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0.1 Pre-introduction

These notes are an account of a six-hour lecture series I presented at Carnegie
Mellon University on September 9, 2006, at the inaugural meeting of the Ap-
palachian Set Theory series. My remarks (occasionally improvised) were faith-
fully transcribed by Peter LeFanu Lumsdaine and Yimu Yin, who then presented
me with a rough draft of this article. Their account aimed to capture the feel
of the discussions (including some direct quotations), and I’ve tried to preserve
that as much as possible.

1 Introduction

The forcing construction Pmax was invented by W. Hugh Woodin in the early
1990’s in the wake of his result that the saturation of the nonstationary ideal
on ω1 (NSω1) plus the existence of a measurable cardinal implies that there
is a definable counterexample to the Continuum Hypothesis (in particular, it
implies that δ1

2 = ω2, which implies ¬CH). These notes outline a proof of the
Π2 maximality of the Pmax extension, which we can state as follows.

Theorem 1 ([9]). Suppose that there exist proper class many Woodin cardinals,
A ⊆ R, A ∈ L(R), ϕ is Π2 in the extended language containing two additional
unary predicates, and in some set forcing extension

〈H(ω2),∈,NSω1 , A
∗〉 |= ϕ

(where A∗ is the reinterpretation of A in this extension). Then

L(R)Pmax |= [〈H(ω2),∈,NSω1 , A〉 |= ϕ] .

Forcing with Pmax does not add reals, so there is no need to reinterpret A in
the last line of the theorem. The theorem says that any such Π2 statement that
we can force in any extension must hold in the Pmax extension of L(R), so H(ω2)
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of L(R)Pmax is maximal, or complete, in a certain sense; among other things,
it models ZFC, Martin’s Axiom, certain fragments of Martin’s Maximum [1],
and the negation of the Continuum Hypothesis. The reinterpretation A∗ will
be defined later, in terms of tree representations for sets of reals. We will not
give the definition of Woodin cardinals (but see [4]).

We have reworked the standard proof of Theorem 1 in order to minimize
the prerequisites. In particular, the need for (mentioning) sharps has been
eliminated. However, they and much more will need to be reintroduced to go
any further than the material presented here.

“Woodin’s book on Pmax, The axiom of determinacy, forcing axioms and the
nonstationary ideal [9] runs to around 1000 pages. My article for the Handbook
of Set Theory [5], introducing Pmax, has about 65. The advance notes for these
lectures are about 30 pages, and previous lecture courses have taken about 12-15
hours to cover Pmax; so today will, of course, have to be brief. . . ”

2 Setup: iterations and the definition of Pmax

Suppose that M |= ZFC and than I ∈M is a normal ideal on ωM1 in M . Force
over M with ((P(ω1) \ I)/I)M . The resulting generic G is now an M -normal
ultrafilter on ω1

M ; so we may form the corresponding ultrapower and elementary
embedding j : M → Ult(M,G) := {f : ω1

M → M | f ∈ M}/ =G. (“We’ll use
this a thousand times today.”) Note that crit(j) = ω1

M , j(ω1
M ) ≥ ω2

M ,
OrdUlt(M,G) = OrdM , and for A ∈ P(ω1)M , A ∈ G ↔ ω1

M ∈ j(A). There
is no need to assume that A is transitive, though it will be in the cases were
are interested in. When an ultrapower is well-founded, we identify it with its
transitive collapse.

Definition 2. I is precipitous if Ult(M,G) thus constructed is well-founded
from the point of view of M [G], for all M -generic G. (N.B. this is definable in
M via forcing.)

We need a pair of theories satisfying the following conditions.

• T0, a theory consistent with ZFC and strong enough to make sense of the
generic ultrapower construction above and prove that j : M → Ult(M,G)
is elementary.

• T1, a theory consistent with ZFC and at least as strong as T0 + “every
set lies in some H(κ) |= T0.”

In [5], we take T0 (which we call ZFC◦) to be ZFC - Replacement - Powerset
plus “P(P(ω1)) exists” plus the scheme saying that definable trees of height
ω1 have maximal branches. Then we let T1 = T0 + Powerset + Choice + Σ1-
Replacement (though we don’t express it in these terms). In [9], Woodin has
an even weaker fragment of ZFC (which he calls ZFC∗) playing the role of T0.
Today we may as well let T0 be ZFC and T1 be ZFC plus the existence of a
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proper class of strongly inaccessible cardinals. ¿From now on we will just use
the terms T0 and T1.

Our basic construction is the generic ultrapower. We now extend to iterated
ultrapowers. Suppose we have (M0, I0), G0 ⊆ (P(ω1)/I0)M0 , j0 : (M0, I0) →
Ult(M0, G0), all as before; let M1 = Ult(M0, G0), I1 = j0(I0). Now we can
take the generic ultrapower of M1 by I1, and iterate. At limit stages, we have
a directed system of elementary embeddings, so can just take the direct limit,
so we can keep going up to length ω1. (No further, as if we force again there,
we collapse ω1

V , so are back to countable length!) Note that the final model of
the iteration, Mω1 , is an element of H(ω2).

Definition 3. An iteration of (M, I) (as above; M countable) of length γ con-
sists of Mα, Iα (α ≤ γ), Gη (η < γ), and jα,β (α ≤ β ≤ γ), satisfying

• M0 = M , I0 = I

• Gη is Mη-generic for (P (ω1)/Iη)Mη

• jη,η+1 is the canonical embedding of Mη into Ult(Mη, Gη) = Mη+1

• jα,β : Mα →Mβ are a commuting family of elementary embeddings

• Iβ = j0,β(I)

• For limit β, Mβ is the direct limit of {Mα | α < β} under the embeddings
jα,η ( α ≤ η < β).

In practice, we almost always have γ = ω1
N for some larger N ⊇ M . We

will generally write 〈Mα, Iα, Gη, jα,β | α ≤ β ≤ γ, η < γ〉 for the iteration, or
just “j is an iteration” to mean that j is the j0,γ of an iteration, with j(M) for
Mγ . (As we will see, in some circumstances, if we know M0, Mγ , j0,γ , we can
(with slight assumptions) recover the full iteration.) We say that the Mα’s are
iterates of (M, I); (M, I) is iterable if all iterates are well-founded; and (M, I)
is an iterable pair if M is a countable transitive model of T0, I a normal ideal
on P(ω1) in M , and (M, I) is iterable.

If M is well-founded and M |= “I is precipitous,” then certainly (M, I) is
finitely iterable (i.e., its finite-length iterations produce wellfounded models);
and in fact, we will show that in this case (M, I) is iterable to any α ∈ OrdM .

The proof of the following lemma is left an exercise (the proof is by induction
on the length of the iteration). In a typical application, M is H(κ)N for some
suitable κ.

Lemma 4. Suppose that M ∈ N are models of T0, M is closed under ω1-
sequences from N , and P(P(ω1))M = P(P(ω1))N . Let I ∈M be an M -normal
ideal on ω1

M . Then the following hold.
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• for each iteration 〈Mα, Iα, Gη, jα,β | α ≤ β ≤ γ, η < γ〉 of (M, I) there
is a unique iteration 〈Nα, Iα, Gη, j∗α,β | α ≤ β ≤ γ, η < γ〉 of (N, I) such
that ∀β ≤ γ, j∗0,β(M) = Mβ, Mβ is closed under ω1-sequences from Nβ,
P(P(ω1))Mβ = P(P(ω1))Nβ , and j∗α,β �Mα= jα,β.

• for each iteration 〈Nα, Iα, Gη, j∗α,β | α ≤ β ≤ γ, η < γ〉 of (N, I) there is
a unique iteration 〈Mα, Iα, Gη, jα,β | α ≤ β ≤ γ, η < γ〉 of (M, I) such
that ∀β ≤ γ, j∗0,β(M) = Mβ, Mβ is closed under ω1-sequences from Nβ,
P(P(ω1))Mβ = P(P(ω1))Nβ , and j∗α,β �Mα

= jα,β.

Corollary 5. In the context of Lemma 4, if (M, I) has an ill-founded iterate
by an iteration of length α, then so does (N, I).

Lemma 6 below then shows that (M, I) is iterable if N contains ω1 (recall
that iterations can have length at most ω1, and note that an illfounded iteration
of length ω1 must be illfounded at some countable stage).

First we fix a coding of elements of H(ω1) by reals. Fix a recursive bijection
π : ω × ω → ω, and say X ⊆ ω codes a ∈ H(ω1) if

(tc({a}),∈) ∼= (ω, {(i, j) | π(i, j) ∈ X}),

where tc(b) denotes the transitive closure of b. Then ∈ and = are Σ1
1 (as per-

mutations of ω induce different codes for the same object).

Lemma 6. Suppose that N is a transitive model of T1, γ ∈ OrdN , and I is a
normal precipitous ideal on ω1

N in N . Then any iterate of (N, I) by an iteration
of length γ is well-founded.

Proof. It suffices to prove that iterations of the form (H(κ)N , I) produce well-
founded models for all κ ∈ N such that H(κ)N |= T0; for if any iterate of
N is ill-founded, then some ordinal in N is large enough to witness this (i.e.
sup(rge(f)), where f witnesses ill-foundedness) and by assumption (as N |= T1)
this is contained in some H(κ)N that models T0.

Let (γ̄, κ̄, η̄) be the lexicographically minimal triple (γ, κ, η) satisfying (with
N) the formula ϕ(N, γ, κ, η) defined by “H(κ)N |= T0 and there exists an iter-
ation of (H(κ)N , I) of length γ which is ill-founded below the image of η”.

Using our fixed coding of elements of H(ω1) by reals there is a Σ1
1 formula

ϕ′(x, y, z) saying “x codes a model of T0 and a normal ideal in the model on the
ω1 of the model and there exists an iteration of this pair whose length is coded
by y and which is illfounded below the image of the element of this model coded
by z.”

For all cardinals κ, ρ ∈ N and all ordinals γ, η ∈ N , if ρ ∈ N is larger than
|H(κ)|N , |η|N and |γ|N , then there exist reals coding H(κ)N , η, and γ in any
forcing extension of N by Coll(ω, ρ). Such an extension is correct about whether
these reals satisfy ϕ′. However, this is a homogeneous forcing extension of N ;
so there is a formula ψ(γ, κ, η) saying that in every forcing extension in which
H(κ) (of the ground model), η and γ are all countable there exist reals coding
H(κ), η and γ which satisfy ϕ′. It follows that that N |= ψ(γ, κ, η) if and only
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if ϕ(N, γ, κ, η) holds, and furthermore, for all well-founded iterates N∗ of N ,
and all γ, κ, η ∈ N∗, N∗ |= ψ(γ, κ, η) if and only if ϕ(N∗, γ, κ, η) holds.

Since I is precipitous in N , γ̄ is a limit ordinal, and clearly η̄ is a limit
ordinal as well. Fix an iteration 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ̄〉 of (H(κ̄)N , I)
such that j0γ̄(η̄) is not wellfounded, and let 〈Nα, Gβ , j′αδ : β < α ≤ δ ≤ γ̄〉 be
the corresponding iteration of N as in Lemma 4. By the minimality of γ̄ we
have that Nα is wellfounded for all α < γ̄. Since Mγ̄ is the direct limit of the
iteration leading up to it, we may fix γ∗ < γ̄ and η∗ < j0γ∗(η̄) such that jγ∗γ̄(η∗)
is not wellfounded. By Lemma 4, j′γ∗,γ̄(η∗) = jγ∗,γ̄(η∗) and j′γ∗,γ̄(η̄) = jγ∗,γ̄(η̄).

M0 Mγ∗ Mγ̄

���
���

���
���

���:

���
���

��:

η̄
η∗

But now, Nγ∗ |= ψ(γ̄ − γ∗, j0,γ∗(κ̄), η∗), γ̄ − γ∗ ≤ γ̄, and η∗ < j0,γ∗(η̄),
contradicting minimality of (j0,γ∗(γ̄), j0,γ∗((κ̄), j0,γ∗(η̄)) in Nγ∗ .

We note that ZFC does not imply the existence of iterable pairs. However,
by Lemma 6, if there exist a normal, precipitous ideal J on ω1, and a measurable
cardinal κ with a κ-complete ultrafilter µ, then there exist iterable pairs. The
main point here is that if θ > κ is a regular cardinal and X is a countable
elementary submodel of H(θ) with κ, J ∈ X, then X can be end-extended
below κ by taking γ to be any member of

⋂
(X ∩ µ), and letting X[γ] be the

set of values f(γ) for all functions f in X with domain κ. Applying this fact
ω1 many times, we get that the transitive collapse M of X ∩ Vκ is a countable
model which is a rank initial segment of a model containing ω1. Letting I be the
image of J under the transitive collapse, then, (M, I) is an iterable pair. This
is a special case of the proof of Lemma 22, and a key point in Woodin’s proof
(which appears in Chapter 3 of [9]) that if there exists a measurable cardinal
and the nonstationary ideal on ω1 is saturated, then CH fails.

If there is a precipitous ideal on ω1, then sharps exist for subsets of ω1, and
a countable iterable model will be correct about these sharps. We will work
around this today to avoid having to talk about sharps.

Lemma 7. If (M, I) is an iterable pair and A is an element of P(ω1)M , then
(ωL[A]

1 )M = ω
L[A]
1 .

Proof. Let 〈Mα, Iα, Gη, jα,β | α ≤ β ≤ ω1, η < ω1〉 be an iteration of (M, I).
The ordinals of M and M1 are the same, so L[A]M = L[A]M1 . The criti-
cal point of j1ω1 is greater than ωM1 , and thus greater than the ω1 of L[A]M .
The restriction of j1ω1 to L[A]M embeds L[A]M elementarily into L[A]Mω1 ,
which means that L[A]M and L[A]Mω1 have the same ω1. Since ω1 ⊂ Mω1 ,
(ωL[A]

1 )Mω1 = ω
L[A]
1 .
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Now we can define Pmax.

Definition 8. The partial order Pmax is the set of pairs 〈(M, I), a〉 such that

1. M is a countable transitive model of T0 + MAℵ1

2. (M, I) is an iterable pair

3. a ∈ P(ω1)M and ∃x ∈ P(ω)M such that ωL[x,a]
1 = ωM1

ordered by: p < q (where p = 〈(M, I), a〉, q = 〈(N, J), b〉) if there is some
iteration j : (N, J)→ (N∗, J∗) such that

1. j ∈M

2. j(b) = a

3. J∗ = N∗ ∩ I ( and hence j(ωN1 ) = ωM1 )

4. q ∈ H(ω1)M

Note that since j ∈M in definition of the Pmax order above, N and N∗ are
both in M as well.

Definition 9. We say that (M, I) is a Pmax precondition if there exists an a
such that 〈(M, I), a〉 ∈ Pmax, or equivalently just if (M, I) satisfies conditions 1
and 2 in the definition of Pmax conditions above.

Suppose that (M, I) is an iterable pair, and j : (M, I) → (M ′, I ′) is an
iteration. Then for any A ∈ P(ω1)M which is bounded in ωM1 , j(A) = A. By
Lemma 7, it follows then that ωL[A]

1 < ωM1 , since j(ωM1 ) > ωM1 if j is nontrivial.
Therefore, the set a from a Pmax condition 〈(M, I), a〉must always be unbounded
in ωM1 to make ω1

L[x,a] = ω1
M possible.

If p0 < p1 < p2 (pi = 〈(Mi, Ii), ai〉), and these are witnessed by j1,0, j2,1,
then p0 < p2 is witnessed by j1,0(j2,1): j1,0 ∈ H(ω2)M0 , j2,1 ∈ H(ω2)M1 ; j2,1 is
an iteration of (M2, I2), and j1,0((M2, I2)) = (M2, I2).

Under our fixed coding, “(M, I) is iterable” is Π1
2 in a code for (M, I) :

roughly, “for anything satisfying the first-order properties of being an itera-
tion, either there is no infinite descending sequence in the ordinals of the final
model, or there is an infinite descending sequence in the indices of the iteration.”
Since iterable models embed elementarily into models containing ω1, they are
Π1

2-correct. It follows that “(M, I) is iterable” is absolute to iterable models
containing a code for (M, I).

So now we see that Pmax ∈ L(R) — all constructions involved are nicely
codable.
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3 First properties of Pmax

The requirement that the models in Pmax conditions satisfy MAℵ1 is used for a
particular consequence of MAℵ1 known as almost disjoint coding [2]. That is, it
follows from MAℵ1 that if Z = {zα : α < ω1} is a collection of infinite subsets
of ω whose pairwise intersections are finite (i.e., Z is an almost disjoint family),
then for each B ⊆ ω1 there exists a y ⊆ ω such that for all α < ω1, α ∈ B if
and only if y ∩ zα is infinite. This is used to show that if 〈(M, I), a〉 is a Pmax

condition, then any iteration of (M, I) is uniquely determined by the image of
a (Lemma 10 below), so the order on each comparable pair of conditions is
witnessed by a unique iteration.

Lemma 10. Let 〈(M, I), a〉 be a Pmax condition and let A be a subset of ω1.
Then there is at most one iteration of (M, I) for which A is the image of a.

Proof. Fix a real x in M such that ωM1 = ω
L[a,x]
1 , and let Z = 〈zα : α < ωM1 〉 be

the almost disjoint family defined recursively from the constructibility order in
L[a, x] on P(ω)L[a,x] (using a and x as parameters) by letting 〈zi : i < ω〉 be the
constructibly least partition of ω into infinite pieces, and, for each α ∈ [ω, ωM1 ),
letting zα be the constructibly least infinite z ⊂ ω almost disjoint from each zβ
(β < α). Suppose that

I = 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉

and
I ′ = 〈M ′α, G′β , j′αδ : β < α ≤ δ ≤ γ′〉

are two iterations of (M, I) such that j0γ(a) = A = j′0γ′(a). Then

j0γ(ωM1 ) = ω
L[x,A]
1 = j0γ(ωM

′

1 )

and j0γ(Z) = j′0γ′(Z) (this uses Lemma 7 to see that the constructibility order on
reals in L[A, x] is computed correctly in Mγ and M ′γ′). Let 〈zα : α < j0γ(ωM1 )〉
enumerate j0γ(Z).

Without loss of generality, γ ≤ γ′. We show by induction on α < γ that, for
each such α, Gα = G′α. This will suffice. Fix α and suppose that

{Gβ : β < α} = {G′β : β < α}.

Then Mα = M ′α. For each B ∈ P(ω1)Mα , B ∈ Gα if and only if ωMα
1 ∈

jα(α+1)(B), and B ∈ G′α if and only if ωMα
1 ∈ j′α(α+1)(B). Applying almost

disjoint coding, fix x ∈ P(ω)Mα such that for all η < ωMα
1 , η ∈ B if and only if

x ∩ zη is infinite. Then B ∈ Gα if and only if x ∩ zωMα1
is infinite if and only if

B ∈ G′α.

Lemma 11. (T0) Suppose that (M, I) is an iterable pair, and J is a normal
ideal on ω1. Then there exists an iteration j : (M, I) → (M∗, I∗) of length ω1

such that I∗ = M∗ ∩ J .
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Proof. Note that I∗ ⊆ M∗ ∩ J holds for any such ω1-length iteration. To see
this, first note that the critical sequence of an iteration of length ω1 is a club.
Every element B of I∗ is jα,ω1(b) for some α < ω1 and b ∈ Iα. Then for all
β ∈ [α, ω1), jα,β(b) /∈ Gβ , so ω1

Mβ /∈ jα,ω1(b) = B; thus B ∈ NSω1 , but J is
normal, so NSω1 ⊆ J .

Conversely, for ⊇: as J is normal, we may let 〈Eαi | α < ω1, i < ω〉 be a
partition of ω1 into J-positive pieces. Now, as we construct an iteration, let
{eαi | i < ω} enumerate P(ω1)Mα \ Iα, and build each Gβ in such a way that if
ω1

Nβ ∈ Eαi for some α ≤ β and i < ω, then jα,β(eαi ) is in Gβ .
Now, for all B ∈ P(ω1)Mα \ Iω1 , ∃α < ω1, i < ω such that B = jα,ω1(eαi )

and for all β ∈ [α, ω1), ω1
Mβ ∈ Eαi ⇒ ω1

Mβ ∈ j0,β+1(eαi ) ⇒ ω1
Mβ ∈ B.

So in particular, we have a club C ⊆ ω1 such that C∩Eαi ⊆ B, so B /∈ J .

We may consider this as an iteration game G((M, I), J, B): two players
collaborate on building an iteration of (M, I), and play is as follows at each
round α:

• if α /∈ B, player I does nothing, and player II chooses Gα;

• if α ∈ B, player I specifies some element for Gα, and player II must choose
some Gα containing it.

Player I wins if Iω1 = Mω1 ∩ J . The above proof shows that player I has a
winning strategy iff B /∈ J . (More precisely, it shows ⇐; ⇒ is because if B ∈ J
then II may choose some I-positive set and keep its images out of every Gα.)

The following lemma shows that Pmax satisfies a homogeneity property
strong enough to imply that the theory of the generic extension can be com-
puted in the ground model. Since the existence of a proper class of Woodin
cardinals implies that the theory of L(R) is generically absolute, it implies that
the theory of the Pmax extension of L(R) is generically absolute as well.

Lemma 12. Suppose for each x ∈ H(ω1) there exists a Pmax precondition
(M, I) such that x ∈ M . Then ∀p0, p1 ∈ Pmax, ∃q0, q1 ∈ Pmax such that each
qi ≤ pi, and Pmax � q0

∼= Pmax � q1.

Proof. Take pi = 〈(Mi, Ii), ai〉. Then let (N, J) be a Pmax precondition such
that p0, p1 ∈ H(ω1)N . Now take ji : (Mi, Ii) → (M∗i , I

∗
i ) to be iterations in N

such that I∗i = M∗i ∩ J (we may do so, by the previous theorem applied in N).
Now set qi = 〈(N, J), ji(ai)〉 ∈ Pmax. Certainly these satisfy qi < pi as

desired. (To see that these qi are indeed conditions, note that the witnessing xi
for pi (i.e., the x ∈ P(ω)Mi such that ωL[x,ai]

1 = ωMi
1 ) still works for qi.) But

now Pmax � q0
∼= Pmax � q1, for given any r0 = 〈(N ′, I ′), b〉 < q0, there is unique

j : (N, J)→ (N∗, J∗) witnessing this (and we have b = j(j0(a0))); now take r0

to r1 := 〈(N ′, J ′), j(j1(a1))〉 < q1, also witnessed by j.

Given γ ∈ [ω1, ω2), a canonical function for γ is a function f : ω1 → ω1 such
that for some (equivalently, every) bijection π : ω1 → γ, {α < ω1 | ot(π[α]) =
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f(α)} contains a club. In a normal ultrapower context, we then have: f : ω1 →
Ord, [f ]Ult = j(f)(ω1) = ot(π[ω1]) = γ.

Suppose that 〈Mα, Iα, Gη, jα,β | α ≤ β ≤ ω1, η < ω1〉 is an iteration of length
ω1 of some (M, I), and let π : ω1 → OrdMω1 be a bijection; then π induces a
canonical function g. For club-many α < ω1, ω1

Mα = α, and also π[α] =
jα,ω1 [OrdMα ] (recall that we take direct limits at limit stages of iterations);
so there is a club C ⊂ ω1 such that for all α ∈ C, ot(π[α]) = OrdMα . If
f ∈ (ω1

ω1)Mβ , for some β < α, then for any α ∈ [β, ω1),

jβ,α+1(f)(ω1
Mα) < ω1

Mα+1 < OrdMα+1 = OrdMα ,

which equals g(α) if α ∈ C. It follows that for any f ∈ (ω1
ω1)Mω1 , g(α) > f(α)

for club-many α. We will use this fact to show that Pmax σ-closed (this is an
alternate proof avoiding sharps; some of what follows can be done more easily
and in more generality with sharps).

Lemma 13. Suppose that for each x ∈ H(ω1) there exists a Pmax precondition
(M, I) such that x ∈ M . If pi ∈ Pmax (i < ω) are such that ∀i pi+1 < pi, then
∃q ∈ Pmax such that ∀i q < pi.

The proof of Lemma 13 involves some new notions. Say that pi = 〈(Mi, Ii), ai〉,
and for each j < i < ω, let ki,j : Mj → M∗j ∈ Mi be the unique witness for
pi < pj . By the uniqueness of witnesses, the k′i,js commute, so let Ni, Ji be the
images of Mi, Ii in the limit of the directed system given by the embeddings
ki,j . Each (Ni, Ji) is an iterate of the corresponding (Mi, Ii) by an iteration of
length sup{ωMi

1 : i < ω}, so each Ni is wellfounded. Let b =
⋃
i<ω ai. Then:

1. Each (Ni, Ji) is iterable;

2. for all i, ω1
Ni = supj<ω ω1

Mj ;

3. i < j ⇒ Ni ∈ H(ω2)Nj ;

4. for all i, Ji = Ji+1 ∩Ni;

5. for each i there exists some iteration ji : (Mi, Ii)→ (Ni, Ji) in Ni+1 such
that j1(ai) = b (and so in Ni+1, there is a canonical function for OrdNi

that dominates on a club every member of (ωω1
1 )Ni).

We call a sequence 〈(Ni, Ji) : i < ω〉 satisfying (1) to (5) above a Pmax limit
sequence. An 〈(Ni, Ji) | i < ω〉-normal ultrafilter is a filter G ⊆

⋃
i(P(ω1)Ni \Ji)

such that for all i < ω, and for all regressive f ∈ (ω1
ω1)Ni ∃e ∈ G such that

f is constant on e. Then we have Ult(〈(Ni, Ji) : i < ω〉, G), i.e. a sequence of
models whose jth model [Ult(〈(Ni, Ji) : i < ω〉, G)]j is

{f : ω1
N0 → Nj | f ∈

⋃
{Ni | i < ω}}/ =G .

Now we will iterate this operation.

9



Definition 14. An iteration of 〈(Ni, Ji) : i < ω〉 of length γ is some

〈〈(Nα
i , J

α
i ) : i < ω〉, Gη, jα,β | α ≤ β ≤ γ, η < γ〉

in which:

• each Gη is a
langle(Nη

i , J
η
i ) | i < ω〉-normal ultrafilter contained in

⋃
i(P(ω1)N

η
i \ Jηi )

such that for each i < ω, jη,η+1 � Nη
i → Nη+1

i is the induced ultrapower

• the jα,β commute, and for limit β, Nβ
i is the direct limit of Nα

i (α < β)
under jα,ρ � Nα

i (α ≤ ρ < β).

In an iteration of this form, for each pair i, α, there is in Nα
i+1 an iteration

of (Mi, Ii) of length ω1
Nα0 , with final model Nα

i . Since each (Mi, Ii) is iterable,
the wellfoundedness of each Nα

i will follow from the wellfoundedness of ωN
α
0

1 .
For each α < γ,

ω
Nα+1

0
1 = sup{OrdN

α
i | i < ω}.

To see this, fix for each i ∈ ω a canonical function gi ∈ Nα
i+1 for OrdNi . Then

each gi dominates on a club every member of (ωω1
1 )N

α
i . The gi are cofinal under

mod-NSω1 domination in
⋃
i(ω1

ω1)N
α
i , and each gi represents an ordinal in Nα

i+1

in this ultrapower, which shows that ωN
α+1
0

1 = sup{OrdN
α
i | i < ω}. For limit

β,
ω1

Nβ0 = sup{ω1
Nα0 | α < β}.

It follows that each Nα
0 is wellfounded.

We have shown the following.

Fact 15. All iterations of Pmax pre-limit sequences give well-founded models.

Again this can be rephrased in terms of games. Let Gω(〈(Ni, Ji) | i <
ω〉, I, B) be the game of length ω1, in which I and II collaborate to build an
iteration of 〈(Ni, Ji) : i < ω〉 of length ω1, in which at stage α:

• if α ∈ B, player I chooses e ∈
⋃
i(P(ω1)N

α
i \ Jαi ), and player II chooses

Gα, a 〈(Nα
i , J

i
α) | i < ω〉-normal ultrafilter contained in

⋃
i(P(ω1)N

α
i \Jαi ),

with e ∈ Gα;

• if α /∈ B, player I does nothing, and player II chooses any suitable Gα.

Player I wins if ∀i j0,ω1(Ji) = I ∩Mω1
i . The argument just given (along with

the argument for Lemma 11) shows the following.

Lemma 16. Suppose 〈(Ni, Ji) | i < ω〉 is a Pmax pre-limit-sequence, I is a
maximal ideal on ω1 and B ⊆ ω1. Then Player I has a winning strategy in
Gω(〈(Ni, Ji) | i < ω〉, I, B) if and only if B is not in I.

10



We now return to the proof of Lemma 13. We have that the limit sequence
〈(Ni, Ji) : i < ω〉 induced by the descending sequence pi (i ∈ ω) is iterable. Fix
a Pmax precondition (M ′, I ′) such that this sequence is in H(ω1)M

′
. Apply a

winning strategy for player I in M ′ for Gω1(〈(Ni, Ji) | i < ω〉, I ′, ω1) to get an
iteration j of 〈(Ni, Ji) : i < ω〉 of length ωM

′

1 . Then for all i < ω, j(ji) witnesses
that pi > 〈(M ′, I ′), j(b)〉.

Thus Pmax forcing is σ-closed, so it does not add any reals; so L(R)V
Pmax =

L(R)V .

4 Existence of Pmax conditions

Definition 17. Given A ⊆ R, and an iterable pair (M, I), we say (N, I) is A-
iterable if A∩M ∈M and for any iteration j : (M, I)→ (M∗, I∗), j(A∩M) =
A ∩M∗.

In this section we will work through a proof of the following existence theo-
rem for Pmax conditions.

Lemma 18 (Main existence lemma). Suppose there are infinitely many Woodin
cardinals below some measurable cardinal, and let A ∈ P(R)∩L(R). Then there
exists an A-iterable Pmax precondition (M, I) such that for every set forcing
extension M+ of M and every precipitous ideal I+ ∈ M+ on ωM

+

1 , (M+, I+)
is A-iterable.

We need to introduce towers of measures and homogeneous tree. See [8] for
a detailed discussion of this material

Definition 19. Given Z 6= φ, a tower of measures on Z is a sequence 〈µi | i <
ω〉 such that each µi ⊆ P(Zi) is an ultrafilter, and for all k < i < j and all
A ∈ µi, we have {b ∈ Zj | b� i ∈ A} ∈ µj and {b� k | b ∈ A} ∈ µk.

Such a tower is countably complete if whenever 〈Ai | i < ω〉 is such that
eaach Ai ∈ µi, there is a ∈ Zω such that ∀i a� i ∈ Ai.

We note briefly that countable completeness is equivalent to: the direct limit
of Ult(V, µi) is well-founded.

Definition 20. A tree on ω × Z is a set T ⊆ (ω × Z)<ω such that for all
i < ω, t ∈ T we have t � i ∈ T . The projection of T is p[T ] := {y ∈ ωω | ∃c ∈
Zω ∀i < ω (y � i, c� i) ∈ T}.

Such a tree is weakly κ-homogeneous (for κ a cardinal) if there exist κ-
complete ultrafilters µa,b ⊆ P(Z |a|) such that ∀a, b ∈ ω<ω with |a| = |b|,

{c ∈ Z |a| | (a, c) ∈ T} ∈ µa,b,

and such that for each x ∈ p[T ] there exists a b ∈ ωω such that 〈µx�i,b�i | i < ω}
is a countably complete tower.

Weakly homogeneous trees originated from work of Kechris, Martin and
Solovay. The following fact is due to Woodin. A proof appears in [6].
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Fact 21. If δ is a limit of Woodin cardinals and there is a measurable cardinal
above δ, then for each A ∈ P(R) ∩ L(R) and γ < δ, there exists a γ-weakly-
homogeneous tree T such that p[T ] = A.

Lemma 22. Suppose that T ⊂ (ω × Z)<ω is a γ+-weakly-homogeneous tree,
θ > (2|T |)+ is regular, X ≺ H(θ), T, γ ∈ X, |X| < γ, and ā ∈ p[T ]. Then there
exists Y ≺ H(θ) with X ⊆ Y , X ∩ γ = Y ∩ γ, |X| = |Y |, and ā ∈ p[T ∩ Y ].

Proof. Fix 〈µa,b | a, b ∈ ω<ω〉 in X witnessing the γ+-weak-homogeneity of T.
Since ā ∈ p[T ], ∃b̄ such that 〈µā�i,b̄�i | i < ω〉 is a countably complete tower. Now
let Ai =

⋂
(X ∩µā�i,b̄�i). Each Ai is in µā�i,b̄�i; so there is c̄ ∈ Zω such that ∀i c̄�

i ∈ Ai. Take Y = X[{c̄� i | i < ω}] := {f(c̄� i) | f ∈ X,dom(f) = Z<ω, i < ω}.
Elementarity of Y follows from an argument similar to the proof of  Lós’s

Theorem (see Theorem 1.1.13 of [6]). To see that Y ∩ γ = X ∩ γ, note that
if α ∈ Y ∩ γ, then α = f(c � i) for some f ∈ X, domf = Zi; but µa�i,b�i is
γ+-complete, so f is constant on a set in µa�i,b�i. But then this constant value
is in X, and f(c� i) is this value, since c� i =

⋂
(µa�i,b�i ∩X).

Note that Y in the proof above is in some sense a limit ultrapower of the
transitive collapse of X.

The following was first proved by Foreman, Magidor and Shelah from a
supercompact cardinal, and later improved by Woodin.

Fact 23. If δ is Woodin, then Coll(ω1, < δ) forces that NSω1 is presaturated,
and hence precipitous.

Recall that an ideal I on ω1 is presaturated if for every sequence of maximal
antichains {Qi | i < ω} ⊂ P(ω1) \ I, ∀A ∈ I+, ∃B ⊆ A, B ∈ I+ such that for
all i < ω,

|{E ∈ Qi | E ∩B ∈ I+}| ≤ ℵ1.

The following was proved by Kakuda and Magidor independently [3, 7].

Fact 24. Any c.c.c. forcing preserves that NSω1 is precipitous.

Recall the hypotheses of main existence lemma: δ is a limit of Woodin
cardinals, there exists a measurable cardinal greater than δ, and A is in P(R)∩
L(R). To prove the lemma, let κ be the least Woodin cardinal, and γ the
least strong inaccessible above κ. Fix γ+-weakly-homogeneous trees S, T , with
p[S] = A, p[T ] = R\A. Fix a regular θ > (2|S|)+, (2|T |)+. Let X be a countable
elementary submodel of H(θ), with S, T, γ, κ ∈ X. Repeatedly apply Lemma
22 above to obtain Y ≺ H(θ) such that X ⊆ Y , X ∩ γ = Y ∩ γ, A = p[S ∩ Y ],
R∩A = p[T ∩ Y ]. (Then |Y ∩Ord| = 2ω.) Now let N be the transitive collapse
of Y , and let S̄, T̄ , γ̄, κ̄ be the images of S, T, γ, κ therein. Let h be N -generic
for Coll(ω1, < κ̄) followed by a c.c.c. poset of size 2ω1 to make MAℵ1 hold. Then
N [h] |= MAℵ1 + “NSω1 is precipitous”. Then N [h] is iterable, by Lemma 6.
Let M be (Vγ̄)N [h], and let j : (M,NSMω1

) → (M∗,NS∗ω1
) be an iteration. By

Lemma 4, this induces an iteration of (N [h],NSN [h]
ω1

) with final model (N∗, I∗)
(which we’ll also call j). Now, N∗ is well-founded, and p[S̄] ⊆ p[j(S̄)] and
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p[T̄ ] ⊆ p[j(T̄ )]. But by elementarity, N∗ |= p[j(S̄)] ∩ p[j(T̄ )] = ∅, and since N∗

is well-founded it is correct about this. Then p[S̄] = p[j(S̄)] and p[T̄ ] = p[j(T̄ )],
so j(A ∩M) = p[j(S̄)] ∩M∗ = A ∩M∗.

Remark 1. Instead of Coll(ω1, < κ̄), we could have taken h to be N -generic
for any poset in V Nγ̄ such that N [h] |= “∃ precipitous I on ω1”, and the rest of
the proof would have still gone through.

The main existence lemma gives not only A-iterable preconditions for any
A ∈ P(R) ∩ L(R), but also A-iterable preconditions containing any given real
x, for any A ∈ P(R) ∩ L(R), applying the lemma to the set {y ⊕ x | y ∈ A}.
Thus we have shown: if there exist infinitely many Woodin cardinals below a
measurable, then ∀x ∈ R, ∀A ∈ P(R) ∩ L(R), there exists some Pmax condition
〈(M, I), a〉, with x ∈M , and (M, I) A-iterable.

We didn’t quite show 〈H(ω1)M ,∈, A ∩ M〉 ≺ 〈H(ω1),∈, A〉. We can do
this using A], or by using not just S, T as above but similar trees for all sets
projective in A. We omit this for now.

Given a filter G ⊂ Pmax, AG denotes the set
⋃
{e | ∃〈(N, J), e〉 ∈ G}. We

also omit a proof of the following:

Fact 25 (“The combinatorial heart of the Pmax analysis”). Suppose that for
each A ∈ P(R) ∩ L(R) there exists an A-iterable Pmax precondition (N, I) such
that

〈H(ω1)M ,∈, A ∩M〉 ≺ 〈H(ω1),∈, A〉,
and suppose that G ⊆ Pmax is an L(R)-generic filter. Then ∀B ∈ P(ω1)L(R)[G],
∃〈(M, I), a〉 ∈ G such that B = j(b) for some b ∈ P(ω1)M , where j is the unique
iteration of (M, I) satisfying j(a) = AG.

In other words, all subsets of ω1 in extensions come from models in the
conditions, and L(R)[G] = L(R)[AG].

Corollary 26. Suppose that for each A ∈ P(R)∩L(R) there exists an A-iterable
Pmax precondition (N, I) such that

〈H(ω1)M ,∈, A ∩M〉 ≺ 〈H(ω1),∈, A〉,

and suppose that G ⊆ Pmax is an L(R)-generic filter. Then NSL(R)[G]
ω1

is the
collection of all sets of the form j(e), where for some 〈(M, I), a〉 ∈ G, e ∈ I,
and j is the iteration of (M, I) sending a to AG.

Woodin has shown that the hypotheses of Fact 25 are equivalent to the
assertion that AD holds in L(R).

5 Π2 maximality

Proof of Goal 1 So now fix some Π2 sentence ϕ = ∀x∃yψ(x, y) (in the extended
language with two new unary predicates), and some A ∈ P(R)∩L(R). To show
that

〈H(ω2),∈, A,NSω1〉L(R)Pmax |= ϕ,
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it is sufficient to show that for each 〈(M, I), a〉 ∈ Pmax and each b ∈ H(ω2)M ,
there exist 〈(N,NSNω1

), e〉 ∈ Pmax and j : (M, I) → (M∗, I∗) in N such that
j(a) = e, I∗ = M∗ ∩NSNω1

, and

〈H(ω2)N ,∈, A ∩N,NSNω1
〉 |= ∃d ψ(j(b), d).

The argument is like the one for existence of conditions.
So suppose 〈(M, I), a〉 is given. Fix P forcing ϕ. Let δ be the least Woodin

cardinal with p ∈ Vδ; let κ be the least strong inaccessible above δ. Let S, T be
κ+-weakly-homogeneous trees projecting to A, R \ A. Let θ > (2|S|)+, (2|T |)+

be regular. Fix Y ≺ H(θ) with Y ∩κ countable, p[S ∩Y ] = A, p[T ∩Y ] = R \A
and 〈(M, I), a〉 ∈ Y .

Let N be the transitive collapse of Y , and let P̄ ,S̄,δ̄,κ̄ be the respective
images of P ,S,δ,κ under this collapse. Let h0 be P̄ -generic for N . Note that
since P ∈ Vδ, δ̄ remains Woodin in N [h0]. The reinterpretation of A is the
projection of S̄ in the extension. Thus

〈H(ω2)N [h0],∈, (p[S̄])N [h0],NSN [h0]
ω1

〉 |= ϕ.

Pick an iteration j of (M, I) in N such that j(I) = j(M)∩NSN [h0]
ω1

. Then there
exists a d ∈ H(ω2)N [h0] such that

〈H(ω2)N [h0],∈, (p[S̄])N [h0],NSN [h0]
ω1

〉 |= ψ(j(b), d).

Let h1 be N [h0]-generic for Coll(ω1, < δ̄)N [h0] followed by some c.c.c. forcing
making MAℵ1 hold. Now 〈((Vκ̄)N [h0][h1],NSN [h0][h1]

ω1
), j(a)〉 is the desired condi-

tion. �

6 Discussion

Question 1. You’ve shown that under these conditions, any forceable Π2 state-
ment must hold in the Pmax extension. Can you give us some cool examples?

Answer. One example is ϕAC: “For every stationary, costationary A,B ⊆
ω1, there is some γ ∈ [ω1, ω2), some bijection π : ω1 → γ such that

{α < ω1 | α ∈ A↔ (π[α]) ∈ B}

contains a club.” This can be used to get an injection P(ω1) ↪→ ω2, which shows
that the Axiom of Choice holds in the Pmax extension of L(R).

Also, in some cases one can use Pmax to get Π2 maximality relative to a
given Σ2 statement; that is, for a given Σ2 statement for H(ω2), you can simul-
taneously get all Π2 statements forceably consistent with it.

Another useful aspect: often, the combinatorics of forcing to kill off one thing
while preserving another are not clear; the combinatorics of doing the same by
an iteration may be much clearer. For instance, an analysis of iterations may
help answer the question of whether there exists a Dowker space on ω1.
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