
MA 355 Homework 9 solutions

# 1 Prove that f(x) =
√
x is uniformly continuous on [0,∞).

Step I: Notice that f(x) is uniformly continuous on [0, 2] because [0, 2] is compact. So given, ε > 0,∃δ > 0
such that |f(x)− f(y)| < ε for |x− y| < δ.

Step II: Notice that f(x) is uniformly continous on [1,∞). For |
√
x−√y| = |

√
x−√y|

∣∣∣√x+
√
y√

x+
√
x

∣∣∣ = |x−y|√
x+
√
y
.

Since x, y ∈ [1,∞), we see that
√
x+
√
y ≥ 2. So |

√
x−√y| = |x−y|√

x+
√
y
< |x−y|

2 . Thus for ε > 0, take δ = 2ε.

The for |x− y| < 2ε, |
√
x−√y| = |x−y|

|
√
x+
√
y| <

|x−y|
2 < 2ε

2 = ε.

Step III: Thus for ε > 0, let δ = min(1, 2ε, δ1). The for |x− y| < δ, we see that a) x and y are either both in
[0, 2] or both in [1,∞). b) If x, y are both in [0, 2], then |x− y| < δ < δ1 implies |f(x)− f(y)| < ε by Step I.
c) If x, y are both in [1,∞) then |x − y| < δ < ε

2 implies |f(x) − f(y)| < ε by Step II. Therefore uniformly
continuous.

# 2 Let D ⊂ R. Let f : D → R be uniformly continuous on D and suppose {xn} is a Cauchy sequence in
D. Then {f(xn)} is a Cauchy sequence.
Pf: Given any ε > 0, since f is uniformly continuous on D there exists a δ > 0 such that |f(x)− f(y)| < ε
whenever |x − y| < δ and x, y ∈ D. Since {xn} is a Cauchy sequence, there exists a number N such that
|xn−xm| < δ whenever m,n > N . Thus for m,n > N we have |f(xn)− f(xm)| < ε, so {f(xn)} is a Cauchy
sequence.

# 3 Let D ⊂ R. Let f : D → R be uniformly continuous on the bounded set D. Prove that f is bounded on
D.
Pf: Suppose f(D) is not bounded.
Claim: There is a sequence sn ∈ D such that f(sn) ≥ n, ∀n. Pf: Construct the sequence by given n ∈ N.
Define the set f(D,n) = {x ∈ D : g(x) ≥ n}. This nonempty because f(D) is not bounded. So choose sn to
be any point in f(D,n). Then choose sn+1 to be any point in f(D,n+ 1), etc. We get a sequence of points,
sn such that f(sn) ≥ n, ∀n.
Now, since D is bounded we know that {sn} has a convergent subsequence (call it {snk}). This subsequence
is Cauchy (because all convergent sequences are). Then by the previous problem, f({snk

}) is Cauchy too.
Thus f({snk

}) is convergent (because all Cauchy sequences are). But this is impossibly because f{snk
} ≥ nk.

#4 Use the definition of derivative to find the derivative of f(x) =
√
x for x > 0.

limh→∞
f(x+h)−f(x)

h = limh→∞
sqrtx+h−

√
x

h = limh→∞
sqrtx+h−

√
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h
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#5 Let f(x) = x2 sin
(

1
x2

)
for x 6= 0 and f(0) = 0.

a) Show that f is differentiable in R.

If x 6= 0 then f ′(x) = 2x sin
(

1
x2

)
−2 1

x cos
(

1
x2

)
. If x = 0 then f ′(0) = limh→0

f(h)−f(0)
h = limh→0

h2 sin( 1
h2 )

h =

limh→0 h sin
(

1
h2

)
= 0.

b) Show that f ′ is not bounded on the interval [−1, 1].
Assume that f ′ is bounded. Then there exists M 3 |f ′(x)| ≤M∀x ∈ [−1, 1]. Then take x0 such that x0 > M ,
x0 > 1 and

√
x0 = nπ for some n ∈ N. Since M is finite, clearly x0 exists. Look at 1

x0
. We see that 1

x0
> 1,

and |f ′
(

1
x0

∣∣∣ = | 2x0
sin(nπ)− x0 cos(nπ)| = x0 > M.


