## MA 355 Homework 7 solutions

#1 Use the definition to prove  $\lim_{x\to 5} x^2 - 3x + 1 = 11$ . Notice if  $|x-5| < \delta$  and  $\delta \le 1$ , then  $|x+2| = |x-5+7| \le |x-5| + 7 \le 8$ . So consider two cases: A) Given  $\varepsilon > 0$  (and  $\varepsilon \le 8$ ), choose  $\delta = \frac{\varepsilon}{8}$  (thus  $\delta < 1$ ) and we see that  $|x^2 - 3x + 1 - 11| = |x-5||x+2| < 8|x-5| < 8\frac{\varepsilon}{8} = 8$  for  $|x-5| < \delta = \frac{\varepsilon}{8}$ . B) Given  $\varepsilon > 0$  (and  $\varepsilon > 8$ ), choose  $\delta = 1$ . We see that  $|x^2 - 3x + 1 - 11| = |x-5||x+2| < 8 < \varepsilon$  for |x-5| < 1. So given  $\varepsilon > 0$  choose  $\delta = \min(1, \frac{\varepsilon}{8})$ .

#2 Let  $D \subset \mathbb{R}$ . Let f, g, h be functions from D into  $\mathbb{R}$  and let c be a limit point of D. Suppose  $f(x) \leq g(x) \leq h(x)$ , for all  $x \in D$  with  $x \neq c$ , and suppose that  $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$ . Prove that  $\lim_{x \to c} g(x) = L$ .

Pf: Because  $\lim_{x\to c} h(x) = L$  we know that given  $\varepsilon > 0, \exists \delta_1 > 0$  such that  $|h(x) - L| < \varepsilon$  for  $|x-c| < \delta_1$ . Similarly, since  $\lim_{x\to c} f(x) = L$  we know that given  $\varepsilon > 0, \exists \delta_2 > 0$  such that  $|f(x) - L| < \varepsilon$  for  $|x-c| < \delta_2$ . We know that  $g(x) - L \le h(x) - L \le |h(x) - L|$  and  $-(g(x) - L) \le -(f(x) - L) \le |f(x) - L|$ . Given  $\varepsilon$ , the for  $\delta = \min\{\delta_1, \delta_2\}$ , we have  $g(x) - L < |h(x) - L| < \varepsilon$  and  $-(g(x) - L) < |f(x) - L| < \varepsilon$  so  $|g(x) - L| < \varepsilon$  for  $|x-c| < \delta$ .

#3 Prove: Let  $D \subset \mathbb{R}$ . If  $f: D \to \mathbb{R}$  and if c is a limit point of D, then f can have only one limit at c.

Pf: Suppose  $\lim_{x\to a} f(x) = L$  and  $\lim_{x\to a} f(x) = M$  where  $L \neq M$ . Define  $\varepsilon = \frac{|L-M|}{3}$ . So by definition, if  $0 < |x-a| < \delta$  then  $|f(x) - L| < \varepsilon$  and  $|f(x) - M| < \varepsilon$ .

$$|L - M| = |L - M + f(x) - f(x)| = |L - f(x) - M + f(x)| \le |-1||f(x) - L| + |f(x) - M|$$
$$= |f(x) - L| + |f(x) - M| < 2\varepsilon.$$

So  $|L-M| + \varepsilon < 3\varepsilon = 3\left(\frac{|L-M|}{3}\right)$ . But this implies  $|L-M| + \varepsilon < |L-M|$  which is clearly a contradiction.

#4 Prove: Let  $D \subset \mathbb{R}$ . If  $\lim_{x\to a} f(x) = L$  then  $\lim_{x\to a} |f(x)| = |L|$ .

Pf: First we prove the claim: ||x| - |y|| < |x - y| where  $|x| = \sqrt{x^2}$ . Square the LHS. Then  $||x| - |y||^2 = (|x| - |y|)^2 = |x|^2 - 2|x||y| + |y|^2 = x^2 - 2|x||y| + y^2$ . Now square RHS,  $|x - y|^2 = x^2 - 2xy + y^2$ . Then since  $2|x||y| = 2|xy| \ge 2xy$  we see ||x| - |y|| < |x - y|.

Now if  $\lim_{x\to a} f(x) = L$ , then given  $\varepsilon > 0$ ,  $\exists \delta > 0$  such that  $|f(x) - L| < \varepsilon$  for  $|x - a| < \delta$ . But by the claim se wee that  $||f(x)| - |L|| \le |f(x) - L| < \varepsilon$  for  $|x - a| < \delta$  and thus  $\lim_{x\to a} |f(x)| = |L|$ .