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ABSTRACT. We prove a functional inequality in any dimension controlling the derivative along a
transport of the sub-Coulomb Riesz modulated energy in terms of the modulated energy itself.
This modulated energy was introduced by the third author and collaborators in the study of mean-
field limits and statistical mechanics of Coulomb/Riesz gases, where this control is an essential
ingredient. Previous work of the last two authors and Q.H. Nguyen [NRS22] showed a similar
functional inequality but with an additive N-dependent error which is not sharp. In this paper,
we obtain the optimal N&~! additive error. Our method is conceptually simple and (like previous
work) relies on the observation that the derivative along a transport of the modulated energy is the
quadratic form of a commutator. Through a new potential truncation scheme based on a wavelet-
type representation of the Riesz potential to handle its singularity, the proof reduces to “averaging”
over a family of Kato-Ponce type estimates.

The commutator estimate has applications to sharp rates of convergence for mean-field limits,
quasi-neutral limits, and central limit theorems for the fluctuations of Coulomb/Riesz gases both
at and out of thermal equilibrium. In particular, we show here for s < d — 2 the expected N -l
rate in the modulated energy distance for the mean-field convergence of first-order Hamiltonian
and gradient flows. This complements the recent work [RS23b] on the optimal rate for the (super-
)Coulomb case d — 2 < s < d and therefore resolves the entire Riesz case.

1. INTRODUCTION

1.1. Motivation. In any dimension d, consider the class of Riesz interactions

L|al, s#0

1.1 -
(1.1) g(z) logla],  s=o0,

with the assumption that 0 < s < d — 2. Up to a normalizing constant cqs, these interactions

are characterized as fundamental solutions of the fractional Laplacian: (—A)% g = cds00. The
particular case s = d — 2 corresponds to the classical Coulomb interaction from physics, and thus
s < d — 2 means that we are considering the sub-Coulomb case. The restriction to s > 0 is
to only consider the more challenging singular case, while the restriction s < d is to exclude the
hypersingular case, which is not of the mean-field type considered in this paper (e.g. see [HSST20]).

Given a system of N distinct points Xy = (z1,...,zy5) € (RY)YN with interaction energy
(1.2) S glai—ay),
1<i#j<N
one is led to comparing the sequence of empirical measures uy = %Zf\; 1902, to an average,

or mean-field, density u. This comparison is conveniently performed by considering a modulated
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energy, or Coulomb/Riesz (squared) “distance” between py and p, defined by

1 1 ®2
(1.3 v =g [ s wi( 0 ) )

We remove the diagonal A from the domain of integration in order to remove the infinite self-
interaction of each particle. This object originated in the study of the statistical mechanics of
Coulomb and Riesz gases [SS15a,SS15b,RS16,PS17] and later was used in the derivation of mean-
field dynamics [Duel6, Ser20, NRS22] and following works. We refer to [Ser24, Chapter 4] for a
comprehensive discussion of the modulated energy.

An essential point is to control quantities that correspond to differentiating Fy along a transport
v:RY = RY ie. the quantities

(1.4)
| FN (@)Y (), (Tt = /( e VB £ ) ) ) 0,0),

where I : R — R9 is the identity, (I + tv)®N(Xy) = (z1 +tv(z1),..., 25 +tv(zy)), and : denotes
the inner product between the tensors.For applications to the mean-field limit, V is the velocity
field of the limiting evolution as N — oo. For applications to central limit theorems (CLTSs) for
the fluctuations (the next-order description), v is the gradient of a test function evolved along the
adjoint linearized mean-field flow [HRS,?], and these inequalities are that core of the “transport”
approach to fluctuations of canonical Gibbs ensembles [LS18, BLS18, Ser23, ?]. We also mention
the quantity in (1.4) is also the same that appears in the loop or Dyson-Schwinger equations in
the random matrix theory literature, e.g. [BG13,BG24,BBNY19], which are another avatar of the
transport method.

A key question, which we address in this paper, is to establish a functional inequality asserting
that the quantity in (1.4) is always bounded by Cy (Fy (X, ) +CoN ™) with a > 0, where C; > 0
is a constant depending on d,s,v and C > 0 depends on of d,s, . For n = 1, this was first proved
in [LS18] in the 2D Coulomb case, then generalized to the super-Coulomb case, with max{d—2,0} <
s < d, in [Ser20]. The proof relied on identifying a stress-energy tensorin (1.4) and using integration
by parts. Subsequently, the second author [Ros20] observed that the expressions (1.4) may also be
viewed as the quadratic form of a commutator, akin to the famous Calderén commutator [Cal80].
This perspective was then used by the last two authors and Q.H. Nguyen [NRS22] to show the
desired functional inequalities for all values of s and any order' n > 2 and applying to a broader
class of g’s that may be regarded as perturbations of Riesz interactions, including Lennard-Jones
type potentials. Although these stress-energy and commutator perspectives may seem distinct, they
are in fact dual to each other [RS24c]. Not only are these functional inequalities have been crucial for
proving CLTs for the fluctuations of Riesz gases [LS18,Ser23,?], and even more so for deriving mean-
field limits [Ser20, Ros22b, Ros22a, NRS22,dCRS23b, RS24c] and large deviation principles [HC23].
The inequalities have been further used to show joint classical and mean-field limits [GP22] and
supercritical mean-field limits of classical [HKI21, Ros23, M24, RS24a] and quantum systems of
particles [Ros21, Por23].

An essential question for these inequalities is the optimal size of the additive error, i.e. the

exponent « which a priori depends on d,s. The appropriate comparison is with the minimal

log(N|lp|lL=)
2dN Lo 2

—C||p||p~Nd~" and this lower bound is sharp.? For instance, see [?, Sections 4.2, 12.4]. We show

size of Fn(Xn, ). In the (super-)Coulomb case, it is known that F(Xy, ) +

1Strictly speaking, the paper only explicitly considers the case n = 2, but the argument extends (with more
algebra) to any n > 2.

2The term IO%N in the s = 0 case should be viewed as an error, but rather the fact that the right quantity to

consider is F(Xn, p) + %1520.
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in this work that the same lower bound holds in the sub-Coulomb case as well (see Remark 2.12),
which was not previously known. Moreover, this lower bound is in general sharp [HSSS17]. In
controlling the magnitude of (1.4), one needs a right-hand side which is also nonnegative. Thus,
the best error one may hope for is of size NV a1, Here, optimality is understood in the “worst-case”
sense, i.e. there exists a point configuration X such that achieves the bound. This should be con-
trasted with the “average” sense, where Xy ~ fy € P((RY)Y)) and one estimates Ex s [|(1.4)]].
From the perspective of statistical mechanics, the worst-case corresponds to zero-temperature,
while the average case encompasses a range of temperatures, with the infinite temperature limit
corresponding to iid points. It is well-known that averaging may produce smaller errors. One
quickly checks that if fx ~ p®V (Le. p-iid), then Ex sy [|(1.4)|] & %. Moreover, it is known that
for bounded interaction potentials, there are high-temperature/entropic commutator estimates in
which Ex, ~sy[|(1.4)]] is controlled by a right-hand side consisting of the normalized relative en-
tropy +H (fn|u®N) + O(%) [JW18,LLN20]; and in fact, versions of such estimates with a 4
additive error also hold for some Riesz cases [?].

To date, this sharp N a1 error rate has only been only proven in the (super-)Coulomb case: first,
the Coulomb case [L.S18, Ser23, Ros23] up to second order (i.e. n < 2 in (1.4)), and then recently,
the entire (super-)Coulomb case at any order [RS24c]. In the present work, we prove a functional
inequality with the sharp N a1 error for the sub-Coulomb case at first order. In fact, we prove a
sharp functional inequality for all Riesz cases. See the remarks at the end of this subsection for a
comparison with the (super-)Coulomb inequality of [RS24c].

In addition to its immediate application to the mean-field limit (see Section 1.4), this sharp
functional inequality is crucial for studying fluctuations around the mean-field limit in and out
of thermal equilibrium. We use this functional inequality in the forthcoming work [HRS] of J.
Huang and the last two authors on quantitative CLTs for the fluctuations of Riesz flows in varying
temperature regimes. It also may be incorporated into the transport and Stein’s method approaches
to CLTs for fluctuations of canonical Gibbs ensembles to establish new results [?].

1.2. New functional inequality. To state our main result, we define the microscopic length scale
_1
(1.5) A= (Npllze)"d,

which one may regard as the typical inter-particle distance. If one does not wish to track the
dependence of |||, one may simply define one can also simply set A = N~/9 in all of the paper
at the cost of letting all constants depend on || ||z

Theorem 1.1. Letd > 1,0 <s<d, and a € (d,d + 2). There exists a constant C > 0 depending
only a,d,s such that the following holds. Let pn € L'(R?) N L(RY) with [pq p=1. Let v : RY — R
be a Lipschitz vector field. For any pairwise distinct configuration X € (RN, it holds that

®2
(

N
/(Rd)2\A(v(x) —v(y)) - Ve(z — y)d(% ;690 - #) x,y)’

< C(IVoll+ 19130] 29, ) (v ) -

(1.6)

OByt Cllull = 22)).
We note that the additive error term is in A9~ o« (N~'*d), which is the announced optimal
estimate. The dependence |||z may be weakened to |[u[z» for p > 7%, but at the cost of
increasing the size of the additive error term. We defer comments on the regularity assumptions
for v until Section 1.5.
In fact, we will obtain Theorem 1.1 as a special case of Theorem 4.1, which establishes an
analogous functional inequality valid for a larger class of “Riesz-type” potentials introduced in

Section 2.2 (cf. the class of Riesz-type potentials considered in [NRS22]).
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Comparing Theorem 1.1 to [NRS22, Proposition 4.1] or [RS23a, Proposition 5.15], one sees that
the additive has been improved o< Na~!; however, the previous transport regularity ||Vol[ze +

H\V! 7 vH 1s<q_2 has been replaced by ||Vvl|p= + H]V\QUH 29 , for a € (d,d 4 2), which, by

Sobolev embeddlng, is stronger. See Section 1.5 for further comments on this point. On the other
hand, comparing Theorem 1.1 to [RS24c, Theorem 1.1, (1.7)], which only depends on ||Vv||fe, it
is evident that the estimate we obtain here in the (super-)Coulomb case is worse. Though, we feel
the proof presented here is more elementary than that of [RS24c].

Remark 1.2. Although we only consider the whole space RY in this paper, the inequality (and its
proof) hold on the flat torus T¢ where g is now taken to be the solution of |V|4~5g = cqs(dp — 1).
We leave the details of this extension to the interested reader.

1.3. Proof method. Our method of proof has two main ingredients: (1) a new potential truncation
scheme based on an integral representation of the Riesz potential and (2) commutator estimates of
Kato-Ponce type.

The starting point for the first ingredient is the representation of the Riesz potential

o d
(1.7) Ve A0 )= coas | 1000

where ¢ is any sufficiently nice radial function with nonnegative Fourier transform ¢ > 0, () =
t*dqﬁ(m/t), and cg 4 s depends on ¢,d,s. In the log case s = 0, the integral has to be renormalized to
obtain a convergent expression due to the fact that log |z| does not decay at infinity. See Lemma 2.1
for precise assumptions on the validity of the identity. The formula, which is a consequence of
scaling, expresses that the Riesz potential is a weighted average of the family of approximate
identities {¢;}¢~0. In [Rub24, Chapter 6], Rubin refers to this as a “wavelet type representation.”
The identity (1.7) may also be understood in terms of Mellin transforms. Letting M(f)(z) denote
the Mellin transform of a function f and setting wm(t) = ¢(|z|/t), we have the relation

dt o
d— _
(1) [ o = [T eelal/nT = M@ap(-5) = M),

The utility of the representation (1.7) is that it conveniently allows us to truncate the singularity
of the Riesz potential simply by cutting off the integral for small ¢t. More precisely, given a scale
n > 0, we define the truncated potential

(19) i0) = coas [ 50i0) -

n
While g is singular at the origin, g, is finite and in fact is bounded by g(n). The truncation has
other desirable properties in that it is positive definite (i.e. repulsive), is controlled by g, and the
difference g — g, > 0 decays rapidly outside the ball B(0,7). We refer to Lemma 2.2 for all of the
properties of g;,.

We then show in Proposition 2.11 that the modulated energy Fy(Xn,p) controls the trun-
cated potential energy 3 f(Rd)Q gy(z —y)d(+ SN 6, — 11)®2, which is a genuine energy /maximum
mean discrepancy, as well providing control on the interaction energy due to interactions between
particles at small scale. The latter such control allows, for instance, to bound in terms of the
modulated energy the interaction energy due to nearest neighbors at the microscale oc N—1/d (see
Corollary 2.13)—a fortiori, bounding the number of points with nearest-neighbor distance below
the microscale. Using the potential truncation, we also show with Proposition 2.14 a new coercivity
estimate that establishes that the modulated energy controls the squared inhomogeneous Sobolev

norm ||+ SN 6 — uHiI_%_ up to O(X4~%) error.
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We emphasize that in contrast to the previous works [PS17, Ser20, NRS22, RS23b], there is no
need to consider a smearing/regularizing of the charges §,. Throughout the present paper, we will
only need to consider the truncated potential g,.

In previous works on the modulated-energy method, the strategy behind an estimate of the
form (1.6) is to first prove an estimate valid when the diagonal is reinserted and % Zfi 100, — H
is replaced by a more regular distribution f. One then reduces to this regular setting by replacing
the point charges 0, by smeared charges 5&70 and estimating the error from this replacement, the
so-called renormalization step. Important to implementing the renormalization is to show that
the modulated energy controls both the potential energy of the difference % Zf\; 102, — 1 and the
small-scale interactions.

The present work differs crucially in two regards. First, rather than regularize % Zl]\; 102, —
through smearing, we regularize g through the truncation gn.?’ Second, to prove an estimate for g,
(see Proposition 3.1), we use the definition (1.9) to reduce to proving estimates for

( Z%—) (x,y),  te(0,00),

which we integrate over (1, 00) with respect to the measure td_s%. Provided the dependence on v

in our estimate is scale-invariant, this reduces to proving an estimate for ¢t = 1.

We now come to the second main ingredient of our proof. The formula (1.7) is valid for a large
class of scaling functions ¢, but not all choices of ¢ will allow us to prove the desired estimate.
Indeed, it is a elementary Fourier computation that no estimate of the form

0 [ e =)

[ ) v Vel - f@I) <G [ ol - i@

(R9)2 (Rd)2
can hold for (]5 Gaussian. It turns out that the a good choice for ¢ is a Bessel potential, i.e.
(&) = (2mE) ™ = (1 + 4n2|€|2)~2/2, which is the kernel of the inhomogeneous Fourier multiplier

(V)?. The Bessel potential is a screening of the Riesz potential which preserves its local behavior at
the origin but avoids the issues at low frequency that lead to the slow decay of the Riesz potential
(see Lemma 2.5). Through duality (i.e. setting h := ¢ x f and using that (V)*h = f) the choice

of Bessel potential reduces to proving a product rule for <V>a/ 2 Such product rules are known as
Kato-Ponce estimates in the harmonic analysis literature on account of their origins [KP88]. This
is the content of Lemma 3.4, our main technical lemma. Here, we rely on commutator estimates of
Li [Li19], as well as a local representation of fractional powers <V>a/ % via dimension extension (see
Lemma 3.5), analogous to the Caffarelli-Silvestre representation for the fractional Laplacian.

The parameter a for the Bessel potential is a degree of freedom, but not one without constraints.
We need a > d, so that ¢ is continuous, bounded. On the other hand, if a is too large, then we will
not be able to an estimate whose dependence on v scales properly (see the proof of Lemma 3.4).
This leads to the constraint a < d + 2. Even accounting for the constraint on a, it is somewhat
remarkable that we obtain a homogeneous estimate in the end through an intermediate inhomoge-
neous estimate.

With all of the above described ingredients, the conclusion of the proof of is now just a simple
matter of bookkeeping.

Returning to a point alluded to in the previous subsection, let us remark that the representation
(1.7) itself suggests a class of potentials beyond the exact Riesz case. Namely, we can replace the
function t97° by a general function of ¢ which is pointwise controlled above and below by t4~5. We
call these Riesz-type potentials and properly introduce them in Section 2.2 (see Definition 2.8).

3Remark that the work [BJW19a] also considered a scheme based on regularizing the interaction g at small length
scales. However, the procedure in that work is completely different than our own, limited to the spatially periodic
setting, and does not yield optimal error estimates, unlike our own procedure.
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1.4. Applications. We now discuss applications of Theorem 1.1 related to mean-field and su-
percritical mean-field limits. We will be brief in our remarks, given this subsection closely fol-
lows [RS24c, Section 1.4], which has further background.

The first application concerns mean-field limits first-order dynamics of the form

1
-t t t ¢
Ty = — E MVg(x; — $j) — V(x;) .
(1.12) N 1<j<N:j#i i € [N].

wﬂt:o =7,
Here, x; € RY are the pairwise distinct initial positions, M is a d x d constant real matrix such that
(1.13) ME-€<0  VEeRY,

which is a repulsivity assumption, and V is an external field (e.g. —VV for some confining potential
V). Choosing M = —I yields gradient/dissipative dynamics, while choosing M to be antisymmetric
yields Hamiltonian/conservative dynamics; mixed flows are also permitted. We assume that g is
of the form (1.1). Ome can check that our assumption (1.13) for M ensures that the energy for
(1.12) is nonincreasing, therefore if the particles are initially separated, they remain separated for
all time, so that there is a unique, global strong solution to the system (1.12).

The mean-field limit refers to the convergence as N — oo of the empirical measure

| N
(1.14) (i = NZ%
i=1
associated to a solution X% = (zf,...,2%) of the system (1.12) to a solution u' of the Cauchy
problem
(1.15) Oppe = div((V — MVg * p)p), (t,z) € Ry x RY.

There is a long history to mean-field limits for systems of the form (1.12)—a proper review of
which is beyond the scope of this paper. beginning with regular velocities (typically, Lipschitz)
[Dob79,5zn91]. Singular interaction are far more challenging and only recently have breakthroughs
been made to cover the full Riesz case s < d: the sub-Coulomb case s < d — 2, [Hau09, CCH14],
the Coulomb/super-Coulomb case d —2 <'s < d [Duel6, CFP12,BO19, Ser20], and the full case
0 <s < d [BJWI19a,NRS22], thanks in large part to the modulated energy. Further extensions
of the modulated energy method have been obtained in the Riesz case in terms of the regularity
assumptions on the limiting equation [Ros22b, Ros22a] and incorporating multiplicative [Ros20]
and additive noise [RS23a, HC23]. We also mention the relative entropy method [JW18, GBM24,
FW23,RS24b], which allows treats W12 forces, essentially corresponding to the s = 0 case, and
its combination with the modulated energy in the form of the modulated free energy [BJW19b,
BJW19a, BJW23, dCRS23b, RS24b], which is well suited to overdamped Langevin dynamics and
can even handle logarithmically attractive interactions [BJW19b, BJW23, dCRS23a]. Finally, we
mention an exciting recent direction focused on weighted estimates for hierarchies of marginals
[Lac23, LLF23, BJS22, Wan24] and cumulants [HCR25, BDJ24]. Although these approaches are
currently unable to treat the full Riesz range, they do have advantages in terms of working for both
first- and second-order dynamics and can, in certain cases, achieve sharp rates for propagation of
chaos (cf. Remark 1.4 below). For a proper discussion of contributions and the techniques behind
them, we refer to the recent survey [CD21], the lecture notes [Gol22, Gol16,JW17,Jab14], and the
introductions of [Ser20, NRS22].

As explained in Section 1.1, the optimal rate of convergence as N — oo of the empirical measure
phy to the solution u' of (1.15) in the distance Fy is Ni~!. To the best of our knowledge, this
optimal rate is only known in the (super-)Coulomb case first for stationary solutions, corresponding
to minimizers of the associated Coulomb/Riesz energy only results [SS15b,SS15a,RS16,PS17] being
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for stationary solutions of (1.15) with Ml = —I. The sub-Coulomb case is only known for stationary
solutions on the flat torus .

Our first application of Theorem 1.1 establishes mean-field convergence at the optimal rate N i1
for the full Riesz case. By the now standard modulated-energy method, the proof is an immediate
consequence of Theorem 1.1 (see Section 5.1).

Theorem 1.3. Let g be of the form (1.1) and V satisfy ||[VV| L + H\V]%VVHL% < 00 some
a € (d,d+2). Assume the equation (1.15) admits a solution u € L>([0,T], P(RY) N L>®(RY)), for
some T > 0, such that for some s € (d,d + 2),

(1.16) IV®2g 5 i || Lo (0,77, 1) + |||V|%Vg*utHL < o0.

o ([0,7],L5°2 )

If s =0, then also assume that [pelog(1 + |z|)du!(z) < oo for all t € [0,T].
Let X solve (1.12). Then there exists a constant C > 0, depending only on |M|, d, s, such that

, log(Nl'llz-)
2Nd
CIJ<VuTLm+|V|5uT||L%)dT<

Te—o + C||p||E N3

log(N |||z )
2Nd

(1.17)  Fn(Xh, 1)

e

Fv (X8 1%)+ sup (

Lo+ Ol Mé-l))
T7€[0,t]

where u' = —MVg* u + V.
In particular, if M?V — 1 in the weak-* topology for measures and

(1.18) lim Fy (X%, %) =0,
N—oo

then

(1.19) phy —pt o vte[o,T).

As a consequence of Theorem 1.1, we also have new, improved rates of convergence in the
modulated-energy distance for dynamics with noise, compared to the previous work [RS23a] by the
last two authors. At the microscopic level, the system (?7) is generalized to

where 5 € (0,00] has the interpretation of inverse temperature and Wi,..., Wy are iid d-
dimensional Wiener processes.

Remark 1.4. Theorem 1.3 implies propagation of chaos for the marginals of the system (1.12) with
initial data X%, randomly chosen according to a p°-chaotic law. For instance, see [Ser20, Remark
3.7] or [RS23a, Remark 1.5] for details. However, this “global-to-local” argument in general leads
to a suboptimal rate [Lac23].

Remark 1.5. For any external field of the form V(x) = c( —x+ @(w)), where, say ® is a Schwartz
vector field, the condition |VV||pe + H|V\%VVHL 2d < 00 is satisfied. Indeed, it is evident that

a—2

|V®| Lo + H\V]%V@HL 2¢. < 00. Since the singular sub-Coulomb case is vacuous for d < 2, the

condition d > 3 and a € (d,d + 2) implies that § > 3. But for any a > 1, the (vector-valued)
distribution |V|%z = 0. The claim now follows by triangle inequality.

The regularity assumption (1.16) for u' is a bit more involved. We defer verification until in
Section 5.2, where we show that (1.16) is satisfied provided that u° is suitably regular.

4This condition is to ensure that the convolution g * p is pointwise defined. None of our estimates will depend on
it. Through a Gronwall argument, one checks that if u° satisfies this condition, then p also satisfies this condition
uniformly in [0, 7.
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Remark 1.6. The paper [RS24a] by the last two named authors gave an application of Theorem 1.1
in the (super-)Coulomb case to problem of so-called supercritical mean-field limits, namely the
derivation of the Lake equation from the Newtonian N-body problem in the joint mean-field and
quasineutral limit. The sharp first-order commutator estimate (1.6) plays an essential role to
show convergence provided N a1 /e2 — 0ase — 0and N — oo. This result is sharp, as when
Nt /g2 /4 0, we showed through an explicit example that convergence may fail. The present
Theorem 1.1 would allow one to extend the results of [RS24a] to the sub-Coulomb case, provided
one could also extend the necessary auxiliary results concerning regularity of the boundary of
support for equilibrium measures to the sub-Coulomb case. In the periodic setting, where the
equilibrium measure takes full support, this last part is not an issue.

1.5. Remaining questions. Although we establish a sharp first-order commutator estimate for
sub-Coulomb modulated energies, our work raises and leaves open several questions that we briefly
discuss below.

The first question is the quantitative dependence on v in the right-hand side of (1.6). In the
(super-)Coulomb case, it has been shown [LS18, Ser23, Ros23, RS24c| that the estimate holds with
only ||Vv||ree. This dependence is essentially sharp, as we show in the forthcoming work [HCRS],
in the sense that it cannot be weakened to ||Vv|pymo. In the sub-Coulomb case, it has been

shown [NRS22] that the estimate holds with ||Vv||fe + || W|%UHL _- Importantly, both terms

2d
=2
scale the same way under the transformation v — wv(A-). Again, this is essentially sharp, as we
show in [HCRS] that H|V\%v||L 24 cannot be weakened to H\V|“UHL o for any a < 955, The

d—s—2 a—T1
dependence || |V|%v||L 24, for any a € (d,d+2), is an artifact of our passing through an intermediate

commutator estimate for Bessel potentials in the proof of Theorem 1.1. By Sobolev embedding,

s—2
even with the sharp additive error, but it does not seem obtainable with our current proof.

The second question is the localizability of the estimate. To illustrate what we mean, consider
the Coulomb case. Then using the so-called electric formulation of the energy, we may set hy =
g * (uy — p) and express the modulated energy as a renormalization of [pq [Vhy[?. This latter
quantity may evidently be localized to any domain  C RY. Letting v be a transport and taking

Q) = supp v, one would like to establish the localized functional inequality

(1.20) /(Rd)2<v<x> —u(y)) - Vel — p)d(uy — 0 < C, /Q Vhnl2,

it is stronger than |||V|%UHLd 2d . We expect the latter to be the optimal regularity dependence

which is known to hold with C\, = ||Vv|| e [LS18,Ser23]. Such localized estimates are important for
applications to CLT's for the fluctuations of Riesz gases at mesocales (e.g. see [Ser23]). An estimate
of the form For = d — 2k with integer 1 < k < d%Q, g is the fundamental solution of (—A)F, so it
seems natural to consider a localized potential energy [, |[V®*h|? and try to show that (1.20) holds
with right-hand side now instead fQ |V®¥h|2. For other values s, g is the fundamental solution
of a higher-order power of the fractional Laplacian, a nonlocal operator, and the naive quantity
Jo HV|%M2 is not a good ansatz for a localized potential energy. Instead, one should probably
use the extension procedure for higher powers of the fractional to find a local representation of
the energy, analogous to the use of the Caffarelli-Silvestre extension used in the super-Coulomb
case [PS17,Ser20] and most recently in [RS24c] to show a sharp localized estimate. Even for the
local case s = d — 2k, the difficulty remains that our proof of the renormalized commutator itself
uses nonlocal estimates in the form of these Kato-Ponce commutator bounds, and therefore is not
evidently amenable to show the desired localized estimates.

The last question we mention is a sharp estimate for higher-order commutators, which state that
for n > 1, the quantity in (1.4) is again controlled by C(Fx(Xn,p) + N™%). Such inequalities
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were first shown at second order (i.e. m = 2) in [LS18, Ros20] for the d = 2 Coulomb case, then
in [Ser23] for the general Coulomb case (although with an estimate which is not even optimal in
its Fyy dependence), and later in [NRS22] for the full Riesz-type case 0 <'s < d. These second-
order estimates were important for the same problem of fluctuations of Coulomb gases, as well as
for deriving mean-field limits with multiplicative noise. Estimates beyond second order are also
useful, allowing to obtain finer estimates on the fluctuations of Riesz gases to treat a broader class
of interactions [PS]. Though not explicitly written, the approach of [NRS22] yields higher-order
estimates, but which are in general not sharp in their additive error. In contrast, the sharp estimates
from [Ser23] are only to second order for the two-dimensional Coulomb case. More importantly, their
proof is quite intricate and seems impossible to generalize to higher-order derivatives. In [RS24c],
sharp, localized estimates were shown at all orders for the (super-)Coulomb case via a delicate
induction argument. In contrast, it is not clear how to extend the method of this paper to n > 2.
A first attempt would be to mimic the strategy of [NRS22]. Namely, write integrate by parts a
sufficient number of times to throw off derivatives from the test functions onto the commutator
kernel and close with the difference quotient characterization of the Sobolev seminorm (s # d — 2k)
or the Christ-Journé theorem for Calderén d-commutators (s = d — 2k). To be compatible with
our potential truncation, we would need to implement this strategy with the Riesz kernel replaced
by a Bessel kernel, the inhomogeneity of the latter breaking the argument. A plausible alternative
strategy is to desymmetrize (1.4) and write the expression in terms of iterated commutators. But
this entails difficulties of considering commutators of commutators, not too mention the algebraic
complexity as n increases.

1.6. Organization of article. In Section 2, we describe the truncation procedure and its basic
properties for Riesz potentials (Section 2.1). We then introduce a class of Riesz-type potentials,
alluded to in the introduction, to which we extend the potential truncation (Section 2.2). Finally,
we use the truncation scheme to prove optimal lower bounds for the modulated energy and local
energy control (Section 2.3), as well as a new, sharp coercivity estimate for the modulated energy
(Section 2.4).

In Section 3, we prove some Kato-Ponce type commutator estimates for powers of the inhomo-
geneous fractional Laplacian. The main result is Proposition 3.1. This is the most technical part
of the paper. As a consequence, we have Corollary 3.2, which is the desired functional inequality
but for the truncated potential (i.e. pre-renormalization).

In Section 4, we combine the potential truncation of Section 2 with the unrenormalized commu-
tator estimate of Section 3 to prove Theorem 1.1. In fact, we present with Theorem 4.1 a more
general functional inequality valid for the Riesz-type potentials introduced in Section 2.2, which
includes Theorem 1.1 as a special case.

Finally, in Section 5, we combine Theorem 1.1 with the well-known dissipation relation for the
modulated energy to prove Theorem 1.3, the sharp rate of mean-field convergence (Section 5.1).
We close the paper by verifying that solutions of the mean-field equation (1.15) have vector fields
satisfying the regularity condition of Theorem 1.1 (Section 5.2). Note this does not immediately
follow from an LP assumption on the initial density u° since for any a € (d,d + 2), ]V\%Vg * =
casV|V|27579y, which cannot be controlled in terms of ||u/|z» in general except when s < d-1.

1.7. Notation. We close the introduction with the basic notation used throughout the article
without further comment. We mostly follow the conventions of [NRS22, RS23a, RS23b].

Given nonnegative quantities A and B, we write A < B if there exists a constant C' > 0,
independent of A and B, such that A < CB. If A < B and B < A, we write A ~ B. Throughout
this paper, C' will be used to denote a generic constant which may change from line to line.

N denotes the natural numbers excluding zero, and Ny including zero. For N € N, we abbre-
viate [N] := {1,...,N}. R, denotes the positive reals. Given z € RY and r > 0, B(z,r) and
O0B(x,r) respectively denote the ball and sphere centered at = of radius r. Given a function f,
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we denote its support by supp f. The notation V®¥f denotes the k-tensor field with components
(O -+ Oi i<y m.ip<d-

P(RY) denotes the space of Borel probability measures on RY. If  is absolutely continuous with
respect to Lebesgue measure, we shall abuse notation by writing p for both the measure and its
density function. When the measure is clearly understood to be Lebesgue, we shall simply write

fRd f instead of fRd fdz.

2. THE MODULATED ENERGY
In this section, we discuss properties of the modulated energy functional introduced in (1.3).

2.1. Truncation for Riesz potentials. We first introduce the new scheme for truncating the
interaction potential g based on a wavelet-type integral representation of the Riesz potential. This
replaces the potential regularization scheme introduced in [NRS22] based on averaging with respect
to mollifier. Although this paper focuses on the sub-Coulomb case s < d — 2, we note that the
potential truncation works just as well in the Coulomb/super-Coulomb case d—2 <'s < d, providing
an alternative to the truncation scheme used in [PS17, Ser20, AS21, RS23b] and importantly not
requiring a dimension extension for the nonlocal case d — 2 <'s < d.

Lemma 2.1. Let ¢ : RY — R be radial, continuous, bounded, such that o(r) = 0 as r — oo.
Assume that

(2.1) /OO r*o(r)|dr < oo ifs>0 and /OO |log(r)¢'(r)|dr < oo if s=0,
0 0

where we use radial symmetry to commit an abuse of notation. Assume further that if s = 0, then
lim, g+ (¢(r) — ¢(0))logr = 0. Then setting ¢; == t~94(-/t), it holds that

. T dt
(2.2) Yz # 0, g(r) =cgds lim (/ td *d(x)— — Cprls—o |,
T—o0 0 t
where’
%T, s>0
(2.3) Cod,s = {S{O TS‘ZS(T)dT- B
W, S = O,
(2.4) Cor = 0(0)log(T) ~ [~ log(r)o/(r)dr
0

Proof. When s > 0, clearly the above integral converges whenever x # 0. On the other hand,
making the change of variables r = |x|/t we find that

& dt o d
(25) | e o =sete) [ o
0 t 0 r
which specifies cg g s.
When s = 0, letting » = ¢t~ !|z| and integrating by parts,

T ') r 9]
(2.6) /Ot—%zs(t—la:)dt: /| o) = —p(al/T)og(l/T) — [ log(r)d(r)dr.

z|/T r ||/T
Letting 7' — oo and using the assumption that lim,_,o+(¢(r) — ¢(0))logr = 0, we see that (2.2)

holds with ¢4 40 = ﬁ. O

5Implicitly7 we are assuming that the quantities in the denominator defining c4 4,5 are nonzero.
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The importance of the representation (2.2) is that it conveniently allows to define a truncation
of g at small scales simply by truncating the integral for small values of ¢, and that this truncation
well-approximates g, preserves its repulsivity, and is controlled by g. More precisely, for n > 0, we
define the truncated potential at scale n by

, T e dt
(2.7) gy(z) = C¢’d’sTlE>I;o </n d e )T*CT¢1S o>

where Cr ¢ is as above. Note that g = go. In the sequel, it will be convenient to introduce the
notation

(2'8) fn =g & fa,n = 8a — &n— f,,] — fo-

Evidently, f,, = fo,. The reader may also check that limit on the right-hand side of (2.7) holds not
only pointwise but also in the sense of tempered distributions.

The following lemma establishes the key properties of the truncated potential under possible
additional assumptions on the scaling function ¢.

Lemma 2.2. Let ¢ be as in Lemma 2.1. For n > 0, the following assertions hold.

(1)

nS¢(0 fooo rSé(r s>0
(2:9) en(0) = { logn + 5 ¢ fo logr¢ r)dr, s=0.

(2) If $ > 0 and ¢ € L*, then for any test function ¢ > 0 (resp. such that p(0) =0 if s = 0),
we have (g, ) > 0.

(3) If ¢ > 0 and ¢ is decreasing, then g,(x) < C'max(g(n),1). Moreover, if s > 0, then g, > 0.

(4) Under the preceding assumptions, f,(x) > Cn~° for any |x| <n. If s =0, then there exists
€ > 0 such that

(2.10) Vx| < en, |fy (x )—I—log<‘ ’>| <C.

(5) Suppose further that ¢p(x) < Cy(x)” " for v >s. Then 0 < f,(z) < CW]LL Consequently,
if s > 0, then f,(z) < Cymin(g(x), |$"7T7) .

(6) Suppose further that ¢ € C*(RY\ {0}) and there is c € (0,1] such that |z||Vo(x)| < ¢(cx).
Then |z||Vfy(x)| < Cf,)c(z).

In all cases, the constant C' > 0 depends only on d,s, ¢.

Proof. Starting with (1), observe that

T

gn(0) = cpas jlggo < / t S* — Cr,¢ls= o)
n

P(0)(T° —

= C¢,d,s Tlgr;o ( .
~ ($(0)log(T) + /0 h log<y>¢’<y>dy>1so)
<¢(0)n‘s 1

"7_5) 1s>0 + ¢(0) lOg <z;> 15:0

(2.11) = Cpds >0 + ( — ¢(0)logn + /OOO log rd)’(r)dr) 15()).

Substituting in the definition (2.3) of ¢4 4 then yields (1).
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To see (2), observe that Fubini-Tonelli and the identity q?t = gZ;(t) imply that for any T > 0, the
Fourier transform

T T
(2.12) /R d e 2Tt / td_sﬁbt(m)%dx = / td‘saﬁ(t&)%-
n n

Since 1 = §; in the sense of distributions, it follows from the continuity of the Fourier transform
with respect to distributional limits that

N . T dt
(2.13) gn(§) =cpds, lim ( / t475p(t) — —CT,¢501s=o>,
T—o00 n t

where the equality is understood in the sense of distributions. Evidently, the first term on the
right-hand side is positive. Consequently, if s > 0, then for any test function ¢ > 0, we have
(8n, ) > 0. If s =0, then the additional hypothesis ¢(0) = 0 kills off the contribution of the Dirac
mass.

Now consider (3). If ¢ > 0, then when s > 0, it is evident from the definition (2.7) that g, > 0.
Trivially bounding ¢; < t~9||¢||z, we also have

ot o dt
(2.14) g(w) = cods | 1770u() " S dllwcoas [ 17 = [[9llocasslz).
n n

When s = 0, note that by making the same change of variable and integrating by parts as in the
proof of Lemma 2.1,

[ o)y - cno = ooe(2) - alihoe (5) - [ " og(r)e(r)dr - Crg

z|/T

= o105 1) — 0105 1a] - (o3 - o0 08 ()

9) lz|/T
(2.15) + / log(r)¢' (r)dr + / log(r)¢' (r)dr.
||/m 0
Letting T' — oo, the last two terms on the preceding line vanish. Thus,
o2y /g e
(2.16) gn(z) = —2 log<> + / log(r)¢' (r)dr — log |z|.
! ¢(0) n/)  $0) Jiam

By assumption (2.1) and that ¢ is decreasing,

1 0o / 1 min(|z|/n,1) ,
(2.17) W /|:C/77 log(r)e'(r)dr < W /m/n |log r¢'(r)|dr < oo,

which takes care of the second term on the right-hand side of (2.16). If |x| > 7, then the first is
< log % by our assumption that ¢ is decreasing. Writing

o) /) o) —9(0) 1z
(2.18) (0] log<77> —log|z| = qb(())lOg(n) —logmn,

By our assumption that (¢(r) — ¢(0))logr — 0 as » — 0, there exists ¢ € (0,1) independent of
7n, such that for |z| < en, the first term is < 1. For n > |z| > en, we may crudely bound the
magnitude of the first term by —loge. The desired conclusion now follows from putting together
all the preceding cases.

Next, consider (4). Since ¢ is decreasing, for any |z| <,

dt dr

n %)
(219) fia) > coas [ 50 = coaen™™ [ o)
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where the final equality follows from the change of variable r» = nt~!. If s = 0, then (2.16) implies
that

R C N A T ,
(220) W”‘_¢mﬂ%<n>_am/af%m¢mm'

Again using that there is an € > 0 such that supy_,< [¢(r) —#(0)||log 7| < 1 and triangle inequality,
we see that

|z [¢(r) — ¢(0)|[logr| , 1 [ /
2.21 sup |f,(x) + log( < sup + logr||¢’(r)|dr < oo.
( ) \m|§en‘ 77( ) n ’ 0<r<e ¢(O) ¢(0) 0 | H ( )‘
This then completes the proof of (4).
For (5), it is immediate from the definition of g, and the assumption ¢ > 0 that f,, > 0. If s > 0,
then since g, > 0, it also follows that 0 < f,(z) < g(z). Next, majorizing |¢:(z)| < Cyt~4(z/t) 77,
we have

no o dt "o _dt
i) = coas | 00T < Creoas [ (1al/ 1S

o0
d
ZCw%,d,s\l’IS/ ()T

| r

n
C.c
(2.22) < RS | fal ),
v —s
where we have made the change of variable r = ¢~!|z| and used that the integral in r converges
since v > s by assumption.
Lastly, for (6), we use the definition (2.7) of g, to see that

" dt o L dt
c¢,d,s/0 #d SV(]ﬁt(m)? §c¢,d’s/0 3|t 1x\|V¢(t 1x)\?

By our assumption, [t71z||Vé(t~12)| < ¢(ct~ ) and therefore,

(2.23) ||V (2)] = ||

" dt n/e dt
||V ()] < C¢,d,s/ fs(ﬁ(Ct_liﬁ)? = C_SC¢,d,s/ t_sqﬁ(t_lx)?
0 0
(2.24) = C_SC¢7d75fn/c(a?),
where the penultimate equality follows from the change of variable ¢/c — t. With the last assertion,
the proof of the lemma is complete. O

Remark 2.3. The assumption that ¢ is decreasing is not strictly necessary, but it does simplify
the computations. In any case, it is satisfied by the specific choices of ¢ we will later in this paper
to obtain Theorem 1.1.

Remark 2.4. The identity (2.13) shows that E\n > 0 in the sense of distributions for all 0 <'s < d.

We emphasize the importance of property (5) of f,, to obtain the optimal additive error n97% in

the sequel. In the previous work [NRS22], the mollification scheme used to define g, only yields the
bound [f,(z)] < C M% This issue of tails was the main culprit behind the sub-optimality of the

error estimates in that work. Note that for the potential truncation scheme used for the (super-
)Coulomb case in [PS17, Ser20, RS24c], f,(x) vanishes when |z| > 7, so there is no comparable
issue.

So far, we have been unspecific about the choice of ¢, only requiring that it satisfy certain
properties. For later use in Section 4, we will choose ¢ to be a Bessel potential, that is the
fundamental solution of the inhomogeneous Fourier multiplier whose symbol is given by (27£)?. In
the next lemma, we recall some important properties of the Bessel potential. Several assertions
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of the lemma are already in [Gral4, Proposition 1.2.5]. We include a proof of them anyway in an
effort to make the present work self-contained.

Lemma 2.5. Let a > 0 and Ga(z) be defined by Go(€) = (1 + 4n2|€|2)~*/2. Then G, € L*(RY) N
C>=(RY\ {0}) is strictly positive and decreasing. Moreover, for any multi-index & € N3, we have
for any € > 0,

||

(2.25) V|z| > 2, |05Ga(z)| < Cee™ 3¢
and
(2.26) V]z| < 2,

Furthermore, for any e € (0,1)
(2.27) Vg >0,  |2]90:Ga(x)| < C.Galex)
Above, C,C¢ > 0 depend on d, a,|d|.

oo 7&4#@/2@

Proof. Using the gamma function identity A~2 = ﬁ fo +» we see that

1 & 2 dt
(2.28) (1 aneP) ™ = s | e t

Taking inverse Fourier transforms of both sides,

(2.29) Galz) = N /oo o—to—lol?/aty 54 At
‘ ) (2v/m)T(s/2) Jo t

It follows immediately from this identity that G, > 0, smooth on RY, and Jra Ga = 1.
Suppose that |z| > 2. Let @ € N4 be a multi-index. Differentiating inside the integral,

Ial b g2 /4y, sHlEl=d dt
(2.30) 05zGa(z) = (2\F dr 73 / HHai(ﬂci/Q\/{)e t o= af? /4ty 2 -
=1
where H,, is the n-th (physicist’s) Hermite polynomial. Since |Hy(y)| < Cpn(1+ |y|™) and
E |2 22 o]t 2
2.31 t+— > t t4 2t s L 22
(2.31) + max(y/1/c|z|, + ) = +ct_2\ﬁ+2+ct’
it follows that for any ¢ > 4,
C| G =] [° st+l@l—d dt
2.32 905G 2 Tave “U2em2/ (el —.
(232 0sG ) < G sitame e T
Evidently, the integral in ¢ converges.
For |z| < 2, we decompose

(2.33) Ga — Gs,l + Gs,2 + Gs,S»
where

1 1 2 s—d dt
2.34 s — s—d —t|z| 71/4tt—7
234 Guale) = bl ey, T

1 4 9 d dt
2.35 Gy - - to—lal? /4ty
(2:35) 2() = 5T 9) /,xf ° T

1 & —d dt
2.36 Goglz) = —
(2:30) o) = Gz ¢ B
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By the Leibniz rule,

o — a . s—d; ! oty —1/ 37;1@
2uiane) = 30 (§) 00l gy [, Po-ate e T

-

p<a
= 6—{ ~(|z]5d ; ' _ |a—B| ° T e—t\x|2€—1/4t %@
Y (5)2stil* zmpamrm [, O™ I s i) g

If § # @, then we may bound ]65|x]5_d| < C’|a:|5_|f§|_d7 |Viz| < 2, and e 171> < 1, to obtain

s—d ! &—3] : —t|a|? —1/at, 24 dl

(238) 105" G mar o 2) (5/2)/ (=v1) EHaiﬁf(\/Zwi)e ety
0‘04 s—d— 3 ! — t ﬂdt
< Gy e

where the integral in ¢ evidently converges. If § = @, then Taylor expanding e~ = 1+ O(t|z[?),
it follows that

m ' e—t|$|2_ 6_1/4t %d@
(zﬁ)dl“(s/2)/0 ( 1) te <

(2.39)

Ciga* 271974 1
— (2vym)iT(s/2) /0

We conclude that

(2.40) 0aGs1(2)

=c

where C' = C(d, s, |d@|). Letting &@; := & — €;, we have by the Leibniz rule,

(2.41) 05Gs2(x) = (Q\f) T/2) Z Oziagi((—2951-)@*‘”3'26*1/4\m|8*d*2)

oy >0

4 s—d
(2\” o /xlz) 67t8&(6*|x| /4t)t > %

2
Lastly, using that 0 < % < i, we have that

0 d
105G 3()| < L / (VD) ] 1Ha, (1/2V/D) et e 1o 455 %
=1

(2vm)HT(s/2) Ja
—d _,dt

Cla alamd i dt
(242) <l ¢ 0

Finally, recalling the identity (2.30), majorizing |Ha, (y)] < Cq, (14 |y|)®, and using that for any
c <1, there is a constant C|g| . > 0 such that (1 + ly|)¥lelvl < C"(;Lce_dy', we obtain that

B

»

B 2l o0 2 s+lal—d dt
sy o 2T ekt dt
o] |8O‘Ga(x)|—C"‘|’€(2\/E)d1“(s/2)/0 et s

(2.43) = 20905 .Gs(

g
for any € > 0. This establishes (2.27) and completes the proof of the lemma.
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Remark 2.6. An examination of the |z| < 2 part of the proof of Lemma 2.5 reveals that if s > d,
then the matrix field  ® VG,(x) has a (a —d — €)-Holder continuous, for any € > 0, extension that
vanishes at x = 0. As

|z ® Vgy(z) —y ® Vg, (y)| =

oas [ £ (00 VGua/t) 0 VGaly/ )i
n

<c. / 151 (w — o)/t <d
n

(2.44) = Ceasale =y~

it follows that @ ® Vg, also admits an (s —d — €)-Hélder continuous extension that vanishes at the
origin, for any n > 0.

Remark 2.7. In particular, Lemma 2.5 shows that assertions (2)-(4) of Lemma 2.2 are satisfied
when ¢ = G, for a > d. Furthermore, assertion (5) holds for any v > s and assertion (6) holds for
c=1.

2.2. Truncation for Riesz-type potentials. The identity (2.2) and the fact the choice ¢ = G,
satisfies all the assumptions of Lemma 2.2 motivates our considering a class of Riesz-type potentials,
mentioned in the introduction, that have analogous properties to the exact Riesz potential.

*** Changed around structure of definition.
S

Definition 2.8. Let ¢ : RY — [0, 00) satisfy all the conditions imposed in Lemmas 2.1 and 2.2.
We say that a potential g : R4\ {0} — R is (s, ¢)-admissible if g admits the representation

T
(2.45) Ve £0,  gz)= lim ( /O <<t>¢t<m>dt—0¢,ﬂs:o>,

T—oo t

where Cy 7 is as in (2.4), ¢ : (0,00) — [0,00) is a locally integrable function such that for some
CC > 0,

(2.46) vi>0,  CoMT<((t) < Ot
and if s = 0, then there is a locally integrable function p : (0,00) — [0, 00) such that
o0 dt
(2.47) C(t) =t9 + p(t), where / p(t)t*d7 < 0.
0

When ¢ = G, for some a > 0, we will just say that g is (s, a)-admissible.

To the best of our knowledge, this class of admissible potentials has not been considered in the
literature at this level of generality. We note that when ¢ is Gaussian, our definition coincides with
a special case of so-called G-type potentials considered in [BHS19, Definition 10.5.] and related
works. The work [NRS22] by the last two authors and Q.H. Nguyen considered a class of Riez-
type potentials that satisfy a superharmonicity condition in a ball around the origin as well as
satisfying pointwise physical and Fourier bounds comparable to an exact-Riesz potential. In the
super-Coulomb case, similar assumptions are imposed but in a dimension-extended space, viewing
the potential g as the restriction of some G to a lower-dimensional subspace. Similarly, the reader
may check from Definition 2.8 that an (s, ¢)-admissible potential, for s > 0, satisfies pointwise
bounds in physical and Fourier space comparable to an exact Riesz potential. In the case s =
0, an (s, ¢)-admissible potential agrees with the —log || up to a more regular, positive-definite
remainder. It is not clear that one definition is a proper subset of the other. In particular, the role
of superharmonicity here is not apparent as it is in [NRS22]. Although the class in [NRS22] feels
broader, the generalization in the present work is more straightforward.
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Let n > 0. If s > 0, then we define g, just as in (2.7). If s = 0, then we only need to
truncate the contribution from cCtd in the decomposition for . This is because the assumption

fooo p(t)t™ ddt < 0o ensures that fo )(ﬁt( ) converges any = € RY. More precisely, we define
/ C(t) gt (x s#0

(248) gn(x) d dt [e’e] t
lim </ t%i(x)— +/ p(t)r(x )*_CT¢>15 0) s=0.
T—o0 n t 0

For comparison with the exact Riesz potential considered in the previous subsection, it will be
convenient to introduce the distinguished notation

1..—s
(2.49) et (z) = { 17 570
—loglz|, s=0

Similarly, we write gRiesz,; fRiesz,n to denote the exact Riesz case.
Analogous to Lemma 2.2, we have the following proposition, which is the main result of this
subsection and underlies the results of Sections 2 and 4.

Proposition 2.9. Let g be (s, ¢)-admissible. The following assertions hold.

(1) If s > 0, then gy(0) = griess(n); and if s =0, then |g;(0) — gries2(n)| < C. In both cases, C

depends on ¢ and also on p if s = 0.

(2) For any test function ¢ >0 (resp. such that p(0) =0 if s =0), we have (g,, ) > 0.

(3) gn(z) < Cmax(g(n),1) and if s > 0, then g, > 0.

(4) fy(z) = Cn~* for any |z| <.

(5) For any v > s, we have 0 < f,(z) < C, min(g(x), ﬁ%)

(6) |2[|Viy(z)| < Clap(a).
In all cases, the constant C' > 0 depends only on d,s, (. In particular, all the assertions hold if g is
(s,a)-admissible for a > d.

Proof. The assertions essentially follow from the same reasoning as in the proof of Lemma 2.2. We
briefly sketch the details.
Consider first the case s > 0. Then by the assumption (2.46) for ¢, it follows that

(2.50)

& dt e dt
C iesz, =C" C ¢ = C 13 ¢ —<C td_s¢ —=C iesz, .
grieen() = O [T C00@ T <m0 = [T C00@ T <€ [T 00§ = Catimnn @
Similarly,
(2.51)
Cc™ leeszn =C / td S(ybt e <f / C ¢t C/ td S¢ )@ - Cleesz,n( )

We can now appeal to the correspondlng assertions for griess,, leeszm from Lemma 2.2 to conclude
the proposition in the case s > 0, with the exception of assertion (6). For this, we may simply
bound

n dt oo _ dt
(2.52) 2] VFy (@) < cpas /0 (Ol Vo) < Cegas /0 ol Vo)

We can now proceed with no changes as in the proof of Lemma 2.2(6) to obtain the preceding
right-hand is <
!

(2'53) C/Cisziesz,n/c( )S %C f/c( )

The desired conclusion now follows.
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For the case s = 0, we observe from assumption (2.47) and the definition (2.48) of g, that

(254) () ~ Ehien(@) = | p0610) %

(2.55) @) = [ 9610)% = (@)

The relation (2.54) gives assertions (1), (2), (3); and the relation (2.55) yields the assertions (4),
(5), (6) for f,. This then completes the proof of the proposition.
O

Moreover, by Lemma 2.2(5) and Hoélder’s inequality, we have the useful convolution bounds,
which will be used in Section 2.3 to control the additive errors.

Lemma 2.10. Let p € (%,p]. There exists C' > 0 depending quantitatively only on d,s,p, ¢, (,
such that for n > 0,

d(p—1)

(2.56) 1fy % pellzoe < Cllpllpen™ 7,
d(p—1)

p _
(2.57) I1-11VEgl # pll e < Cllpllzom™ 7

Proof. For x € RY, we split

[t vt = [ e pi) [ )

N T —
<Chn s/ g(—ydu(y)
lz—y|<n/2 n

+C lz —y[>(lz — yl/n)* " du(y)
lz—y|>n/2
p1—1

, dlpr =1 _ d(p1—-1) 1 _P1 1
<c(0 W o [ togrlar) T o
0

, dlpo=D) o 00 spy pa(s—) pigl
+C'n P2 (/1 r p2-lp p2-1 dr) || 2] Lp2
. dpy =1 dpo=1)
(2.58) = (oo™ H S 4 Yl ™),

where we have used Proposition 2.9(5) and the applications of Holder’s inequality are valid provided
that % <pr<ocand 1 <py < ﬁ, with the convention that ps = oo is allowed if v > d. In

particular, if ¥ > d, then we may take p; = py. Similarly, using Proposition 2.9(6) and then
applying the previous estimate (2.56) (assuming n < §), for any = € RY,

d(p—1) _

259) [l ulVE @~ ldus) < C [ fele = n)duto) < O™

again under the same assumptions on p. U

2.3. Energy control. Throughout this subsection, we assume that g is (s, ¢)-admissible where the
function ¢ satisfies all the assumptions imposed in Lemmas 2.1 and 2.2.

When 0 < s < d, then it is immediate from basic potential theory (e.g. see [RS23a, Remark
2.5]) that g * u is a bounded, continuous function (it is actually C** for some k € Ny and o > 0
depending on the value of s) and therefore the modulated energy is well-defined. If s = 0, then we
need to impose a suitable decay assumption on p to compensate for the logarithmic growth of g at
infinity. The energy condition I(Rd)g g(z — y)d|p|®%(z,y) < oo from the statement of Theorem 1.1
suffices.
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Our main proposition is that the modulated energy controls both the truncated Riesz energy
of % Zfi 10z, — p and the difference between the microscopic energies associated to g and g, up
to an O(n9~%) additive error. As previously remarked, the size of this error is in general optimal.
The reader should compare this proposition to [NRS22, Proposition 2.1] in the sub-Coulomb case
and [RS24c, Proposition 2.1] in the super-Coulomb case.

Proposition 2.11. Let u € L'(RY) N LP(RY) for % < p < 0o with [pe p = 1. Suppose further
that f(Rd)Q gl — y)du®?(x,y) < oo and Jiwey: l8l(z — y)du®?(x,y) < oo if s = 0. Let Xy € (RY)N
be a pairwise distinct configuration. Then

(2.60)
LS et [ i b [ ()
— n(Ti — +/ (= y)du® (z,y +/ gz —y)d( D 0u — 1
2N?2 <I<N 2 (RY)2 2 J(ray2 Ni:l
iesz +C iesz de=1)
< F(Xy ) + B LGy g By pon™™

where C' > 0 depends only on d,s,p,(,¢ and C,,C; > 0, where C, = 0 and C; = 1 in the ezact
Riesz case.

Proof. Unpacking the definition (1.3) of Fx(Xn, ), inserting the identity g = f, + g,, and then
expanding, we find that

1 1
(201 FxCov =55 30 flai-a) 4y [ e n)di®e)
1<iAj<N (Re)?

1 1 Y ®2 1 Y
+2/(Rd)2gn(x—y)d(NZ(5x,- —u) (z,y) — Ngn NZ/ (z — 2;)dp(z).
=1 =1

Applying the estimate (2.56) to the ultimate term and Proposition 2.9(1) to the penultimate term
on preceding the right-hand side , the desired conclusion follows. O

Remark 2.12. In particular, for the exact Riesz case, choosing n = A = (NHuHLp)_d(Pp—l), we find

the lower bound

log )\
2.62 Fy(X —
(2:62) NE SN &
where C = C(d,s) > 0, showing the almost positivity of the modulated energy with the optimal

size of additive error when p = 00.9

1s—o + C||p||Lp A5 > 0,

As a corollary of Proposition 2.11, we control the small-scale interaction (cf. [Ser23, Corollary
3.4], [RS24c, Proposition 2.3]).

Corollary 2.13. Introduce the nearest-neighbor type distance
1. .
(2.63) fi = min <1§jr£]1\}1zj# |z — ], /\).
Then under the same assumptions as Proposition 2.11, there exists C > 0 depending only on
d,s,p, @, C, such that for every n < A < e, where € is as in Proposition 2.11, it holds that

iesz +C iesz dp=1) _
(2.64) C(FN(XN,M) | (BRI (1) +Cp) ;- +C gricss (1) y + Cllpllzon 7 5)

N 2N
> %Zz lg(rl)u s>0
TN g(n/n), s=0,

6The value of the sharp constant C' is still an open question.
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where C,, C¢ are as in Proposition 2.11.

Proof. Let n < A. Discarding the (nonnegative) second and third terms on the left-hand side of
(2.60) and unpacking the definition of f,), we find

N
26) Y Y G- m) gl n) < S falw— )

i=1 1<j<N:|z;—z|<n 1<i#£j<N
(gRiesz (77) +C ) 8Riesz (n) dp—1) _
< Far(X .
< Fnv(Xn,p) + o + C¢ 5N 1eso + Clpllzen »

For each i, either r; = %min#i |z; — x|, in which case there exists j # i such that r; = %\xz — zjl,
orr; = %)\. In the former case, for such j, we have

g(x; — x;) — gylws — x5) = g(4r;) — g — x5) > g(4r;) — gy(0)
(g

(4r;) —g(n)) + (g(n) — g,(0)),

since g, is decreasing. While in the latter case, for every j # 1,

>
(2.66) >

(2.67) gl — 5) — gp(zi — ;) > 0> g(A) —g(n) = g(4n) — g(n).
provided that n < A. Thus, in all cases,
(2.68) S (gl@i - x5) — gyla — z5)) > (g(4r:) — g(n)+ — lg(n) — gy(0)].

1<G<N:|mi—z;|<n
By Proposition 2.11(1),

(2.69) g(n) — g4(0)]

Since f;, > 0, in all cases, we then have using g is decreasing and that g, is monotone increasing
with respect to 1) that (g(x; —x;) — g, (x; — ;) > (g(r;) = g(n))+ for every j # 4, and consequently,

N
(2.70) QL > > (g(zi — ) — gy(wi — 2;)) Z =&

=1 1<j<N:|wi—z;]<n

0

By following the proof of [RS24c, Proposition 2.5], one may also bound the number of points
whose nearest-neighbor distance is at mesoscales. As we do not need such an estimate, we leave
the details as an exercise for the reader.

2.4. Coercivity. We show in this subsection that the modulated energy associated to an (s, a)-
admissible potential is coercive, provided a is sufficiently large, in the sense that it controls a
squared negative-order Sobolev norm. In particular, this yields that vanishing of the modulated
energy implies weak convergence of the empirical measure to the target measure p. Such a coercivity
estimate is already known in the sub-Coulomb case [?] (see also [?] for a coercivity estimate in the
Coulomb /super-Coulomb case), but its N-dependent additive error is much larger than that shown
in the lemma below. Moreover, the estimate presented below is sharper in that the control is

d d
H™27% for any ¢ > 0, which is the best one can hope for given the Dirac mass is not in H ™ 2.

Proposition 2.14. Let g be (s, ¢)-admissible, such that ¢(¢) > Cy(&)™" for some r > d. Suppose
% < p < oo. There exists a constant C = C(d,s,r,p) such that the following holds: for any
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p € LY(RY) N LP(RY) with [pedp =1 and f(Rd)Q lgl(z — y)du®?(x,y) < 00 ifs=0, A < 1, and any
pairwise distinct configuration Xy € (RYYN, it holds that

N
1 (gRieSZO‘) + CP)
. — ) < _
271) |5 § - < O(FN(XN,M) + o~ oo
=1 H—T/2
iesz A dp=1) _
+C<gR2N( )1s>O+CHMHLP/\ P s),

where Cp, C¢ are as in Proposition 2.11. In particular, if g is (s, a)-admissible for a > d, then (2.71)
holds with r = a; and if g is s-Riesz, then (2.71) holds for any r > d.

Proof. Recalling the identity (2.13), which holds with 4~ replaced by ¢(¢) in the general case, and
using that the Fourier transform of f = % Zf\i 1 0z; — p vanishes at the origin, we have that

N 00 A .
e [ sle-od(g > 0n =) ) = oas e [ suoiferas.

where we have also used Fubini-Tonelli to interchange the order of integration. Choose gz%(ﬁ )=,
i.e. ¢ is a Bessel potential. For n <t < 1, we bound ¢(t§) > (£)™"; and for ¢ > 1, we bound

~

o(t&) > t7"(¢)"". Applying these lower bounds to the right-hand side of (2.72),

! /(Rd)2 gl — y)d<;§;5m - M)®2(x,y) > /1 ¢(t) /Rd@—r‘f(g)‘zdgit

C¢’d’s

n
> —r —r| 7 2 @
+ [ oo [ ©1ierEs
1

2.73 =
( ) Cd,s,r

(F{

which requires that » > d — s for the second integral in ¢ to converge and r > d for the integral
in ¢ to be finite. Bounding the left-hand side of (2.73) from above with the estimate (2.60) from
Proposition 2.11 with the choice 7 = A, the desired conclusion follows after a little bookkeeping. [

Remark 2.15. If g is (s, ¢)-admissible where we simply assume that é > 0, then one can still

prove that Fx(Xn, ) — 0 implies that % Zf\il 0z, — 1 as N — oco. We leave the proof of this
assertion as an exercise for the reader.

3. KATO-PONCE COMMUTATOR ESTIMATES

In this section, we prove some commutator estimates for (fractional) powers of the inhomogeneous
Fourier multiplier (V) = (I — A)!/2. These types of estimates are usually referred to as Kato-Ponce
commutator estimates, originating in [KP88]. We refer to [Lil9] for a more thorough discussion
of the history. Later in Section 4, we will combine these commutator estimates with the potential
truncation procedure and the modulated energy bounds of Section 2 to prove Theorem 1.1.

The main results of this section are the following proposition and its corollary.

Proposition 3.1. Let a > 0 and write o = 2m +r for integer m > 0 and r € (0,2]. There exists
a constant C' = C(d,a) > 0 such that for any v, f € S(RY),

(3.) [0 e < Calrig,
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where

[y

.
(32) Ava = V0l + 30 (ITEVO et Lysg + IV T0l 01,

Jj=0

FNIVIEIVO g2t Ly 508 + H\vawuﬁgﬁgzg).

27+r>

Here, the summation is understood as vacuous if m < 1.

At first glance, the commutator structure in Proposition 3.1 may not be apparent. However,
writing (V) = (V)*/2(V)*/? and integrating by parts, the left-hand side of (3.1) equals

(33 Lol on@e 2+ [ o-v@epwe sy

The last term is controlled by || Vv|| = || (V)2 f 172 after integrating by parts once more. Hence, if

(3.1) holds, then after polarization, it yields the L?-scale commutator bound || [(V>a/2, v-] V gar2_yp2 <
CAyq.

As a corollary of Proposition 3.1, we obtain the following first-order functional inequality for the
truncated potential g,. We deduce Corollary 3.2 from Proposition 3.1 through the representation

(2.7), which exists by our assumption that g is (s, s)-admissible, and averaging over the estimates,
noting that (V)*G, = do.

Corollary 3.2. Suppose that g is (s, a)-admissible for some a < d+2. There exists C = C(d,s,a) >
0 such that for everyn >0, v, f € S(RY),

@a) | [, 0 o) Vet~ 010
<01Vl 1910l ) [ et =071
Proof. By the assumption that g is (s, a)-admissible and Fubini-Tonelli, we have that

(3.5)
¢(t)

. T — T = oo— v(z) —v . a T~y T
/(Rd)J”(x)—v(y)) Ve, (a — )/ (@) f(y) / ; /(Rd)2<<> W) - VC(“ ) @) ()

dt
-

Making the change of variable tz = x and ty = y and letting v(z) := v(tx) and fi(z) = f(tz), we
find that

[ 0@ =00 VG @) =2 [ | () ) TGaw - 2) i) iw)
(Rd)? (RY)?

(3.6) =2 [ 0 V(Gax )i

where the final line follows from desymmetrizing. Letting h; := G, * fi, noting that (V)°hy = ft,
and applying Proposition 3.1 with f replaced by h;, we obtain

/ (A Vhtft
Rd

Unpacking the definition of h; and undoing the change of variables made above,

2 = T — Z)Jt — ¢~ a h— Zz .
(38) el 5 = /(Rd)sz DR = | G @)

(3'7) < CAvt,sHhtHiI%"
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Write s = 2m + r for integer m > 0 and r € (0, 2]. Unpacking the definition (3.2) of A,, s,

Avs = IVurll= + Y (HIVIJVth w2 Ljeg TNIVIEVO 20 00154520
0<j<m—1
+ IV Vurllae ;g + IIVIE Vol ae1,, o )
j+1— -
= Z (tj max(d/]vZ) H’VPVQ}H max(d 2) Héd + H|V|2+JV’(}1§H max(zfirﬂ)lj‘f'%f%
0<j<m—1
(3.9) + IV Vurllae ;g + IIVIEVurllpae1,, o )

The preceding expression does not scale properly in ¢ (i.e. scales like t) if m — 1+ § > %. This
motivates our assumption that s < d + 2, which is equivalent to m — 1+ § < %. Hence,
(3.10)

m—1

v (190l + D NIVEVU g +IIVIETT0 2 ) < OL(IV0llim + 11V 50 ag ).
7=0

where the final inequality is by Sobolev embedding. From the relations (3.7), (3.8), (3.10), we

obtain

(3 11 ‘/ V¢ - Vhtft

Ga( =) f(2) f ().

< O (||Vollge +[|[9] ] t

W) (Rd)2

Notethatm—i-i:%andﬁ:%'

Combining the relations (3.5), (3.6), (3.11), we arrive at

’ /(Rd)2(v(3:) —u(y)) - Ve, (x — y)f(x)f(y)'
= - 3 Ty dt
< /7 thd /(Rd)2 t 2d+1<vaHLoo + ”’V‘“}HL%>G3( VF ) )2

t t

(312) = (Ivelle= + 1910l 25) [ eno—0)F@) )
° (Rd)?
which is exactly the desired conclusion. O

Remark 3.3. By standard density arguments (e.g. see ?7), Proposition 3.1 extends to hold for
v, f such that Ay, < 0o and f € H 2. Similarly, Corollary 3.2 extends to hold for v such that
|Vl pe + |||V]2UH 2¢. < 0o and any distribution f such that the pairing (gy(z — y), %) < c0.

To prove Proposition 3.1, we first need to establish some preliminary lemmas. The first lemma
is a technical result, which may be viewed as an inhomogeneous fractional Leibniz rule.

Lemma 3.4. For any 0 < r < 2 and multi-index & € N3, there exists C = C(d,r,|d|) > 0 such
that for f,g € S(RY),

(3.13) V)" 20a(£9)llz2 < Cligllarss Ap e
where Af7|&|ﬂ‘ 1s defined by

(319) Aga,i= 3 (NP g i + IV 201, )

0<5<|dl

—.,2) j+ #3 + [[IV]2 +JfHL2+ +I=

27

+ 3 (VI g2t

0<5<|al

w
to\o_
\—/
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In particular, if |6 + 5 < 4, then Apja < (Il + VIS5 f] o),
L

Proof. Set m :=|d|. Applying the Leibniz rule to 5 and using the triangle inequality, we find that
(3.15)

1(VY"/20,(fg) HL2<Z() VY2030, 29)lpe
f<a

(3.16) < Z( ) I09) 720310550 = 051(VV"205_salin + 1051 (VY"*0,_sal 12

Appealing to the Kato-Ponce estimate [Li19, Theorem 1.9], we have that
(B17) (V)P (05£05_39) — 05£ (V) 05_z9ll2 < (V)2 VOfllLr 1|05 9] v

for any 1 < p1,ps < oo such that p% + p% = % Since 5 —1 < 0 and the Fourier multipliers %, %

are bounded on L for any 1 < p < oo by the Hormander-Mikhlin theorem, we see that

(3.18) V) EIV0f e < CIVIEHf) o
We choose p;, p2 according to
2d 2d 341 o d
G s 1P+ 2 <o
_ 2(2 3
(3.19) i) ={ (214 222 Al+5 =14
(2,00), 1B+ 5> %,

where € > 0 is arbitrary. In which case, it follows follows from Sobolev embedding applied to
”a&_ﬁ-'gHLpz that

(3.20)
IIvi2 6l +5<$
I(V)"(03105_59) = 035 (V)" 05 _gallzz < Cllgllgmes { NI0IF+A fllpore, 18145 =2
IVESP A, 1B+5 >4

On the other hand, Hlder’s inequality implies that for any 1 < ps3,ps < oo such that p% + p%; = %,

(3.21) 105£(V) 20,5912 < 105F s [1(V)"/?0;_ 59l 1os.
We choose (ps, ps) according to
d o 3 ~ d
o) 1PI<2
(322) (p37p4) - (2 + 6/7 2(2€/€ ))7 |/6_),| = %
(2, 00), 18] > §.

where € > 0 is again arbitrary. Applying Sobolev embedding again to || <V>T/ 285_ 59” Lpa, 1t follows
that

IIVIP7 o, 161 <
(3.23) 105 (V)"20;_50ll12 < Cllgll s meﬂ,w, Gl =
I8 f e, 18] >

N v e
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fm+ 5 < %, then by Gagliardo-Nirenberg interpolation [?, Theorem 2.44],

[ 3]

E B I
(3.24) IVIZA o < Cllifllpee = IIVIT2 A0 7 o
LAl L2mr

T 1_ 2081+r . 2B4r
(3.25) IIVIPHER AL a0 < OISl IV ™ £ P05
L21Bl+r LZmFr

The desired conclusion follows from Young’s inequality and a little bookkeeping.
O

The second result we need is a representation of fractional powers (V)*'“ as the Dirichlet-to-
Neumann map of an extension problem to R4t! for a (degenerate elliptic) second-order partial dif-
ferential operator, which may be viewed as an inhomogeneous analogue of the celebrated Caffarelli-
Silvestre extension for the fractional Laplacian [CS07]. Such a dimension extension is a special case
of a more general theory established in [ST10] (see also [MN24] for a substantial generalization to
operators on Hilbert spaces).

s/2

Lemma 3.5. Let s € (0,2) and f € S(RY). A solution of the Dirichlet problem

(3.26) (Ay = DF + 1229, F 4 92F = 0, in RY x (0, 00)

‘ F(z,z) = f(z), on R x {0}
is given by the Poisson formula

1 o 22 dt

2 F = LT (A
(3 7) (.%',Z) 1—\(%) /0 € (64 f)(x)tlfg
and

_ I(—s2

(3.28) i 22 = F@0) LD Grepoy 2L msg p(, ),

20+ 28 - 25T°(35) 5 20+

where the convergence holds both pointwise and in L*(RY). Consequently, extending F to RIT! by
even symmetry, we have

(3.29) 2" F — div(|2|'°VF) = cq,(V)* fORax 0}
in the sense of distributions in R4t and

(3.30) [ S + VPP = 1117,
Rd+1

Proof. The assertions (3.27)-(3.28) are the content of [ST10, Theorem 1.1]. To see the assertion
(3.29), let F be a solution of (3.26) and let ® be a compactly supported test function in R4+, By
dominated convergence,

/ (|z|1—8<1> - div(]z|1_SV<I>>F
Rd+1

(3.31) = lim (/ |z F — div(|z[1_8VCI>)F>,
=0 \ J{|z[>e}nBy . {l21>e}NB, /.

where the balls are in R4t1. Integrating by parts twice, we see that

(3.32) —/ div(|z|1_SV<I>)F:—/ |z|1_58,,<I>F—/ 12|} 720, ®F
{lz1>e}nBy . {I21=¢} {|z1>€}n0By

+/ yz\l—S@a,,F—/ 12100, F — B div(|z]'*VF).
{Iel=) {1208 . {128,
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It is immediate from (3.26) that
(3.33) 0= / ZATSRF — @ div(|z|' TV F).
{lz|z€e}NBy /e {lzIze}nBy /e

The boundary contributions from {|z| > €} N 0B, . vanish, provided e is small enough, since ® has
compact support. Now using that F' is even in the z coordinate,

‘ /{|z|e} =" 0,2 F /Rd (@‘I’(', €) — 0.9(-, —e))F(.’ ¢)

(3.34) < 2] sup 920 (-, 2)|| | Fl| g,
|z|<e

— 61—5

where we use the mean-value theorem to obtain the last line. That ||F|z~ < oo follows from
Lemma 3.6 below. Since s < 2, the preceding expression vanishes as ¢ — 0. For the remaining
boundary term, observe that

(3.35) /{|Z:€} 12|15 00, F = — /Rd 61*8(c1>(., €)0,F (- €) — ®(-, —€)d.F(-, —e)).

Using that 121790,F(-,z) converges to %(V)Sf in L?2(RY) as z — 0T, it follows that the
2
preceding right-hand side converges to
_ F(—s/?)/
3.36 21— [ ®(-,0)(V)°

as € — 07. After a little bookkeeping, we conclude that

_ e —s D(=s/2)

3.37 1=5¢ —d 18<I>F:215/<I>-0 °f.
ean [ (e - di(almove) St |20
As ® € C®(RY*T1) was arbitrary, this establishes the assertion (3.29).

To see the last assertion (3.30), we note that (3.29) implies that

(3.38)

2 _ Sp 1
e = [ 177 =

/ F<|z|1_sF - div(|z|1_sVF)> - / |z|1_s(|F\2 + |VF|2),
Rd+1 Cd,S Rd+1

where the last equality follows from an integration by parts, which is justified by Lemma 3.6 below.
The proof of the lemma is now complete. O

1
Cd,s

The following lemma provides regularity and decay estimates for the Poisson extension F' in
terms of the boundary data f. In particular, if f € S(RY), which we may always reduce to through
density, there are no issues of regularity/decay in the computations above. The lemma is more
general than needed, but some of the estimates do not seem to be written down anywhere in the
literature and are perhaps of future use.

Lemma 3.6.

Proof. Given f € LP(RY), for 1 < p < oo, it follows immediately from Young’s inequality that

22
sup,~o [|F (- 2)|lze < C||f|lzs. Moreover, since V, commutes with e 2, the same is true with f
replaced by V& f.
For decay in z, we decompose into cases t < z? and t > 22. In the former, we pointwise bound

22 22
le®® f(z)| < C%H]"HLL In the latter, we crudely bound |e®@ 2 f(z)| < ||f|lz. Decomposing
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fooo = fOZQ + fzof, it then follows that if d% —1>0,

2

C (7 2|l dt C [P
F < —t : e~ (1=t gy
| (x’Z”_F(S)/o ‘ z¢ t1‘§+F(%) /Zz s M llz-e
0

(3.39) < Casez Nl / e 1794t + Oy 2™ 9™ f oo / e~ (1= gy,
0

for any ¢ € (0,1), where we have used that s € (0,2) and |u[™e ¥ < Cp, eI for any
_ . . . d o —1
m > 0,e € (0,1). If d = 1, then the previous argument doeszfi?g)qulte work, given § + 5 —1 = 5=,

which may be negative. For § € [0,1), decompose [;° = [

R O N ¢ B e
< —t L e - o
Fel<pg | i g . sean Ml

2(1-6) 2
2(1-6)

+ f;;él_g) to instead obtain

(I—E)tdt

—€Z

_ _ (&
(3.40) < Cas2 I |11 4 s

As we may repeat the logic with f replaced by V¥ f, we thus obtain that

(3.41) |VE*F(z,2)| < (cd,s,ez*duv?k Fllr 4 Coez B9 | y&k fHLoo)mszl

2
ex2(1-8)

1—6)(d+s)—d €
+ (Cd,s,éz( )(d+s) ||f”L1 + Cs,&,em”f"lzo")ld‘*‘?s<1'

For decay in x, we write

(3.42) A f @) = (P [ ),

Rd
Split [pa = fly|§%\$| —|—f|y‘>%|x|. For the region |y| > |2/, then trivially,

2/4)=% ~Hla-yl? AT f |l ()" C (22 /48)~ 2 ~ oyl
(22/4t) /|y>;|xe F@)] < 1™l ()™ C (22 /48) /| e

> ||
(3.43) < Ol f e () ™.
Hence,
1 e 22 d 4t 2 dt
3.44 — T (22/4) "2 —Z5lo—yl d < O F oo ()
) [ EEa [l < GO e )

_ 2t qy|2 __t 2 .
For the contribution of the {|y| < i|z|}, first note that e zleul” < o732l Now introduce

5 € (0,1) and consider the cases 2 < 2|29 and % > |z|>(1=%) In the former, we use that

t
— b |zf? |2 . _Z2 ~1yg[20-8)
e 2= <e ; and in the latter, we use that e % < e 1 . All together, we find that

1 00 7t7£ 2 o 7%|Ify|2
F(ﬁ) € 4t (Z /4t) | e = ‘f(y)‘dy
2/ J0 ly|<5lz|

2 dt

[e.e] : 9 .
<l [ e s
0 t—2

22
2208 1 —5) __t |2 dt e 2 dt
- 1-35 2 1-5
0 t 2 tt—2

[22(1=0)

dt
-5

[S][-%

(345) < Ol (P o),

The two terms on the final line may be balanced by choosing § = %
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We now turn to 9, F. For z > 0, making the change of variable t/2? — t, we rewrite (3.27) as

_ ZS o0 — 22 L(Aff) dt
(3.46) F(z,z) ) /0 e <e4t f) (z) e
Hence,
s257h [ 51 dt
— —z = (A=I)
0.F(x,z) Q) /0 e (e4t f) ($)t1_§
228+1 & 24 1 dt
_ =22t (g7 (A=)
rp (e
(3.47) =527 F(x,2)

Note that since for any € > 0, ue™* < Cee~ (1794 _ it follows that
s—1 00
(ena-0y) '(m)dt <205 / e~ (i (A0 ) ()
0

9z5tL oo 2
s / b~ -3 1-3
I'(3) Jo tT2 I'(5) -3

(3.48) =27 F (2, V1 — €e2),

where F' is (3.27) with f replaced by |f|. As sup,~q|F(z,2")] < ||f|leo, it follows from triangle
inequality that. Similarly, replacing f by V&*f in the starting point, we in fact have shown that
sup.s 2| VER0F (2, 2)| < [[f]es- m

We now turn to the proof of Proposition 3.1.

Proof of Proposition 3.1. Write o = 2m + r for integer m > 0 and r € (0,2]. We will prove by
induction on m that if Proposition 3.1 is true for all &« = 2m + r, for r € (0, 2], then it is true for
all « =2(m + 1) +r, for r € (0,2].

We begin with the base case m = 0. Given the datum f, let F' denote the extension to R4+! given
by Lemma 3.5. With an abuse of notation, we let v denote the trivial extension to a (d + 1)-vector
field, i.e. the map (z,2) + (v(z),0). Inserting the identity F'|z|” — div(|z|"VF) = (V)" foga, fo}«
and integrating by parts, we see that

/Rd v VAV f = /RM v (%V(zﬂ)w ~ VFdiv(|'VF))

1
(3.49) :—/ |szivvF2+/ |2|"Vv : [VF,VF],
2 Rd+1 Rd+1

where [VF, VF] is the stress-energy tensor associated to VF, that is for vector fields u; = (u}),us =

(u3),
(3.50) [u1, ugl,; = w4+ wlub — (ug - u2)05j, i,j € [d].
By Cauchy-Schwarz, the preceding right-hand is <

(351) ClIVolli [ | 1z (F? + [VFR) = OVl 15

where C' = C(d) > 0.
As our induction hypothesis, suppose that Proposition 3.1 holds for all a = 2k +r, where £k < m
and r € (0,2]. We will show that Proposition 3.1 holds for all & = 2(m + 1) 4+ r, where r € (0, 2].
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Writing (V)2 — (1 — A)(V)?™*" and integrating by parts, we find that
Lo vr@pesg = [ oovp@rpe [ oove e s
RI BRI Rd

(3.52) + /]R Lo VS (V)2 470, f,

where we follow the convention of Einstein summation. Recall the notation A4, , from (3.2), which
we extend in the obvious manner to allow for u to be tensor-valued. By the induction hypothesis,
the magnitude of the first term on the right-hand side is <

(3.53) Chvamall 1P sy < CAuvaall fI2mirs

where the second inequality follows from the trivial embedding || - [|gs < || - || for s < s".7 The
induction hypothesis (with f replaced by 0; f) also implies that the second term on the right-hand
side of (3.52) is bounded by

(3-54) CAva 2 Z ||8 fHHm+g < CAva 2||f||Hm+1+2~

It remains to bound the third term on the right-hand side of (3.52). Expanding (I — A)™ by
binomial formula and integrating by parts, we find

[ o0 wspe, = 2( ) [ o vr-akwras

(3.55) = Z (k> /Rd V) PVER Q0 - V) - (V)2VER; .
k=0
For all 0 < k < m, the Cauchy-Schwarz inequality implies that

/R (VY@ -V ) (V)EVER | < (0) PV @50 - V)| 2 (V) VR, £ e

< CAuer IV Nl g 1 /1] ppose s
(8.56) < Chgupal fI2nss

where the second line follows from applying Plancherel’s theorem to the second factor and Lemma 3.4
to the first factor on the right-hand side of the first line (recall the notation (3.14)), and the third line
follows from another application of Plancherel. Majorizing each factor || f|| RS < |I£] HmH+E
for 0 < k < m, it follows now that

(3.57) v - Vf({V)

m m B
< C||f”Hm+1+7 Z <k>AVv,k,r-

L >
Combining the estimates (3.52), (3.54), (3.57), we obtain that

m m 5
(3.59) <O s (Av,a_z 'y ( k)Aw>
k=0

Noting that « =2 = 2m+7r and A. ., < A.,,, for K < m concludes the proof of the induction step,
and therefore of the proposition. O

"Remark that here, the fact that the we are considering the inhomogeneous Sobolev norm as opposed to the
homogeneous seminorm is crucial because otherwise, this embedding is false.
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4. RENORMALIZED COMMUTATOR ESTIMATE

In this section, we give the proof of Theorem 1.1. In fact, as advertised in the introduction, we
will prove the following more general result that is valid for (s, s)-admissible potentials. The proof
proceeds through combining the commutator estimate, valid for regular distributions f, with the
potential truncation scheme to handle distributions of the form f = + Zfi 100, —

Theorem 4.1. Let g be an (s,a)-admissible potential for a € (d,d + 2), and let & < p < co.
There exists a constant C > 0 depending only d,s, a, and g through the constants in Proposition 2.9
such that the following holds. Let p € L'(RY) N LP(RY) with [pep = 1. Let v : RY — RY be a

Lipschitz vector field. For any pairwise distinct configuration Xy € (RN, it holds that

v | [ =) Va5 Za%—) ()
log A

< C(IVvllze + 19130l 2, ) (Fr (X, ) = 5=

Proof. Let n > 0, the exact value of which will be specified momentarily. We assume that g is
(s,a)-admissible for d < a < d+2. Adding and subtracting g, and applying the triangle inequality,
we find

Lo + Clpll A7),

- . €T — i - . ® 2
‘/(Rd)Q\A(v(x) (y)) - Va( y)d(N;% 1) % ( y)‘
1 > ®2
1 S ®2
+' /(Rd)z\A(v(m)—v(y))-an(:c—y)d(N;(Swi e

Since |v(z) —v(y)||Vgy(x — y)| vanishes along the diagonal by Remark 2.6, we have re-inserted the
diagonal in the first integral on the right-hand side above.

®2
As f(Rd)Q gy(x — y)d(% Zf\il Op; — ,u) < 00, Remark 3.3 and Corollary 3.2 imply that

On the other hand, applying the mean-value theorem to (v(:c) —v(y)) - Vi, (z —y),

v(w Vi, ( Oz, — I1)
[, 0= Z
®2
< - — fp(x — Oz
<Ivelas [ e al e vl Z )
®2
44 < [|Vw oo/ f Su, 1) .
(4.4) Vol ., Fonle (5 Z )

where the third line follows from assertion
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Applying the estimates (4.3), (4.4) to the right-hand side of (4.2), we arrive at
(4.5) / (v(z) —wv Vg, (x Op; — ‘
RICEEEOR S Z )

N
C(Iellm + V1ol 20 ) ([ yole =) b +)
- Ls=2 RH2A\A " N i=1 -
1 N 2
®
e 5/ 7Y v ; )
where we have implicitly used that g, » — g, has a positive Fourier transform to replace g, by g, /2 in

(4.3). Applying Proposition 2.11 to the preceding expression and choosing 7 = X = (||| e N) /9,
the conclusion of the proof follows after a little bookkeeping. O

5. APPLICATION: OPTIMAL MEAN-FIELD CONVERGENCE RATE
This section is devoted to the mean-field limit and the analysis of the mean-field equation.

5.1. Modulated energy bound. Using our main technical result Theorem 1.1, we now show
convergence of the empirical measure for the mean-field particle dynamics (1.12) to a (necessarily
unique) solution of the limiting PDE (1.15) in the modulated energy distance with the optimal rate
Na~1. This proves Theorem 1.3 (cf. [RS23D, ]).

Proof of Theorem 1.3. Werecall (e.g. see [Ser20, Lemma 2.1] or [RS24b, Lemma 3.6]) that F y (X%,
satisfies the differential inequality

d t t t t 1 al t ®2
(1) S Fn (X, ) < /(Rd)Q\A Vg(z —y) - (u'(2) —u (y))d<ﬁ Z:éxg —u ) (x,9).

where u' := —MVg * u' + V. Applying the first-order estimate (1.6) of Theorem 1.1 pointwise in ¢
to the precedmg right-hand side, then integrating with respect to time both sides of the resulting
inequality and applying the fundamental theorem of calculus, it follows that

].Og(NH,U,tHLoo) s s log(NHMtHLoo)
5.2) Fu(Xh, ul)+ = W ER) g ot N~ < Fa (XY, 10) 4 —on =) g
( ) N( N?lu’)+ 2Nd 70+ HILL HL d — N( N7u)+ 2Nd s=0
s t log(N || 17 || 0 C(N||u™||foc)d
+Clufnit e 9 e (Fav X7y + 2By CO )2y o
0 9Nd N

for some constant C' > 0 depending only on |M|,s,d. Assuming that the constant C' > 0 above
is sufficiently large depending on d,s, the left-hand side defines a nonnegative quantity in view of
Remark 2.12. An application of the Gronwall-Bellman lemma then completes the proof. O

5.2. Mean-field regularity. Suppose that p! € P(RY) is a solution We conclude the paper by
verifying that for exact sub-Coulomb Riesz potentials, if v! = MVg * uf, then the condition

. su vt oo 3yt ) 00

(5.3) o (19 + 19120, 25, ) < o0

for a € (d,d+2), is satisfied provided that the initial density p° is sufficiently regular. We only con-
sider the exact Riesz case—again for reasons of simplicity—and leave it to the reader to generalize
the results of this subsection to the Riesz-type case. Moreover, we only consider the sub-Coulomb
case because the Coulomb/super-Coulomb case only features ||Vv!||, the control of which has
already been established, e.g. see [?]. The addition of an external field V poses no additional
complications, only adds extra terms to the computation (cf. Remark 1.5).

1)
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We focus here only on the a priori estimates: existence of such solutions follows by standard van-
ishing viscosity arguments (e.g. see [BIK15, Sections 5,6]), while uniqueness follows from Cauchy-
Lipschitz theory. Throughout this section, we assume that u! is a smooth, probability density-valued
solution of the mean-field equation.

The satisfaction of the condition (5.3) is a consequence of the following two lemmas and the
nonincrease of ||ut||r for any 1 < r < oo. For the latter fact, see the proof of [RS23b, Remark 3.4].

Lemma 5.1. Let v :i=MVgx f for any Schwartz function f. Then it holds that for any p > d_d?

B i
(5.4) IVollzee < CIMIooll fl "™ 7
and further supposing d > 3,
. [ R —— s<d-1-3
(5.5) VIO, 2, <OV Glapy d_1_2a°
IVEFl ey s>d—1-3
where | - | denotes the operator norm and C > 0 depends only on d,s, a.
Lemma 5.2. Leta > 1 and 1 < p < co. Then there exists a nondecreasing function W : [0,00)3 —

[0,00), depending only on d,s, a, p, such that®

(5.6) VT >0, s[%pT] IIVI*k llze < W, (|60 oo, IIV]% 10 20).
tel(0,

Remark that the assumption > 1 in the statement is necessary for the argument to close. We
begin with the proof of Lemma 5.1, which is a consequence of some elementary harmonic analysis.

Proof of Lemma 5.1. Observe that for any R > 0,

Vol < Ol [ o=y (0

< CMlw [l =3 5(0)

. ]24s—d . |24s—d
SCM@(quﬁfm s [ el f@)

dp=1) 4 o —d _
P R ),

where the ultimate line is by Holder’s inequality. Implicitly, we are using that s < d—2. Optimizing
the choice of R then yields (5.4).
Recalling that ig is the convolution kernel of the Fourier multiplier |V

(5.7) < CIMoo (1110 R

574, we see that

(5-8) IIVIE0ll 26, = caslVIEF*TMVp]| 20, < CeasMIocllIVIFHH7pl] 2,

L3-2
2d

where we have also used the boundedness of the Riesz transform on L2-2 to replace the operator
MYV by |M|s|V]. Note that since we restrict to d > 3 and a < d + 2, we always have 2 < azfdQ < 0.
The operator | V|2 1579 is smoothing if s < d—1— 2, the identity if s = d—1— 3, and differentiating
if s >d—1—§. We dispense with the first two cases, which are easy.

If s <d—1— 3 (the equality case is trivial), then the Hardy-Littlewood-Sobolev lemma implies
that
(5.9) |||V|%+1+s_df||L 20, < CIfI g

a—2 d—2—s

8In the course of proving the lemma, we show a more precise estimate. We choose to omit it here to simplify the
exposition. Also, one could consider p € {1,c0} for integer a, replacing |V|* by V®*.
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If s>d— 1~ §, then Sobolev embedding implies that for any s+2>a > §+1+s—d,

d
2 < Cl|V[*flle,  p=

1 24+1+4s—d _— .
(5.10) I1v]2 FIl, 24, atd—2—s

0

Remark 5.3. Evidently, we may allow for & > s 4 2 (the case &« = s+ 2 is excluded due to the
failure of the endpoint Sobolev embedding), provided that we replace the homogeneous seminorm
on the right-hand side with the inhomogeneous norm || f||y7a.1.

We now prove Lemma 5.2.

Proof of Lemma 5.2. Observe from the chain rule and mean-field equation (1.15) that
GV =p [ 191 P29V div (hvg « o)
=p [ IVFU PO M

[ VI P9V 91T 5

— palas /Rd IVt P2V uf V2V |20t s VMV + !

[ VI P9t div MV «

[ VI P9t i [9]7M Vg «

—ptazs [ VWS VTRV div Vg 5
(511) + [ IeupRves (e + )
where we have abbreviated the (higher-order) commutators

(5.12) C!:= |V\a(wt -MVg * ,ﬁ) —V|V|%ut - MVg* put — V! - |V|*MVg * u!
+ alax1 VE?V|* 2t VMV *

(5.13) Ch = |V\a(,ﬁ div MVg * ,f) V|t div MVg # it — ut|V]® div MVg * 1t
+ aly>1V|V[* 2t - VdivMVg * .

Remark that if M is antisymmetric, then all terms involving div MV vanish. Integrating by parts,
we see that

(5.14) p/Rd IIV\“ut!p_z\V!“utV\V!“ut-MVg*u“rp/Rd V12 P29 | [Vt div MV g # pif

—(p=1) [ IV diviave s
Rd

By our assumption (1.13) on M and the explicit form of g, we have that divMVg < 0. As u' > 0,
it follows that the preceding right-hand side is nonpositive and may be discarded. We estimate
directly the remaining terms.
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Assuming that o > 1 (otherwise the estimate will not close due to the Vu! factor below),
Hoélder’s inequality yields for - + = 11)7

— —1
/Rd Vot P2V |Vt - V"MV g * it < IV I IV 2o VMV g * | 22

-1 _
(5.15) < OMoo [V 1 1 IV o [[[V19F 57 e

If a+1+s—d <0, then we choose (p1,p2) = (p,0) and Gagliardo-Nirenberg interpolation [?,
Theorem 2.44] plus Holder’s inequality imply
+14 (a+1+s)

_ 1—1 1 1 (o
(5.16) IV 2o [V e < Ol WV 16 Bl HM [ oo
If a+1+s—d > 0, then we choose (p1, p2) = (ap, ) so that by Gagliardo-Nirenberg 1nterpolation,

d—1—s

190 oo 1910445 2o < Clll2 1191 5ol i I

d—1-—s +2+s—d

(5.17) =’ HLoo Iy ;Zd 1 I e

Thus, in all cases,

(5.18) /Rd V|6 P2V u V- V"M Vg # ' < CM o[ V] 175 %

l-% ot ot 1,(a+dl+5) ; (O<+d1+s)
(I IV 5 D™ Lo

d—1-—s o a+24s—d
% ] e [V ).

d—2—s

Arguing similarly, using also the LP boundedness of the Riesz transform,
D1 P29 R Rt Vg
-1
< IV 7 V22 V02| o[ VMV g 5 1 o
< OMloo|l[[V]*1" 17 pH!VI2+5 dMtIILw

(5.19) < C'Mool[V]* 1170 1 4° ||L1 T ”LOO 7

where we have also used Holder’s inequality on the L factor in obtaining the final line. Implicitly,
we are using the assumption s < d — 2.
Again using Holder’s inequality, we find that

(5.20) /Rd V16! P2 V| 1t div [V MVg ' < V] 1 [ | div [V MVg % 1| 172,

where p% + p% = %. We choose ps so that

1 dp
5.21 d—s—2—d<f——):> _ 7
( ) P D2 b2 d—pd—-—s—2)
which, by the Hardy-Littlewood-Sobolev lemma, implies that
(5.22) | div [V]|*MVg * 1'[| 272 < CIM|oo||V]*1']| 0
Therefore,

(5.23) / VI P2Vt div [V MVg * pf < CIM o[V |17
Rd
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Next, we use Holder’s inequality to bound
LI P2 91 912 div g

< IV I V1 it |V div MV g # 1| 72
(5.24) < CMIscIV 1! 1 912 Lo [V P~ | e

where p% + p% = %. If 34+ s—d <0, then we may choose (p1,p2) = (p,o0) and use Gagliardo-

Nirenberg interpolation plus Holder’s inequality (similar to (5.16)) to estimate

d—s— -3
d
(5.25) V1 2o [V P79 | e < Ol HLP\HVIO‘HtHLP Il * "t ||Loo

If 3+s—d > 0, then (similar to (5.17)) we choose (p1,p2) = (;‘Tpl, ap) and use Gagliardo-Nirenberg
interpolation to obtain

d
(5:26) (VI il VPl < a2 V1005 ) i | plaacsos IR
d—s—2

Thus, in all cases, we have

_1
(5.27) / \!V\"utIp‘z\VlautV\Vla‘zut-VdivMVg*utSC!MIOOHIV\‘WHLP"(

d—s—
A e I Lavsaco + I I F= Il e | pleons) V1R Lo d>0)

d—s—2

Finally, we handle the commutator terms. Using the Kato-Ponce commutator inequality [Lil9,
Theorem 5.1], we find that

(5:28)  ICillzr < C(IVH o IV 1MV 1]l 102 + Lazal| VIV 127 | s [ TMVg £ 4! 1 ),

where C' > 0 depends only on d, s, p. Here, 1 < p1, p2, p3, ps < 0o are such that p%—i-p% = Z%B—FP% =1

P
Each of the terms on the right-hand side have been estimated above, and we find that

(a+1+s)

1—1 1 1_ (atlts
(5.29) HCtHLPSC!M|oo<||ﬂt||Lp"”|V|aut\|‘5p||ut||y ‘ ||H||Loo 1a+1+s—d<o

d—1-—s 1 —s ot a+2+4s— o d—s—
+ IILoo Il e VIR ™ Tasirs—aso + VIR llatls *
2—s

—2
||M ||L°<> 1a22)~

Similarly,

(5:30) 11C3llz> < € (1o || div [V 1MV 5 ! 152 + Lazall [ V1%t s |V liv MV % o 1. )

with the p; as above. Again, we note that each of the terms on the right-hand side has been
previously estimated, and we find that

(5.31)

IC5]1ze < C\Mloo(! Il o pllee + ! !\Lp\\lvlo‘ut\le I HL1 T ||L0<> 13+s ~d<0

1
o e P o sy 191 It Lo d>o)

d—s—2
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Combining the preceding estimates (5.29), (5.31) with Holder’s and triangle inequalities, we con-
clude that

632 [ I91up-2via o+ ch)

(a+1+s)

—1 1-1 L 1 Lot lds
SC!M\ooH!V\a I (HMtHLP IV gl H:utHLOO 1a+1+sfd<0

a+24s—d d—s— —2
+ H,U HLoo HN H p(d 1-s) H‘v|aﬂt”m * Lagigs—dso + [[|V[Tp HLPHM HLl S ||N ||Lo<> la>2

d—2—s

d—s—
T d

#lee + [ln’ HLP|Hv|aNtHLP I ||L1 ”M HLoo 13+s ~d<0

1
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Collecting the estimates (5.14), (5.18), (5.19), (5.23), (5.27), (5.32), we conclude that
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where C' > 0 depends only on d,s,p,a. Noting that the exponent of the |||V|*ut||L» factor is < p,
the desired conclusion now follows from Grénwall’s inequality and the nonincrease of ||u!||zr for
any 1 < r < oo, and using interpolation to control all the factors ||u!||z- in terms of ||| and

| e 0
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