.
Fix α ∈ E ∩ S. For each s ∈ γ2, find D′

s ∈ Dα and qs ≤ ps such that qs ⊩ “Ḋ ∩ α = D′
s. If

s, t ∈ γ2, s /= t, then, as in the previous case, D′
s /=D′

t, but this contradicts the fact that, since
α ∈ S ∣Dα∣ ≤ γ. This finishes the prove of the lemma and hence of the theorem.

Note that if GCH holds in V , then (ρ is regular and ρ<ρ = ρ)V Coll(ρ,<µ)
. Thus, by theorems

3.1 and 3.2, ◻∗ρ holds in V Coll(ρ,<µ), so we have the following consistency result:

Corollary 4.6 Suppose µ is a Mahlo cardinal, ρ < µ is a regular, uncountable cardinal, and
GCH holds in V . Then there is a generic extension in which

1. All cardinals less than or equal to ρ are preserved and µ = ρ+.

2. ◻∗ρ holds.

3. ◻ρ,<ρ fails.

Remark Mitchell [8] showed that if ρ > ω1 is regular and there is a Mahlo cardinal µ > ρ,
then there is a forcing extension in which all cardinals ≤ ρ are preserved and there are no
special ρ+-Aronszajn trees (and hence ◻∗ρ fails).

We will now prove another specific instance of the consistency of the separation of different
square principles. This theorem is due to Jensen, who proved the result using a Mahlo cardinal
rather than a measurable [6].

Theorem 4.7 Suppose κ is a measurable cardinal and ρ < κ is a regular, uncountable
cardinal. Then there is a generic extension in which

1. All cardinals less than or equal to ρ are preserved and κ = ρ+.

2. ◻ρ,2 holds.

3. ◻ρ fails.

9



Proof Let P = Coll(ρ,< κ). Let S = S(ρ,2)V P and let T = Tρ(
Ð→
C )V P∗S , where

Ð→
C is the

◻ρ,2-sequence added by S. V P∗S will be the model in which the desired conclusion will hold.
Fix an elementary embedding j ∶ V → M witnessing that κ is measurable. j ↾ P is the

identity map and thus gives the natural complete embedding of P into j(P) = Coll(ρ,< j(κ)).
In V P, ∣S∗T∣ < j(κ) and, by Lemma 4.2, S∗T has a dense ρ-closed subset. Thus, by Lemma
4.3, we can extend j ↾ P to a complete embedding of P∗S∗T into j(P) so that the quotient
forcing j(P)/P ∗ S ∗T is ρ-closed in V P∗S∗T.

Now let G be P-generic over V , let H be S-generic over V [G], let I be T-generic over
V [G ∗ H], and let J be j(P)/G ∗ H ∗ I-generic over V [G ∗ H ∗ I]. Then, by letting
j(τG) = j(τ)G∗H∗I for all P-names τ , we can extend j to j ∶ V [G] → M[G ∗H ∗ I ∗ J].
We now show how to further extend j so that its domain is V [G ∗H].

Let
Ð→
C = ⟨Cα ∣ α limit, α < κ⟩ = ⋃s∈H s (so

Ð→
C is the ◻ρ,2-sequence added by H). Let

C be the club in κ added by I. Note that for all s ∈ H, j(s) = s, and j′′C = C.
Ð→
C

is not a condition in j(S), since it has no top element. However, it is easy to see that

S =
Ð→
C ∪ {(κ,{C})} is a condition and that S ≤ s = j(s) for every s ∈H.

Now let K be j(S)-generic over V [G ∗H ∗ I ∗ J] such that S ∈K. j”H ⊆K, so we can
further extend j to j ∶ V [G ∗H]→M[G ∗H ∗ I ∗ J ∗K].

Suppose for sake of contradiction that
Ð→
D = ⟨Dα ∣ α limit, α < κ⟩ is a ◻ρ-sequence in

V [G ∗H].

Claim 4.8 In V [G ∗H ∗ I ∗ J], there is a club F ⊆ κ such that for every limit point α of
F , F ∩ α =Dα.

Let j(
Ð→
D) =

Ð→
E = ⟨Eα ∣ α limit, α < j(κ)⟩. Let F = Eκ. F ∈M[G ∗H ∗ I ∗ J ∗K], but

since j(S) is j(κ)-distributive, we have F ∈M[G ∗H ∗ I ∗ J]. For all α < κ, Dα = Eα, so
F ∩ α =Dα for every limit point α of F . Thus, F is as desired.

Note that, since j(P)/G ∗ H ∗ I is ρ-closed, by Lemma 4.5 we may assume that F ∈
V [G ∗H ∗ I].

Claim 4.9 F ∈ V [G ∗H].

Suppose not. Then there is an S ∗ T-name Ḟ ∈ V [G] such that ḞH∗I = F and ⊩V [G]
S∗T

“Ḟ /∈ V [G][GS]”. We claim that for all (s, t) ∈ S∗T, there are s′ ≤ s, t0, t1, and α such that
(s′, t0), (s′, t1) ≤ (s, t) and the conditions (s′, t0) and (s′, t1) decide the statement “α ∈ Ḟ”
in opposite ways. For, if not, we can define in V [G] an S-name Ḟ ′ such that for all s′ ≤ s
and all α < ρ+, s′ ⊩V [G] “α ∈ Ḟ ′” if and only if there is t′ such that (s′, t′) ≤ (s′, t) and
(s′, t′) ⊩V [G] “α ∈ Ḟ”. Then (s, t) ⊩V [G] “Ḟ ′ = Ḟ”, contradicting the assumption that
F /∈ V [G ∗H].

Fix a condition (s, t) such that (s, t) ⊩V [G] “For every limit point α of Ḟ , Ḟ ∩ α = Dα”.
Fix s′ ≤ s, t0, t1 ≤ t, and α < ρ+ such that (s′, t0), (s′, t1) ≤ (s, t) and (s′, t0) and (s′, t1)
decide the statement “α ∈ Ḟ” in opposite ways. Now recursively construct sij , t

i
j , and αij for

i ∈ ω and j ∈ {0,1} such that:

1. s0
0 ≤ s′ and, for all i ∈ ω, si+1

0 ≤ si1 ≤ si0.
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2. α < α0
0 and, for all i ∈ ω, αi0 < αi1 < αi+1

0 .

3. For each j ∈ {0,1}, (s0
j) ≤ (s′, tj) and, for all i ∈ ω, (si+1

j , ti+1
j ) ≤ (sij , tij).

4. For each i ∈ ω and j ∈ {0,1}, (sij , tij) ⊩V [G] “αij ∈ Ḟ”.

The construction is straightforward. Now let α∗ = sup{αij ∣ i ∈ ω, j ∈ {0,1}}. For

j ∈ {0,1}, let t∗j = ⋃i tij ∪{α∗}, and let s∗ = ⋃i,j sij ∪{(α∗,{t∗j ∩α∗ ∣ j ∈ {0,1}})} (note that
each t∗j ∩ α∗ ∈ V [G], since S is ρ+-distributive in V [G]). Now s∗ ∈ S and (s∗, t∗j ) ∈ S ∗ T
for j ∈ {0,1}. Find s̄ ≤ s∗ such that s̄ decides the value of Dα∗ . For each j ∈ {0,1},
(s̄, t∗j ) ⊩V [G] “α∗ is a limit point of Ḟ , so Ḟ ∩ α∗ = Dα∗”. But α < α∗, and (s̄, t∗0) and

(s̄, t∗1) decide the statement “α ∈ Ḟ” in opposite ways. Contradiction.

Thus, F ∈ V [G ∗H]. But F threads
Ð→
D , which was supposed to be a ◻ρ-sequence in

V [G∗H]. This is a contradiction, so ◻ρ fails in V [G∗H], thus proving the theorem.

Slight modifications of this proof will yield separation results for any ◻ρ,µ and ◻ρ,<µ where
ρ is regular and 1 < µ < ρ. Cummings, Foreman, and Magidor, in [2], provided a further
modification to obtain a similar result at singular cardinals. Their result is specifically about
ℵω, but similar methods work at other singular cardinals:

Theorem 4.10 Suppose κ is a supercompact cardinal and 2κ
+ω = κ+ω+1. Let µ and ν be

cardinals such that 1 ≤ µ < ν < ℵω. Then there is a generic extension in which:

1. All cardinals less than or equal to ν are preserved.

2. ℵω = κ+ωV .

3. ◻ℵω ,ν holds.

4. ◻ℵω ,µ fails.

5 Scales

We now introduce another intermediary combinatorial principle which has useful applications
and follows from weakenings of square.

Let λ be a singular cardinal. Let Ð→µ = ⟨µi ∣ i < cf(λ)⟩ be an increasing sequence of regular
cardinals cofinal in λ. For f and g in ∏i<cf(κ) µi, we say that f <∗ g if {j < cf(λ) ∣ f(j) ≥
g(j)} is bounded in cf(λ). Similarly, f ≤∗ g if {j < cf(λ) ∣ f(j) > g(j)} is bounded in cf(λ).

Definition If λ and Ð→µ are as above, a (λ+,Ð→µ )-scale is a sequence ⟨fα ∣ α < λ+⟩ such that:

1. For every α < λ+, fα ∈∏i<cf(κ) µi

2. For every α < β < λ+, fα <∗ fβ

3. For every g ∈∏i<cf(κ) µi, there is α < λ+ such that g <∗ fα

11



Shelah, as part of PCF theory, proved the following [12]:

Theorem 5.1 If λ is a singular cardinal, then there is a sequence Ð→µ such that there is a
(λ+,Ð→µ )-scale.

Definition Let D be a set of ordinals and let ⟨fδ ∣ δ ∈ D⟩ be a sequence of functions in
cf(λ)OR such that, for all δ, δ′ ∈ D, if δ < δ′, then fδ <∗ fδ′ . The sequence is said to be
strongly increasing if, for each δ ∈ D, there is an iδ ∈ cf(λ) such that, for all δ, δ′ ∈ D, if
δ < δ′ and j ≥ iδ, iδ′ , then fδ(j) < fδ′(j).

The following are useful strengthenings of the notion of a scale:

Definition 1. A λ+-scale ⟨fα ∣ α < λ+⟩ is good if, for every limit ordinal α < λ+, there is
Dα ⊆ α such that Dα is cofinal in α and ⟨fβ ∣ β ∈Dα⟩ is strongly increasing.

2. A λ+-scale ⟨fα ∣ α < λ+⟩ is better if in the definition of a good scale one can assume
in addition that each Dα is club in α.

3. A λ+-scale ⟨fα ∣ α < λ+⟩ is very good if in the definition of a good scale one can
assume in addition that each Dα is club in α and that there is a j ∈ cf(λ) such that,
if i ≥ j, β, γ ∈Dα, and β < γ, then fβ(i) < fγ(i).

There is a relationship between square principles and the existence of good scales. For
example, the following theorem, a proof of which can be found in [2], provides a sufficient
condition for the existence of very good scales.

Theorem 5.2 If λ is singular, κ < λ, and ◻λ,κ holds, then there is a very good λ+-scale.

We give the proof here of an analogous theorem, also from [2], relating weak square and
the existence of better scales.

Theorem 5.3 If λ is singular and ◻∗λ holds, then there is a better λ+-scale.

Proof Let ⟨fα ∣ α < λ+⟩ be a (λ+,Ð→µ )-scale for some Ð→µ = ⟨µi ∣ i < cf(λ)⟩. We will improve
this scale to a better (λ+,Ð→µ )-scale, ⟨gα ∣ α < λ+⟩. Fix a ◻∗λ-sequence, ⟨Cα ∣ α limit, α < λ+⟩
such that for all α and all C ∈ Cα, otp(C) < λ. We will define ⟨gα ∣ α < λ+⟩ by induction.

If gα has been defined, choose gα+1 such that fα+1 ≤∗ gα+1 and gα <∗ gα+1.
Suppose α is a limit ordinal and gβ has been defined for all β < α. For each C ∈ Cα, define

hC ∈∏µi so that

hC(i) = { 0 ∶ µi ≤ otp(C)
supβ∈C(gβ(i)) ∶ otp(C) < µi

Since ∣Cα∣ ≤ λ, we can choose gα such that fα ≤∗ gα and hC <∗ gα for every C ∈ Cα.
It is immediate from the construction that ⟨gα ∣ α < λ+⟩ is a (λ+,Ð→µ )-scale. We claim that

it is in fact a better scale. To show this, let α < λ+ be a limit ordinal. If cf(α) = ω, then
any D which has order type ω, is cofinal in α, and consists of successor ordinals witnesses
that ⟨gα ∣ α < λ+⟩ is a better scale. So, suppose that cf(α) > ω. Pick C ∈ Cα. Let D be
the club subset of α consisting of the limit points of C. For β ∈ D, C ∩ β ∈ Cβ. Thus, in
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defining gβ, we considered the function hC∩β, so hC∩β ≤∗ gβ. Pick iβ < cf(λ) such that for
all iβ < j < cf(λ), otp(C) < µj and hC∩β(j) ≤ gβ(j). Now let β,β′ ∈ D with β < β′. If
j ≥ iβ, iβ′ , then gβ(j) < hC∩β′(j) ≤ gβ′(j). Thus, D witnesses that ⟨gα ∣ α < λ+⟩ is a better
scale.

Scales can be useful as tools for constructing interesting objects. An example is given by
the following [2]:

Theorem 5.4 If λ is a singular cardinal and there exists a better λ+-scale, then there is a
sequence ⟨Aα ∣ α < λ+⟩ such that:

1. For each α < λ+, ∣Aα∣ = cf(λ).

2. For each α < λ+, Aα is a cofinal subset of λ.

3. For each β < λ+, there is a function gβ ∶ β → λ such that {Aα∖gβ(α) ∣ α < β} consists
of mutually disjoint sets.

Remark Note that there can be no function g ∶ λ+ → λ such that {Aα ∖ g(α) ∣ α < λ+}
consists of disjoint sets. This theorem therefore gives an example of incompactness.

Proof Let ⟨fα ∣ α < λ+⟩ be a better (λ+,Ð→µ )-scale. For each α < λ+, let Aα be a subset of
λ which codes fα in a canonical way. By induction on β, we will show that for every β < λ+,
there is a function gβ ∶ β → λ such that {Aα ∖ gβ(α) ∣ α < β} consists of pairwise disjoint
sets.

First, suppose that β = β′ + 1. Let gβ(β′) = 0. If α < β′, let kα ∈ cf(λ) be large enough
so that µkα > gβ′(α) and, if j ≥ kα, then fα(j) < fβ′(j). Then, let gβ(α) = µkα . It is clear
that this gβ is as required.

Now suppose that β is a limit ordinal. Since ⟨fα ∣ α < λ+⟩ is a better scale, there is D,
a club in β, such that, for each γ ∈ D, there is an iγ < cf(λ) such that, for every γ < γ′ in
D, if j ≥ iγ , iγ′ , then fγ(j) < fγ′(j). Let α < β. Then there is a unique γ ∈ D such that
γ ≤ α < γ̄, where γ̄ denotes the smallest ordinal of D larger than γ. Define kα ∈ cf(λ) such
that

• kα > iγ , iγ̄

• If j ≥ kα, then fγ(j) < fα(j) < fγ̄(j), and

• µkα > gγ̄(α)

Then, let gβ(α) = µkα . We claim that this gβ works. To show this, take α < α′ < β. If α and
α′ belong to the same interval of D (i.e., if there is γ ∈ D such that γ < α < α′ < γ̄), then
gβ(α) > gγ̄(α) and gβ(α′) > gγ̄(α′), so ((Aα ∖ gβ(α))∩ (Aα′ ∖ gβ(α′))) ⊆ ((Aα ∖ gγ̄(α))∩
(Aα′ ∖ gγ̄(α′))) = ∅.

Suppose that α and α′ do not belong to the same interval. Let γ, γ′ ∈ D be such
that γ < α < γ̄ and γ′ < α′ < γ̄′. Note that γ̄ ≤ γ′. Now, if µj > gβ(α), gβ(α′), then
fα(j) < fγ̄(j) ≤ fγ′(j) < fα′(j). Thus, gβ is as required.
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6 Examples of Incompactness

We will now use the result of Theorem 5.4 to construct two concrete examples of incom-
pactness, one of a topological nature and the other algebraic.

Theorem 6.1 Let λ be a singular cardinal with cf(λ) = ω. If ◻∗λ holds, then there is a first
countable topological space X such that X is not metrizable, but every subspace Y ⊂ X
with ∣Y ∣ < λ+ is metrizable.

Proof Since ◻∗λ holds and cf(λ) = ω, there is a sequence ⟨Aβ ∣ λ < β < λ+⟩ such that, for
every β,

1. Aβ is a cofinal subset of λ

2. Aβ is countable

3. There is a function gβ ∶ β → λ such that {Aα ∖ gβ(α) ∣ λ < α < β} consists of pairwise
disjoint sets.

We define a topological space X = λ ∪ (λ,λ+). λ is endowed with the discrete topology.
In general, a subset U of X is open if for all α such that λ < α < λ+, if α ∈ U , then Aα ∖U
is finite. Note that X is first countable: if α < λ, then {α} is a neighborhood base for α. If
α ∈ (λ,λ+), then the cofinite subsets of Aα form a neighborhood base.

We show that every subspace Y ⊂ X such that ∣Y ∣ < λ+ is metrizable. First note that
every such subspace Y is contained in λ ∪ (λ,β) for some β < λ+. It thus suffices to prove
that λ ∪ (λ,β) is metrizable for every β < λ+. Fix such a β. Pick gβ ∶ β → λ such that
{Aα ∖ gβ(α) ∣ λ < α < β} consists of mutually disjoint sets. For each λ < α < β, enumerate
Aα as {ηαn ∣ n < ω}. Set d(α, ηαn) = 1/n if ηαn ∈ Aα∖gβ(α) and d(α, γ) = 1 in all other cases.
It is routine to check that d is a metric and induces the subspace topology on λ ∪ (λ,β).

Finally, we show that X is not metrizable. Suppose for sake of contradiction that d is a
metric compatible with X. Note that, if λ < α < λ+, then {α} ∪Aα is an open set. Thus,
there is an nα < ω such that if d(α,x) < 1/nα, then x ∈ Aα. Also, as α = limk→∞ η

α
k ,

there is an ηα ∈ Aα such that d(α, ηα) < 1/(2nα). Find α < α′ such that nα = nα′ = n and
ηα = ηα′ = η. Then d(α, η) < 1/(2n) and d(α′, η) < 1/(2n), so d(α,α′) < 1/n. But this
means that α′ ∈ Aα, which is a contradiction, since α′ /∈ λ.

Theorem 6.2 Let κ be a singular cardinal with cf(κ) = ω. If ◻∗κ holds, then there is an
abelian group G of cardinality κ+ such that every subgroup of G of cardinality < κ+ is free
but G is not free itself.

Proof As before, fix a sequence ⟨Aβ ∣ κ < β < κ+⟩ such that, for all β,

1. Aβ is a cofinal subset of κ

2. Aβ is countable

3. There is a function gβ ∶ β → κ such that {Aα ∖ gβ(α) ∣ κ < α < β} consists of pairwise
disjoint sets.
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Enumerate each Aβ as ⟨ηnβ ∣ n < ω⟩. Let G be the abelian group generated by elements

{Xη ∣ η < κ} ∪ {Znβ ∣ n < ω,κ < β < κ+} subject to the relations 2Zn+1
β −Znβ = Xηn

β
for every

n < ω and κ < β < κ+. G can be thought of us the quotient of the free abelian group, F ,
generated by {Xη ∣ η < κ} ∪ {Znβ ∣ n < ω,κ < β < κ+} with respect to these relations (so G
consists of cosets of F ). To simplify notation, we will use Xη and Znβ to refer to the cosets
of F in G containing Xη and Znβ , respectively.

Claim 6.3 If H is a subgroup of G and ∣H ∣ < κ+, then H is free.

Because a subgroup of a free group is necessarily free, it suffices to prove that if H is
generated by {Xη ∣ η < κ} ∪ {Znα ∣ n < ω,κ < α < β} for some β < κ+, then H is free.
For each α < β, let kα = gβ(α), and let A∗

α = {ηiα ∣ i ≥ kα} (so ⟨A∗
α ∣ κ < α < β⟩ is a

sequence of pairwise disjoint sets). We claim that H is generated freely by S = {Xη ∣ η /∈
⋃α<β A∗

α} ∪ {Ziα ∣ κ < α < β, i ≥ kα}.
Let H ′ be the group generated by S. We will show that H ′=H. First, fix η < κ. If

η /∈ ⋃α<β A∗
β, then Xη is a generator of H ′. So, suppose that η ∈ A∗

α for some α < β. Then

η = ηiα for some i ≥ kα. But then Zi+1
α and Ziα are in S, so, since 2Zi+1

α −Ziα =Xηiα
, we have

that Xη ∈ H ′. Thus, Xη ∈ H ′ for every η < κ. Now fix α such that κ < α < β. Zkα−1
α ∈ H ′,

since 2Zkαα −Zkα−1
α =X

ηkα−1α
and both Zkαα and X

ηkα−1α
are in H ′. Continuing inductively in

this way, one shows that Ziα ∈ H ′ for every κ < α < β and i < ω. Thus, H ⊆ H ′, so in fact
H =H ′.

We now check that S generates H freely. To do this, suppose we have a relation ∑ riZ`iβi +
∑ sjXηj = 0 which holds in H (and hence in G), where all Z`iβi and Xηj are from S. Then,
by the construction of G, it must be the case that this relation is a linear combination of
our basic relations of the form 2Zn+1

α − Znα −Xηnα = 0 for n < ω and κ < α < κ+. Say that

∑ riZ`iβi + ∑ sjXηj = ∑ tkRk, where the Rk are of the form 2Zn+1
α − Znα −Xηnα . Let LHS

denote ∑ riZ`iβi +∑ sjXηj and RHS denote ∑ tkRk.

Subclaim 6.4 If κ < α < κ+ and i < ω are such that Ziα is not in S, then 2Zi+1
α −Ziα −Xηiα

cannot appear in the RHS.

First note that if Ziα /∈ S, then Zjα /∈ S for all j < i. Now suppose for sake of contradiction
that Ziα /∈ S but 2Zi+1

α −Ziα−Xηiα
does appear in the RHS. Then, since Ziα does not appear in

the LHS, it must be canceled by another term in the RHS. But the only term that can do this
is 2Ziα−Zi−1

α −Xηi−1α
, so this term must appear in the RHS. But then, continuing inductively,

we find that 2Z1
α − Z0

α −Xη0
α

must appear in the RHS. Z0
α /∈ S, so it doesn’t appear in the

LHS. However, there is nothing that can cancel it in the RHS. This is a contradiction and
proves the subclaim.

We now claim that the LHS is not of the form ∑ sjXηj (where at least one sj is nonzero).
To show this, suppose for sake of contradiction that it is of this form. Suppose η is such
that Xη appears in the LHS. Then Xη must appear in the RHS. Then there is κ < α < κ+
and i < ω such that η = ηiα and 2Zi+1

α − Ziα −Xηiα
appears in the RHS. But Ziα does not
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appear in the LHS, so something must cancel it in the RHS. By the same argument as in
the subclaim, we arrive at a contradiction.

Now suppose that some ri in the LHS is non-zero. Fix α such that Z`iα appears in the LHS
for some `i. Let ` be smallest such that Z`α appears in the LHS. Note that, by the subclaim,
2Z`α −Z`−1

α −Xη`−1α
cannot appear in the RHS. Thus, 2Z`+1

α −Z`α −Xη`α
appears in the RHS.

η`α ∈ A∗
α, so Xη`α

/∈ S, so it does not appear in the LHS. It must therefore be canceled in the

LHS. This implies that there is γ /= α and j < ω such that η`α = ηjγ and 2Zj+1
γ − Zjγ −Xηjγ

appears on the RHS. But, since γ /= α, either γ ≥ β or γ < β and ηjγ /∈ A∗
γ (so j < kγ). In

either case, Zjγ /∈ S, contradicting the sublaim. Thus, the relation is trivial, so S generates
H freely.

Claim 6.5 G is not free.

Suppose for sake of contradiction that G is free. Fix a set of T of elements of G such that
T generates G freely. By the regularity of κ+, we can find a β < κ+ such that, if H is the
subgroup generated by {Xη ∣ η < κ} ∪ {Znα ∣ n < ω, α < β}, then H is generated freely by
T ∩H. It follows that the quotient group G/H is free.

Now, in G/H, we have that 2Zn+1
β − Znβ = 0 for all n < ω. Thus, for all n < ω, Z0

β =
2nZnβ . In particular, Z0

β is infinitely divisible. Since G/H is free, this means that, in G/H,

Z0
β = 0. This implies that Z0

β = ∑kiZniαi +∑ `jXηj , where each αi < β. Thus, the relation

Z0
β −∑kiZ

ni
αi −∑ `jXηj must hold in G, so this relation must be a linear combination of

basic relations of the form 2Zn+1
α − Znα −Xηnα = 0. But this is impossible, since, to account

for the Z0
β term, any such linear combination must contain some Znβ , where n > 0. Thus, G

is not free, and, in light of the fact that every subgroup of G of cardinality < κ+ is free, we
get also that ∣G∣ = κ+.

7 Suslin trees

Definition If κ is an infinite cardinal, then a Suslin tree on κ is a tree T such that the nodes
of T are ordinals less than κ and every branch and every antichain of T has cardinality < κ.

One of the first applications of the square principle was the following theorem of Jensen
[7]:

Theorem 7.1 If V=L, then, for all infinite cardinals κ, there is a Suslin tree on κ+.

The proof of this theorem actually shows that, if there are
Ð→
C and S such that

Ð→
C = ⟨Cα ∣

α limit, α < κ+⟩ is a ◻κ-sequence, S ⊆ κ+ is stationary such that, for all α limit, α < κ,
C ′
α ∩ S = ∅ (where C ′

α denotes the limit points of Cα), and ◇(S) holds, then there is a
Suslin tree on κ+.

We are interested in determining the minimal assumptions required to guarantee the ex-
istence of a Suslin tree. The situation is rather complex for successors of singular cardinals.
For example, if κ is a singular cardinal, it is unknown whether one can obtain a model in
which there are no Suslin trees on κ+ without killing all κ+-Aronszajn trees.
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The following result of Shelah [11] provides a slightly better result than Jensen’s original
theorem:

Theorem 7.2 If κ is an infinite cardinal, 2κ = κ+, and S ⊆ κ+ is stationary such that, for all
α ∈ S, cf(α) /= cf(κ), then ◇(S) holds.

Corollary 7.3 If κ is an infinite cardinal, ◻κ holds, and 2κ = κ+, then there is a Suslin tree
on κ+.

We prove here a strengthening of this result, showing that one can obtain a Suslin tree on
κ+ from weaker assumptions.

Theorem 7.4 If κ is an infinite cardinal, ◻κ,<cf(κ) holds, and 2κ = κ+, then there is a Suslin
tree on κ+.

Proof We begin with the following claim:

Claim 7.5 Suppose ⟨Cα ∣ α limit, α < κ+⟩ is a ◻κ,<cf(κ)-sequence. Then, for every stationary
S ⊆ κ+, there is a stationary S∗ ⊆ S and a ◻κ,<cf(κ)-sequence ⟨C∗α ∣ α limit, α < κ+⟩ such
that for all α, if C ∈ C∗α, then C ′ ∩ S∗ = ∅, where C ′ denotes the limit points of C.

We will prove this claim in parallel for singular and regular κ. If κ is singular, let ⟨κi ∣ i <
cf(κ)⟩ be a sequence of regular cardinals cofinal in κ such that, for all i, cf(κ) < κi. If κ
is regular, let κi = κ for all i < κ. We will now define, by induction on α < κ+, a sequence
⟨fα ∣ α < κ+⟩ (not necessarily a scale) such that, for all α,α′ < κ+, we have fα ∈ ∏κi and,
if α < α′, then fα <∗ f ′α.

If fα has been defined, we simply let fα+1 be such that fα <∗ fα+1. Suppose that α is a
limit ordinal and ⟨fβ ∣ β < α⟩ has been defined. If cf(α) < κ, let s(α) = sup{otp(C) ∣ C ∈
Cα, otp(C) < κ}. Note that, since ∣Cα∣ < cf(κ), we have s(α) < κ. Now, for each C ∈ Cα,
define hC ∈∏κi by

hC(i) = { 0 ∶ κi ≤ otp(C)
supβ∈C{fβ(i) + 1} ∶ otp(C) < κi

If κ is singular, then, for all i < cf(κ), let fα(i) = supC∈Cα{hC(i)}. If κ is regular and
cf(α) < κ, then let fα(i) = supC∈Cα{hC(i)}. If κ is regular and cf(α) = κ, then simply let
fα be any <∗ bound for ⟨fβ ∣ β < α⟩.

Let S ⊆ κ+ be stationary. Assume that, for all α ∈ S, cf(α) < κ. By Fodor’s Lemma, we
can find a stationary S̄ ⊆ S and a µ < κ such that s(α) = µ for all α ∈ S̄. Fix i such that
µ < κi. Apply Fodor’s Lemma again to obtain a stationary S∗ ⊆ S̄ and an η < κi such that
fα(i) = η for every α ∈ S∗.

Let β < κ+ be such that cf(β) > ω. We claim that for every C ∈ Cβ, C ′ ∩ S∗ contains at
most one point. Suppose for sake of contradiction that α < α′ are such that α,α′ ∈ C ′ ∩S∗.
Then C ∩α′ ∈ Cα′ , so we considered C ∩α′ when we defined fα′ . Since otp(C ∩α′) ≤ µ < κi,
hC∩α′ = supγ∈C∩α′{fγ(i)+1}. Then fα′(i) = supD∈Cα′{hD(i)} ≥ hC∩α′(i) > fα(i). But this
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contradicts the fact that α,α′ ∈ S∗. Thus, C ′∩S∗ contains at most one point, so, as before,
we can adjust the ◻κ,<cf(κ)-sequence so that it avoids S∗. This finishes the claim.

We will now sketch the construction of a κ+-Suslin tree. The construction is very much
like Jensen’s original construction, which can be found in [7]. The reader is directed there
for more details.

By the claim, we can assume that ⟨Cα ∣ α limit, α < κ+⟩ is a ◻κ,<cf(κ) -sequence, S ⊆ κ+
is stationary such that cf(α) /= cf(κ) for all α ∈ S and, for all limit α < κ+ and C ∈ Cα, we
have C ′ ∩ S = ∅. By the above theorem of Shelah, ◇(S) holds, i.e., there is a sequence
⟨Bα ∣ α ∈ S⟩ such that, for all X ⊆ κ+, {α ∣ α ∈ S, X ∩ α = Bα} is stationary in κ+.

We will define a Suslin tree on κ+ by recursion on the levels of the tree. At the successor
stage, we will simply split above each node, so that every node on level α of the tree has
two immediate successors in level α + 1. If α is a limit ordinal, we define level α of the tree
as follows. Let Tα be the tree up to level α. For every x ∈ Tα and every C ∈ Cα, we will
define a branch in Tα, bx,C , that will be continued. Let lev(x) denote the level of x in Tα.

Suppose first that α /∈ S. Let x0 = x. Let x1 be the least ordinal in Tα above x0 in level
β0, where β0 is the least β ∈ C such that β > lev(x0). If xγ has been defined, let xγ+1

be the least ordinal above xγ in level βγ of the tree, where βγ is the least β ∈ C such that
β > lev(xγ). If γ is a limit ordinal, let xγ be the least ordinal in level supη<γ{βη} of the
tree such that xγ is above xη for every η < γ. Continue in this manner until reaching a
stage δ such that {lev(xγ) ∣ γ < δ} is cofinal in α. By the same argument used in Jensen’s
original proof, the coherence of the square sequence ensures that the construction will not
break down before this point. Let bx,C be the downward closure of {xγ ∣ γ < δ}, and place
one node above bx,C in level α of the tree.

If α ∈ S, then, if possible, let x0 be the least ordinal above x in Tα such that x0 ∈ Bα and
then continue defining bx,C as above.

It is routine to check by induction on α < κ+ that ∣Tα∣ ≤ κ. The rest of the argument that
T is a Suslin tree is exactly as in Jensen’s original proof.

8 The failure of square

In this section, we investigate the consistency strength of the failure of various square prin-
ciples. We start with the following proposition of Burke and Kanamori (see [9]).

Proposition 8.1 Suppose κ is a strongly compact cardinal, µ is a regular cardinal, and
κ ≤ µ. Then, for all stationary S ⊆ µ such that cf(α) < κ for all α ∈ S, S reflects to some
β < µ.

Corollary 8.2 If κ is a strongly compact cardinal, then ◻λ,<cf(λ) fails for every λ ≥ κ.

The following result of Shelah provides a stronger result for singular cardinals above a
strongly compact.

Theorem 8.3 Suppose κ is a strongly compact cardinal, λ is a singular cardinal, and cf(λ) <
κ. Then there is no good λ+-scale.
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Corollary 8.4 If κ is strongly compact, λ is a singular cardinal, and cf(λ) < κ, then ◻∗λ fails.

However, a result of Cummings, Foreman, and Magidor [2] limits the extent to which the
preceding results can be strengthened:

Theorem 8.5 Suppose the existence of a supercompact cardinal is consistent. Then it is
consistent that there is a supercompact cardinal κ such that ◻λ,cf(λ) holds for all singular
cardinals λ such that cf(λ) ≥ κ.

We showed in Section 4 how to force to obtain the failure of square at a regular cardinal.
Forcing to obtain the failure of square at a singular cardinal is more difficult. The following
large cardinal notion will be of help in achieving this goal.

Definition A cardinal κ is subcompact if, for all A ⊆Hκ+ , there is a µ < κ, a B ⊆Hµ+ , and
a π ∶ ⟨Hµ+ , ∈,B⟩ → ⟨Hκ+ , ∈,A⟩ such that π is an elementary embedding with critical point
µ.

Proposition 8.6 If κ is a subcompact cardinal, then ◻κ,<κ fails.

Proof Suppose for sake of contradiction that ⟨Cα ∣ α limit, α < κ+⟩ is a ◻κ,<κ-sequence. We
can code this sequence in a canonical way as a subset A of Hκ+ . By subcompactness, there is
a µ < κ, a B ⊆Hµ+ , and a π ∶ ⟨Hµ+ , ∈,B⟩→ ⟨Hκ+ , ∈,A⟩ such that π is elementary with critical
point µ. By absoluteness of our coding, B codes a ◻µ,<µ-sequence, ⟨C∗β ∣ β limit, β < µ+⟩.
Let D = {π(ρ) ∣ ρ < µ+}, and let η = sup(D). Let C ∈ Cη, and let E = C ∩D. Note that
E is a < µ-closed, unbounded subset of η. Now, for every limit α < µ+, since ∣C∗α∣ < µ,
π[C∗α] = Cπ(α). Thus, if π(α) ∈ E, then C ∩ π(α) is in the range of π. Therefore, if
F = ⋃{π−1(C∩π(α)) ∣ π(α) ∈ E}, then F is an unbounded subset of µ+ such that F ∩α ∈ C∗α
for every α that is a limit point of E. But this contradicts the fact that ⟨C∗α ∣ α limit, α < µ+⟩
is a ◻µ,<µ-sequence. Thus ◻κ,<κ fails.

Another notion that will be of use to us is that of Prikry forcing. Let κ be a measurable
cardinal, and fix a normal measure U on κ. The Prikry forcing poset Pκ consists of conditions

of the form ⟨
Ð→
β ,A⟩, where

Ð→
β is a finite, increasing sequence from κ and A ∈ U . We say that

⟨
Ð→
β ∗,A∗⟩ ≤ ⟨

Ð→
β ,A⟩ if and only if A∗ ⊆ A,

Ð→
β ∗ is an end extension of

Ð→
β , and

Ð→
β ∗∖

Ð→
β ⊆ A. In

V Pκ , κ is a singular cardinal of countable cofinality. An important feature of this forcing is
that it has the Prikry property: Given a statement Φ in the forcing language and a condition

⟨
Ð→
β ,A⟩, there is an A∗ ⊆ A such that ⟨

Ð→
β ,A∗⟩ decides the truth value of Φ.

We now present a result, due to Zeman, on the consistency of the failure of square at
singular cardinals of countable cofinality.

Theorem 8.7 Suppose κ is a subcompact measurable cardinal, and let Pκ be Prikry forcing
for κ with respect to a normal measure U . Then ◻κ fails in V Pκ .
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Proof Suppose for sake of contradiction that ◻κ holds in V Pκ . Let ⟨Ċα ∣ α limit, α < κ+⟩
be a sequence of Pκ-names forced to be a ◻κ sequence. Pκ and ⟨Ċα ∣ α limit, α < κ+⟩ can
be coded by a single set A ⊆ Hκ+ . As κ is subcompact, there are µ < κ, Ā ⊆ Hµ+ , and
π ∶ ⟨Hµ+ , ∈, Ā⟩ → ⟨Hκ+ , ∈,A⟩ such that π is elementary and µ = crit(π). By decoding Ā,

we obtain a forcing poset Pµ and a sequence of Pµ-names, ⟨ ˙̄Cα ∣ α limit, α < µ+⟩. By the

elementarity of π, we may assume that every member of Pµ is of the form ⟨
Ð→
β ,B⟩, where

Ð→
β ∈ <ωµ and B ⊆ µ is such that π(B) ∈ U .

For α < µ+ of countable cofinality, fix a condition ⟨
Ð→
β α,Bα⟩ ∈ Pµ and an ηα < µ such

that ⟨
Ð→
β α,Bα⟩ ⊩ otp( ˙̄Cα) = η̌α. By Fodor’s Lemma, we get a fixed

Ð→
β and η such that

S = {α ∣ cf(α) = ω, ∃Bα(⟨
Ð→
β ,Bα⟩ ⊩ otp( ˙̄Cα) = η̌)} is stationary in µ+. Note that, for any

α,α′ ∈ S, ⟨
Ð→
β ,Bα⟩ and ⟨

Ð→
β ,Bα′⟩ are compatible. Let ρ = supπ”µ+. π”µ+ is ω-closed and

cofinal in ρ, so, as S is stationary in µ+, π”S is a stationary subset of ρ.

Let D = {γ ∣ γ < ρ, cf(γ) = ω, ∃B ∈ U(⟨
Ð→
β ,B⟩ ⊩ “γ is a limit point of Ċρ”)}. We claim

first that D is ω-closed. To show this, let ⟨γi ∣ i < ω⟩ be an increasing sequence from D. For

each i < ω, there is Bi ∈ U such that ⟨
Ð→
β ,Bi⟩ ⊩ γ̌i ∈ Ċρ. Then ⟨

Ð→
β ,⋂i<ωBi⟩ ⊩ sup(γ̌i) ∈ Ċρ.

We next claim that D is unbounded in ρ. Suppose for sake of contradiction that D is
bounded. Let F be a club in ρ such that otp(F ) = µ+ < κ and, for every δ ∈ F , sup(D) < δ.

Then for every δ ∈ F , there is a Bδ ∈ U such that ⟨
Ð→
β ,Bδ⟩ ⊩ “δ̌ is not a limit point of Ċρ”.

Then ⟨
Ð→
β ,⋂δ∈F Bδ⟩ ⊩ F̌ ∩ Ċδ = ∅. But Ċρ is forced to be a club in ρ, and cf(ρ)VPκ = µ+, so

F is a club subset of ρ in V Pκ . This is a contradiction.
Thus, D is an unbounded, ω-closed subset of ρ. Since cf(α) = ω for all α ∈ π”S, we know

that π”S ∩D is unbounded in ρ. Let γ1, γ2 < µ+ be such that π(γ1), π(γ2) ∈ π”S ∩D.

We know that there are B∗
1 and B∗

2 such that ⟨
Ð→
β ,B∗

1 ⟩ ⊩Pµ otp( ˙̄Cγ1) = η̌ and ⟨
Ð→
β ,B∗

2 ⟩ ⊩Pµ
otp( ˙̄Cγ2) = η̌. Thus, appealing to the elementarity of π, there are B1,B2 ∈ U such that

⟨
Ð→
β ,B1⟩ ⊩ otp(Ċπ(γ1)) = η̌ and ⟨

Ð→
β ,B2⟩ ⊩ otp(Ċπ(γ2)) = η̌. Also, there are B3,B4 ∈ U

such that ⟨
Ð→
β ,B3⟩ ⊩ π(γ̌1) is a limit point of Ċρ and ⟨

Ð→
β ,B4⟩ ⊩ π(γ̌2) is a limit point of

Ċρ. But then ⟨
Ð→
β ,B1 ∩ B2 ∩ B3 ∩ B4⟩ ⊩ Ċπ(γ1) = Ċρ ∩ π(γ1), Ċπ(γ2) = Ċρ ∩ π(γ2), and

otp(Ċπ(γ1)) = otp(Ċπ(γ2)). This is a contradiction. Thus, ◻κ fails in V Pκ .

There is a limit to how far we can extend this result, though, as evidenced by the following
theorem of Cummings and Schimmerling [3].

Theorem 8.8 Suppose that κ is a measurable cardinal and Pκ is Prikry forcing for κ. Then
◻κ,ω holds in V Pκ .

9 Weak squares at singular cardinals

We end with a result showing that it is difficult to avoid weak squares at singular cardinals.
The theorems in this section are due both to Gitik and to Dzamonja and Shelah. We start
with a definition.
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Definition Let S ⊆ κ+ be a set of ordinals. We say that ⟨Cα ∣ α limit, α ∈ S⟩ is a partial
square sequence if, for all limit α ∈ S:

1. Cα is a club in α.

2. If β is a limit point of Cα, then β ∈ S and Cβ = Cα ∩ β.

3. otp(Cα) ≤ κ.

If such a sequence exists, then we say that S carries a partial square sequence.

The following fact is due to Shelah and can be found in [12].

Proposition 9.1 Suppose κ is a regular cardinal and κ > ℵ1. Then there is a sequence of
sets ⟨Si ∣ i < κ⟩ such that

1. ⋃i<κ Si = {α < κ+ ∣ cf(α) < κ}.

2. For each i < κ, Si carries a partial square sequence, ⟨Ciα ∣ α limit, α ∈ Si⟩.

Moreover, if κ is weakly inaccessible, then for every i < κ, there is µi < κ such that for all
limit α ∈ Si, otp(Ciα) < µi.

Theorem 9.2 Suppose W is an outer model of V , κ is an inaccessible cardinal in V and a
singular cardinal in W , and (κ+)V = (κ+)W . In V , let ⟨Dα ∣ α < κ+⟩ be a sequence of clubs
in κ. Then, in W , there is a sequence ⟨δi ∣ i < cf(κ)⟩ cofinal in κ such that, for each α < κ+,
{δi ∣ i < cf(κ)⟩∖Dα is bounded in κ. Moreover, if µ < κ, then we may assume that for every
i < cf(κ), cf(δi) ≥ µ.

Remark We will omit the proof of the ”Moreover” clause at the end of the theorem and
refer the interested reader to [5]. We give the proof of the remainder of the theorem here.

Proof Let cf(κ)W = µ. In V , let ⟨Si ∣ i < κ⟩ be as given by Proposition 9.1. For each i < κ,
let ⟨Ciα ∣ α limit, α ∈ Si⟩ be a partial square sequence and let µi < κ be such that for all
limit α ∈ Si, otp(Ciα) < µi. Since (κ+)V = (κ+)W and the relevant notions are absolute, the
following holds in W :

1. ⋃i<κ Si ⊇ {α < κ+ ∣ cf(α) /= µ}.

2. For each i < κ, ⟨Ciα ∣ α limit, α ∈ Si⟩ is a partial square sequence.

3. For each i < κ, for all limit α ∈ Si, otp(Ciα) < µi.

We now work in W .

Claim 9.3 There is an i∗ < κ such that, if C ∈W is a club in κ+, then for stationarily many
α ∈ Si∗ , Ci

∗
α ∩C is a club in α and cf(α) = µ+.
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Sκ
+
µ+ = {α < κ+ ∣ cf(α) = µ+} is stationary in κ+ and Sκ

+
µ+ ⊆ ⋃i<κ Si, so we can find an

i∗ < κ such that Si∗ ∩Sκ
+
µ+ is stationary. But then, if C is a club in κ+ and α ∈ Si∗ ∩Sκ

+
µ+ ∩C ′,

then C ∩Ci∗α is a club in α and cf(α) = µ+.

Claim 9.4 In V , there is a sequence ⟨D∗
α ∣ α < κ+⟩ such that:

1. For each α < κ+, D∗
α is a club in κ and D∗

α ⊆Dα.

2. If α < β < κ+, then ∣D∗
β ∖D

∗
α∣ < κ.

3. If β ∈ Ci∗α , then D∗
α ⊆D∗

β.

Work in V . We will prove this claim by recursion on α < κ+. Let D∗
0 = D0. Suppose

⟨D∗
β ∣ β < α⟩ has been defined. Let Dα = ∆β<αD

∗
β. If α ∈ Si∗ , let D∗

α =Dα∩Dα∩⋂β∈Ci∗α D∗
β.

If α /∈ Si∗ , let D∗
α =Dα∩Dα. Note that D∗

α is a club in κ and that the sequence ⟨D∗
α ∣ α < κ+⟩

is as required.
Move back to W . Let ⟨ργ ∣ γ < µ⟩ be a strictly increasing sequence cofinal in κ. Assume

moreover that the sequence is anti-continuous, i.e., for every limit γ < µ, supγ′<γ ργ′ < ργ . Let
Fγ be the interval (supγ′<γ ργ′ , ργ). For every α < κ+, if D∗

α∩Fγ /= ∅, let ραγ = sup(D∗
α∩Fγ).

If D∗
α ∩Fγ = ∅, then ραγ is not defined. Let dα = {γ ∣D∗

α ∩Fγ /= ∅}. Let Eα = {ραγ ∣ γ ∈ dα}.
Note that if α < α′, then D∗

α′ ∖D∗
α is bounded in κ, so dα′ ∖ dα is bounded in µ.

Suppose there is an α < κ+ such that for every α < α′ < κ+, ∣Eα′∆Eα∣ < µ. Then it is easy
to verify that, if ⟨δi ∣ i < µ⟩ is an enumeration of Eα, then ⟨δi ∣ i < µ⟩ is as required, and we
are done.

If α < α′, we say that there is a major change between α and α′ if ∣Eα∆Eα′ ∣ = µ. Note
that if there is a major change between α and α′ and α′ < α′′, then there is a major change
between α and α′′.

Suppose now that for every α < κ+, there is an f(α) > α such that there is a major change
between α and f(α). Let C = {α < κ+ ∣ α is closed under f}. C is a club in κ+, so there
is an α∗ ∈ Si∗ such that Ci

∗
α∗ ∩C is a club in α∗ and cf(α∗) = µ+. Let ⟨αξ ∣ ξ < µ+⟩ be an

increasing enumeration of a cofinal subsequence of the limit points of Ci
∗
α∗ . Note that for

ξ < ξ′ < µ+, D∗
αξ′ ⊆ D

∗
αξ

, so dαξ′ ⊆ dαξ . Thus, since ⟨dαξ ∣ ξ < µ+⟩ is a decreasing sequence

of length µ+ of subsets of µ, there is a fixed d ⊂ µ such that dαξ = d for sufficiently large ξ.

If γ ∈ d and ξ < ξ′ < µ+, then, since D∗
αξ′ ⊆ D

∗
αξ

, ρ
αξ′
γ ≤ ραξγ . Thus, for every γ ∈ d, there

is a ξγ < µ+ and a ρ̄γ such that for all ξ > ξγ , ραξ = ρ̄γ . Let ξ∗ = sup{ξγ ∣ γ ∈ d}. Then,
for every ξ > ξ∗ and every γ ∈ d, we have ρ

αξ
γ = ρ̄γ , so there is a fixed E such that, for all

ξ > ξ∗, we have Eαξ = E.
Now let ξ∗ < ξ < ξ′ be such that ξ, ξ′ ∈ C. Then f(αξ) < αξ′ , so there is a major change

between αξ and αξ′ . But Eαξ = E = Eαξ′ . This is a contradiction, and we are finished.

Theorem 9.5 Suppose W is an outer model of V , κ is an inaccessible cardinal in V and a
singular cardinal of countable cofinality in W , and (κ+)V = (κ+)W . Then ◻κ,ω holds in W .
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Proof We will define a sequence ⟨Cα ∣ α limit, κ < α < κ+⟩ in W witnessing ◻κ,ω. We define
Cα if and only if cf(α)V /= κ. If cf(α)V = κ, then cf(α)W = ω, and the definition of a
suitable Cα is trivial.

Let χ be a sufficiently large regular cardinal, and let <χ be a well-ordering of Hχ. Work
in V . For α limit, κ < α < κ+, let ⟨Mα

γ ∣ γ < κ⟩ be a continuous ⊆-increasing sequence of
elementary submodels of Hχ such that:

1. α,κ ∈Mα
0 .

2. For every γ < κ, ∣Mα
γ ∣ < κ.

3. For every γ < κ, Mα
γ ∩ κ is an ordinal.

Note that α ⊆ ⋃γ<κMα
γ , since κ ⊆ ⋃γ<κMα

γ and there is a function in Hχ mapping κ onto
α.

For each limit ordinal α with κ < α < κ+, let Dα = {Mα
γ ∩ κ ∣ γ ≤ κ}. Dα is a club in κ,

so, by Theorem 9.2, there is in W a sequence ⟨δn ∣ n < ω⟩ cofinal in κ such that, for every
limit ordinal α with κ < α < κ+, {δn ∣ n < ω} ∖Dα is finite and, for every n < ω, cf(δn) > ω.

Claim 9.6 If cf(γ) > ω and Mα
γ ∩ α is cofinal in α, then Mα

γ ∩ α is ω-closed.

Suppose ⟨βn ∣ n < ω⟩ is an increasing sequence from Mα
γ ∩ α with βω = supn<ω(βn) < α.

Suppose for sake of contradiction that βω /∈Mα
γ . Let β̄ω be the minimal element of Mα

γ ∩α
above βω. It is easy to see that cf(β̄ω) = κ: If cf(β̄ω) < κ, then cf(β̄ω) + 1 ⊆Mα

γ , so Mα
γ is

cofinal in β̄ω. But this is a contradiction, since there are no points in Mα
γ between βω and

β̄ω. Thus, there is E ∈ Mα
γ such that E has order type κ and is cofinal in β̄ω. Then, for

each n < ω, there is β̄n ∈ Mα
γ ∩E such that β̄n ≥ βn. But ⟨β̄n ∣ n < ω⟩ can not be cofinal

in Mα
γ ∩E, because Mα

γ ∩E has order type Mα
γ ∩ κ, and cf(Mα

γ ∩ κ) = cf(γ) > ω. Thus,
there is β ∈Mα

γ ∩E such that β > βω. But this contradicts our choice of β̄ω, thus proving
the claim.

If α is a limit ordinal, κ < α < κ+, and cf(α) /= κ, then there is γ < κ such that for all

γ′ ≥ γ, Mα
γ′ is cofinal in α. Now let Cα = {Mβ

γ ∩ α ∣ β ≥ α, γ < κ, Mβ
γ ∩ α is cofinal in α,

Mβ
γ ∩β is cofinal in β, and Mβ

γ ∩κ = δn for some n < ω}, where Mβ
γ ∩ α denotes the closure

of Mβ
γ ∩ α. By construction, Cα consists of clubs in α of order type < κ, and, by the choice

of ⟨δn ∣ n < ω⟩, each Cα is nonempty. Also, if δ < α is a limit point of Mβ
γ ∩ α, then it is

immediate from our construction that Mβ
γ ∩ δ ∈ Cδ, so the coherence property holds.

It remains to show that ∣Cα∣ ≤ ω. Suppose we are given β,β′, γ, and γ′ such that, for

some n < ω, Mβ
γ ∩ κ = δn =Mβ′

γ′ ∩ κ and both Mβ
γ and Mβ′

γ′ are cofinal in α. Notice that,

since cf(δn) > ω, it must be that cf(γ) > ω, so, by our claim, Mβ
γ ∩β is ω-closed. We claim

that Mβ
γ ∩α =Mβ′

γ′ ∩α. Note that this claim implies ∣Cα∣ ≤ ω, thus finishing the proof of the
theorem.

First, suppose cf(α) = ω. Then α ∈Mβ
γ ,M

β′
γ′ . But then, since Mβ

γ and Mβ′
γ′ are elementary

submodels of Hχ having the same intersection with κ, they also have the same functions

from κ to α, so Mβ
γ ∩ α =Mβ′

γ′ ∩ α.
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Finally, suppose cf(α) > ω. If δ ∈ Mβ
γ ∩Mβ′

γ′ ∩ α then, by the argument of the previous

paragraph, Mβ
γ ∩ δ =Mβ′

γ′ ∩ δ. However, since Mβ
γ ∩α and Mβ′

γ′ ∩α are ω-closed and cofinal

in α, Mβ
γ ∩Mβ′

γ′ ∩ α is also ω-closed and cofinal in α, so Mβ
γ ∩ α =Mβ′

γ′ ∩ α.
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