## **MA 355** Homework 9 solutions

# 1 Prove that  $f(x) = \sqrt{x}$  is uniformly continuous on  $[0, \infty)$ .

Step I: Notice that f(x) is uniformly continuous on [0,2] because [0,2] is compact. So given,  $\varepsilon > 0, \exists \delta > 0$ such that  $|f(x) - f(y)| < \varepsilon$  for  $|x - y| < \delta$ .

Step II: Notice that f(x) is uniformly continous on  $[1,\infty)$ . For  $|\sqrt{x}-\sqrt{y}|=|\sqrt{x}-\sqrt{y}|\left|\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{x}}\right|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}}$ .

Since  $x, y \in [1, \infty)$ , we see that  $\sqrt{x} + \sqrt{y} \ge 2$ . So  $|\sqrt{x} - \sqrt{y}| = \frac{|x-y|}{\sqrt{x} + \sqrt{y}} < \frac{|x-y|}{2}$ . Thus for  $\varepsilon > 0$ , take  $\delta = 2\varepsilon$ .

The for  $|x-y| < 2\varepsilon$ ,  $|\sqrt{x} - \sqrt{y}| = \frac{|x-y|}{|\sqrt{x} + \sqrt{y}|} < \frac{|x-y|}{2} < \frac{2\varepsilon}{2} = \varepsilon$ .

Step III: Thus for  $\varepsilon > 0$ , let  $\delta = \min(1, 2\varepsilon, \delta_1)$ . The for  $|x - y| < \delta$ , we see that a) x and y are either both in [0,2] or both in  $[1,\infty)$ . b) If x,y are both in [0,2], then  $|x-y| < \delta < \delta_1$  implies  $|f(x)-f(y)| < \varepsilon$  by Step I. c) If x, y are both in  $[1, \infty)$  then  $|x - y| < \delta < \frac{\varepsilon}{2}$  implies  $|f(x) - f(y)| < \varepsilon$  by Step II. Therefore uniformly

# 2 Let  $D \subset \mathbb{R}$ . Let  $f: D \to \mathbb{R}$  be uniformly continuous on D and suppose  $\{x_n\}$  is a Cauchy sequence in D. Then  $\{f(x_n)\}\$  is a Cauchy sequence.

Pf: Given any  $\varepsilon > 0$ , since f is uniformly continuous on D there exists a  $\delta > 0$  such that  $|f(x) - f(y)| < \varepsilon$ whenever  $|x-y| < \delta$  and  $x,y \in D$ . Since  $\{x_n\}$  is a Cauchy sequence, there exists a number N such that  $|x_n - x_m| < \delta$  whenever m, n > N. Thus for m, n > N we have  $|f(x_n) - f(x_m)| < \varepsilon$ , so  $\{f(x_n)\}$  is a Cauchy

# 3 Let  $D \subset \mathbb{R}$ . Let  $f: D \to \mathbb{R}$  be uniformly continuous on the bounded set D. Prove that f is bounded on

Pf: Suppose f(D) is not bounded.

Claim: There is a sequence  $s_n \in D$  such that  $f(s_n) \geq n, \forall n$ . Pf: Construct the sequence by given  $n \in \mathbb{N}$ . Define the set  $f(D,n) = \{x \in D : g(x) \ge n\}$ . This nonempty because f(D) is not bounded. So choose  $s_n$  to be any point in f(D, n). Then choose  $s_{n+1}$  to be any point in f(D, n+1), etc. We get a sequence of points,  $s_n$  such that  $f(s_n) \geq n, \forall n$ .

Now, since D is bounded we know that  $\{s_n\}$  has a convergent subsequence (call it  $\{s_{nk}\}$ ). This subsequence is Cauchy (because all convergent sequences are). Then by the previous problem,  $f(s_{n_k})$  is Cauchy too. Thus  $f(s_{n_k})$  is convergent (because all Cauchy sequences are). But this is impossibly because  $f(s_{n_k}) \ge n_k$ .

#4 Use the definition of derivative to find the derivative of 
$$f(x) = \sqrt{x}$$
 for  $x > 0$ . 
$$\lim_{h \to \infty} \frac{f(x+h) - f(x)}{h} = \lim_{h \to \infty} \frac{sqrtx + h - \sqrt{x}}{h} = \lim_{h \to \infty} \frac{sqrtx + h - \sqrt{x}}{h} \left( \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} \right) = \lim_{h \to \infty} \frac{x + h - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to \infty} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

#5 Let  $f(x) = x^2 \sin(\frac{1}{x^2})$  for  $x \neq 0$  and f(0) = 0.

a) Show that f is differentiable in  $\mathbb{R}$ .

If  $x \neq 0$  then  $f'(x) = 2x \sin\left(\frac{1}{x^2}\right) - 2\frac{1}{x}\cos\left(\frac{1}{x^2}\right)$ . If x = 0 then  $f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h^2}\right)}{h} = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h^2}\right)}{h$  $\lim_{h\to 0} h \sin\left(\frac{1}{h^2}\right) = 0.$ 

b) Show that f' is not bounded on the interval [-1, 1].

Assume that f' is bounded. Then there exists  $M \ni |f'(x)| \le M \forall x \in [-1, 1]$ . Then take  $x_0$  such that  $x_0 > M$ ,  $x_0 > 1$  and  $\sqrt{x_0} = n\pi$  for some  $n \in \mathbb{N}$ . Since M is finite, clearly  $x_0$  exists. Look at  $\frac{1}{x_0}$ . We see that  $\frac{1}{x_0} > 1$ , and  $|f'\left(\frac{1}{x_0}\right)| = |\frac{2}{x_0}\sin(n\pi) - x_0\cos(n\pi)| = x_0 > M.$