
Fast Counting of Triangles in Large Real Networks:
Algorithms and Laws

Charalampos E. Tsourakakis
Machine Learning Department, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213-3891, USA
ctsourak@cs.cmu.edu

Abstract

How can we quickly find the number of triangles in
a large graph, without actually counting them? Trian-
gles are important for real world social networks, ly-
ing at the heart of the clustering coefficient and of the
transitivity ratio. However, straight-forward and even
approximate counting algorithms can be slow, trying
to execute or approximate the equivalent of a 3-way
database join.

In this paper, we provide two algorithms, the Eigen-
Triangle for counting the total number of triangles
in a graph, and the EigenTriangleLocal algorithm
that gives the count of triangles that contain a desired
node. Additional contributions include the following:
(a) We show that both algorithms achieve excellent ac-
curacy, with up to ≈ 1000x faster execution time, on
several, real graphs and (b) we discover two new power
laws (Degree-Triangle and TriangleParticipa-
tion laws) with surprising properties.

1 Introduction

Finding patterns in large scale graphs, with millions
and billions of edges is attracting increasing interest,
with numerous applications in computer network se-
curity (intrusion detection, spamming), in web appli-
cations (community detection, blog analysis) in social
networks (facebook, linkedin, for link prediction), and
many more. One of the operations of interest in such
a setting is the estimation of the clustering coefficient
and the transitivity ratio, which effectively translates
to the number of triangles in the graph, or the number
of triangles that a node participates in.

It is known that in social networks there is a higher-
than-random number of triangles ([27]). The reason is
that friends of friends are typically friends themselves.

Figure 1. Speed-up ratio versus accuracy for
the Wikipedia web graph (≈ 3, 1M nodes,
≈ 37M edges). Proposed method achieves
1021x faster time, for 97.4% accuracy, com-
pared to a typical competitor, the Node Itera-
tor method.

Thus, the number of triangles can help us spot abnor-
mal graphs and abnormal nodes (see, e.g. [4]).

More-than-expected number of triangles also appear
in biological networks,such as protein-protein interac-
tion networks (see, e.g [28]).

A very recent work ([4]) shows that the distribution
of the local number of triangles can be used to create
successful spam filters and also provide useful features
to assess content quality in social networks. In [11]
the distribution of triangles is used to uncover hidden
thematic structure in the World Wide Web. There-
fore, counting triangles is a significant problem in graph
mining, with several important applications.

The asymptotically fastest existing methods (lowest
time complexity) suffer from space complexity. Specif-
ically, they have Θ(n2) space complexity, where n is

1

the number of nodes in the network. For large or huge
networks this is prohibitive. Therefore, in practice it is
preferred to list the triangles ([20]). Other approaches,
instead of counting exactly the triangles, adopt the
streaming model ([3],[5]) or even more recently a semi-
streaming model([4]).

The main contribution of this paper is the Eigen-
Triangle algorithm, based on Theorem 3.1 saying
that the number of triangles is exactly one sixth of the
sum of cubes of eigenvalues and the properties of “real-
world” network spectra. This is a completely novel
view point, which opens the door to the vast machin-
ery of eigenvalue algorithms and fine-tunings. Eigen-
values can be easily computed for sparse graphs, and
can be applied on a map/reduce (’hadoop’) architec-
ture, which is extremely promising for Peta-byte scale
graphs.

The additional contributions are the following

1. Fast total triangle count An algorithm for the
fast estimation of the number of triangles, with
excellent accuracy: Figure 1 shows the perfor-
mance of our algorithm for a web graph (Wiped,
Nov. ’06) with approximately ≈ 3.1M nodes and
≈ 37M edges. We achieve about 1000x faster
performance respectively than a straightforward,
exact-counting competitor with more than 97% ac-
curacy.

2. Fast local triangle count A theorem and an al-
gorithm for the fast estimation of local triangle
count, that is, the number of triangles ∆i that the
i-Th node participates in. Again, the speedups
and the accuracy are excellent, as we show in sec-
tion 4.

3. Extensive experimentation We used almost
160 real-world data sets; the speed-ups were be-
tween 34x to 1075x,for accuracy at least 95%.

4. Laws: New power laws in real networks with sur-
prising properties.

The rest of the paper is organized as follows: Sec-
tion 2, surveys earlier triangle-counting methods. In
Section 3 we present the EigenTriangle and Eigen-
TriangleLocal theorems and algorithms, for global
and local triangle counting, respectively. Section 4
gives the experimental results on several real data sets.
Section 5 lists some surprising laws that govern the
count of triangles in real graphs. In Section 6 we
present some theoretical ramifications of the previous
sections and we conclude in Section 7.

2 Related work

Let G(V,E), n=|V |, m=|E| be an undirected graph
without self-edges. A triangle is a set of three fully
connected nodes. In this section we briefly review the
state-of-the-art work related to the problems of global
and local triangle counting. By global we refer to the
problem of counting the total number of triangles in G
and by local to the problem of counting the number of
triangles per each node. Two other problems related to
triangles are (i) deciding whether G contains a triangle
and (ii) for each triangle in G, list the participating
nodes. Before we make the overview, we state a few
facts about the spectrum of a graph.

Eigenvalues Depending on whether the graph is rep-
resented as an adjacency or as a Laplacian matrix ([7]),
the eigenvalues receive different meaning: in the former
case, they indicate the path capacity of the graph ([18])
whereas in the latter the connectivity of the graph ([7]).
A classical method for finding the eigenvalues of a ma-
trix is the QR method ([17]). A huge literature, which
is impossible to list here, exists for the eigenvalue prob-
lem.

Non-streaming algorithms The brute-force ap-
proach enumerates all possible triples of nodes (O(n3)).
The algorithms with the lowest time complexity for
counting triangles rely on fast matrix multiplica-
tion. The asymptotically fastest algorithm to date
is O(n2.376) [8]. In [2], an algorithm of O(m

2ω
ω+1) ⊂

O(m1.41) time complexity and of Θ(n2) space complex-
ity is proposed to find and count triangles in a graph.
However, these methods suffer from Θ(n2) space com-
plexity. Listing methods ([26]) are preferred against
matrix-based methods. Even if these methods solve
problem (ii) which is more general than the global and
local triangle counting, they are more efficient. Two
straightforward listing methods are the Node Iterator
and the Edge Iterator algorithms. The Node Itera-
tor considers each one of the n nodes and examines
which pairs of its neighbors are connected. The time
complexity of the Node Iterator is nd2

max. This is a
significant improvement over the brute-force approach
when the graph is sparse. The Edge Iterator algorithm
computes for each edge the number of triangles that
contain it. The time complexity of this algorithm is
O(
∑
v∈V d

2
v). Asymptotically, both methods have the

same time complexity ([26]). In [2], a listing algorithm
of time complexity Θ(m

3
2) is proposed. However, the

space complexity is Θ(n2). In [26] the forward al-
gorithm is proposed, which is an improvement of the
Edge Iterator algorithm, with running time Θ(m

3
2). In

2

[20], a further improvement of the forward algorithm
is proposed, called the compact-forward algorithm.

Streaming algorithms The memory restrictions
when dealing with huge graphs lead us to the streaming
approach. In the streaming model, the goal is to find a
randomized algorithm that outputs an ε-approximation
of the number of triangles with probability at least 1-δ
with one pass access to the graph data stream. The
main advantage of this approach in comparison to the
non-streaming scenario is that it requires a single pass
over the data. Representative work on the streaming
case are [3] and [5]. In [3], rigorous theory supports the
algorithms making them attractive for practical appli-
cations. Still, there are open issues according to the
authors such as justifying when their adjacency stream
model is superior to the naive sampling method.In [5],
accuracy in certain cases can be an issue. Recently, the
semi-streaming model was introduced by [4] to solve
the local counting problem. This model relaxes the
strict restriction of the single pass over the data, and
instead it uses an amount of main memory (O(n)) and
performs O(log(n)) sequential scans over the edge file.
The authors do not make a comparison to existing ap-
proaches and report overflow problems in the imple-
mentation as the number of passes increases.

3 Proposed Method

The goal of this work is to propose a new method
for counting triangles approximately in large, real-
world networks while being accurate, fast, and easily
parallelizable. The last goal is also of great impor-
tance, since it will provide a way to mine huge graphs
using parallel architectures such as the map/reduce
(’hadoop’) [10]. Furthermore,if all these goals are met
at once, the “trade-off” described in section 2 will be
destroyed. The method we propose achieves all the
above characteristics when the graph has some special
properties. Real-world networks appear to have them
very frequently.

Table 1 gives a list of symbols and their definitions.

3.1 Theorems and proofs

Using simple linear algebra arguments, we prove two
theorems on the top of which our methods are built.

Theorem 3.1 (EigenTriangle) The total number of
triangles in a graph is proportional to the sum of cubes
of eigenvalues, namely:

∆(G) =
1
6

n∑
i=1

λ3
i (1)

Sym. Definition
G Undirected graph (no self-edges)
dmax maximum node degree
∆ total number of triangles
∆′ EigenTriangle’s estimation of ∆
∆dm
avg average number of triangles over all

nodes with degree dm
~∆(G) = [∆i]i=1..n ∆i number of triangles

node i participates
~∆′(G) = [∆′i]i=1..n ∆′i EigenTriangleLocal’s

estimation of ∆i

m, n Number of edges and nodes.
[n] = (1..n) Node ids
A Adjacency matrix
λi top-i-th eigenvalue (absolute value)
~ui i-th top eigenvector

(eigenvector corresponding to λi)
~Λk = [λi]i=1..k k top eigenvalues
Uk = [u1| . . . |uk] matrix containing the

k top eigenvectors as its columns
TPPL triangles per node power law
DTPL degree triangle power law

Table 1. Definitions of symbols and acronyms

Proof The diagonal element αii of the square matrix
A3 contains the number of paths of length 3 that be-
gin and end at the same node i. The only way this
can happen is to have a triangle in which node i par-
ticipates. Therefore the trace of A3 is three times the
total number of triangles (since we are triple count-
ing them because each triangle has 3 participating
nodes). Furthermore, since the graph is undirected
and we are counting each triangle as two (triangle ikj
is counted as i → k → j and i → j → k). There-
fore the following equality holds: ∆(G) = 1

6 trace(A
3).

Furthermore, if λ is an eigenvalue of A then λk is
an eigenvalue of Ak (k ≥1). Finally, we know that∑n
i=1 λi = trace(A). Combining the above equations,

we get that ∆(G) = 1
6

∑n
i=1 λ

3
i . Q.E.D

In case the graph G is directed, theorem 3.1 still
holds but with a slight modification: as it can be easily
seen by the proof instead of multiplying the sum of the
right side with 1

6 we multiply by 1
3 . In this case ∆(G)

is the total number of undirected triangles.

Theorem 3.2 (EigenTriangleLocal) The number
of triangles ∆i that node i participates in, can be
computed from the cubes of the eigenvalues of the

3

Algorithm 1 The EigenTriangle algorithm
Require: Adjacency matrix A (nxn)
Require: Tolerance tol
Output: ∆′(G) global triangle estimation
λ1 ← LanczosMethod(A, 1)
~Λ ← [λ1]
i ← 2 {initialize i, ~Λ}
repeat
λi ← LanczosMethod(A, i)
~Λ←

[
~Λ λi

]
i ← i + 1

until 0 ≤ |λ3
i |∑i

j=1 λ
3
j

≤ tol

∆′(G) ← 1
6

∑i
j=1 λ

3
j

return ∆′(G)

adjacency matrix

∆i =

∑
j λ

3
ju

2
i,j

2
(2)

where ui,j is the i-th entry of the j-th eigenvector.

Proof Easy extension of 3.1. It follows from the facts
that since Anxn is symmetric, A = UnΣU′n, where
Σ is a diagonal matrix with diag(Σ) = ~Λn (all eigen-
values are real and Un is an orthogonal matrix and
therefore A3 = UnΣ3U′n according to [25]) and that
each triangle is counted twice. Q.E.D

3.2 Proposed algorithms

We can see the pseudocode of the EigenTriangle
and EigenTriangleLocal algorithms. Both take
only a tolerance parameter: tol. The intuition behind
the tolerance parameter is to stop looping when the
smallest eigenvalue contributes very little to the total
number of triangles.

Both algorithms use the subroutine LanczosMethod
as a black box1. The Lanczos method is a well stud-
ied projection method for solving the symmetric eigen-
value problem using Krylov subspaces. Our choice is
due to the following reasons: a) It is based only on
matrix-vector products, which are easy to parallelize.
b) “..with minimal memory requirements very large
problems can be handled on not very large computers,
and huge problems can be handled on large comput-
ers” (quote from [9]). c) High quality software is avail-
able (ARPACK,Parallel ARPACK etc.). More details
about the Lanczos method can be found in [17], [19].

1For simplifying presentation, depending on the number of
output arguments, Lanczos returns either λi only or ~ui too. The
required time is the same in both cases.

Algorithm 2 The EigenTriangleLocal algorithm
Require: Adjacency matrix A (nxn)
Require: Tolerance tol
Output: ~∆′(G) per node triangle estimation
〈λ1, ~u1〉 ← LanczosMethod(A, 1)
~Λ ← [λ1]
U ← [~u1]
i ← 2
{initialize i, ~Λ,U}
repeat
〈λi, ~ui〉 ← LanczosMethod(A, i)
~Λ←

[
~Λ λi

]
U← [U ~ui]
i ← i + 1

until 0 ≤ |λ3
i |∑i

j=1 λ
3
j

≤ tol
for j = 1 to n do

∆′j =
∑i

k=1 u
2
jkλ

3
k

2
end for
~∆′(G) ← [∆′1, ..,∆

′
n]

return ~∆′(G)

The idea of both algorithms could not be more sim-
ple and clear: find the diagonal of a low rank approxi-
mation of A3.

3.3 Why so successful?

Real-world networks have several special proper-
ties, such as small-worldness, scale-freeness and self-
similarity characteristics. Two among the many spe-
cial properties are the reason that our EigenTriangle
and EigenTriangleLocal algorithms achieve excel-
lent accuracy, and excellent speedup at the same time:

• (a) The absolute values of their eigenvalues
are skewed, typically following a power law
([13],[24],[6]).

• (b) Moreover, the signs of the eigenvalues tend to
alternate ([14])) and thus their cubes roughly can-
cel out.

The combination of the two properties means that
the first top strongest eigenvalues (experimentally 1-
25, 3(a) lead to an excellent approximation.

Figure 2 shows the typical spectrum of a real-world
network. It plots the rank of the eigenvalue vs. its
value for the Political Blogs network ([1]). The two
crucial properties described above are verified.

4

3.3.1 Justifying the convergence speed of the
Lanczos method

Lanczos algorithm can run in general into convergence
problems. However, in the experiments we conducted,
we never faced this problem. This interesting phe-
nomenon happens because real-world networks have
usually have a big spectral gap, which makes Lanc-
zos robust. In more detail, we use the Kaniel-Paige
convergence theory and the special properties of real-
world networks. In particular, in [12] it is claimed that
real-world networks have a big gap λ1 - |λ2| 2. This
claim was experimentally verified and is in accordance
with [13],[24],[6]. Also, according to Kaniel-Paige con-
vergence theory ([17]) if θ1 ≥ ... ≥ θk are the eigen-
values of the tridiagonal Tk (a small matrix internally
constructed by Lanczos) obtained after k steps of the
Lanczos iteration, then the following inequality holds:

λ1 ≥ θ1 ≥ λ1 −
(λ1 − λn)tan(φ1)2

(ck−1(1 + 2ρ1))2
(3)

where cos(φ1) = |~q1′ ~u1| (where ~q1 is the first Lanc-
zos vector), ρ1 = λ1−λ2

λ2−λn
, and ck−1 is the Chebyshev

polynomial of degree k − 1. Therefore, in our case ρ1

is larger than zero and since Chebyshev polynomials
grow very fast outside [-1,1] ([23]), Lanczos converges
very fast.

4 Experimental Results

We do experiments to answer the following ques-
tions: for at least 95% accuracy what are the speedups
we can achieve for the triangle counting problem?

First we give the experimental setup, and then the
results.

4.1 Experimental set up

Each graph was preprocessed by removing any self-
edges, the direction of the edges and the weights when-
ever needed. The number of nodes and edges of the
networks used after the preprocessing are summarized
in table 2. 3 As a competitor we chose the Node Itera-
tor (see section 2) since it is much superior to the naive
O(n3), easy to implement and has asymptotically the
same time and space complexity with the Edge itera-
tor. We ran the experiments in a machine with a quad-

2Absolute value is not needed for λ1 because according to the
Perron-Frobenius theorem ([16]) it is always positive

3Most of the datasets we used are publicly available. In-
dicative sources are : http://arxiv.org, http://www.cise.ufl.
edu/research/sparse/mat/, http://www-personal.umich.edu/

~mejn/netdata/

Figure 2. Typical spectrum of a real-world
network (Polblogs dataset). Value λi versus
rank i (highest absolute value first). Notice
that (1) the first few eigenvalues are much
stronger than the rest, (2) which are almost
symmetric around zero and (3) cubing ampli-
fies these effects.

processor Intel Xeon 3GHz with 16GB of RAM. We ex-
press the experimental results as the ratio of the clock-
work times of the Node Iterator to the EigenTrian-
gle (speedup). Our algorithms were implemented in
MATLAB and the Node Iterator in JAVA.

4.2 Global Triangle Count

The results of applying the EigenTriangle algo-
rithm are summarized in figure 3. Figure 3(a) plots
the number of eigenvalues required to get at least 95%
versus the achieved speedup, whereas figure 3(b) the
number of edges in the graph versus the speedup. The
following facts are remarkable:

• The mean value of eigenvalues needed to achieve
more than 95% is 6.2 with standard deviation 3.2.
The mean speedup is 250x with standard deviation
123. The maximum speedup is 1159x whereas the
minimum 33.7x.

• The speedup savings appear to increase as the size
of the network grows. A possible explanation for
this, assuming that our degree distribution follows
approximately a power law, could be that as the
network grows, the maximum degrees are getting
more detached from the rest and according to [24],
so do the top eigenvalues. Therefore, with a hand-
ful of eigenvalues, we get extremely high accuracy.

5

(a) #Eigenvalues vs. Speedup (b) Edges vs. Speedup

Figure 3. Scatterplots of the results for 158 graphs. (a) Speedup vs. Eigenvalues: The mean required
approximation rank for ≥ 95% accuracy is 6.2. Speedups are between 33.7x and 1159x, with mean
250.(b) Speedup vs. Edges: Notice the trend of increasing speedup as the network size grows
(#edges).

Finishing this section, we provide the following “rule
of thumb”: Follow the default tol=0.05 which gave the
results reported here. Our experiments showed little
sensitivity on the choice of tol. Alternatively an even
easier rule of thumb is to pick the top 30 eigenvalues
(since we got all our results with less than 25 eigenval-
ues, see figure 3).

4.3 Local Triangle Count

To measure of the performance of the EigenTri-
angleLocal algorithm, we use Pearson’s correlation
coefficient ρ and the relative reconstruction error (as in
[4]).

RRE =
1
n

n∑
i=1

|∆i −∆′i|
∆i

In figure 4 we see how well ~∆′(G) approximates ~∆(G)
with the top 10 eigenvalues and eigenvectors. The RRE
we obtain is 7 ∗ 10−4 and ρ almost 1.

Figure 5 explains why our proposed methods work
well in practice. It plots the rank of the approxima-
tion vs. ρ. We observe that after the second rank
approximation, for all three networks the approxima-
tion is excellent: ρ is greater than 99.9% whereas the
RRE has always order of magnitude between 10−7 and
10−4. Similar results hold for the rest of the datasets
we experimented with.

Figure 4. Scatterplot of ∆′i (estimated #trian-
gles of node i) vs. ∆i (actual number) for Pol-
blogs using a rank 10 approximation. Rela-
tive reconstruction error is 7 ∗ 10−4 and the
Pearson’s correlation coefficient is 99.97%.

5 Laws and patterns

5.1 TriangleParticipation law

Figure 6 shows the PDF of the number of trian-
gles that a node participates in. That is, for a given
graph, it plots the number of triangles (x-axis) versus

6

Nodes Edges Description
Social Networks

75,877 405,740 Epinions network
404,733 2,110,078 Anonymous So-

cial Network (ASN)
Co-authorship networks

27,240 341,923 Arxiv Hep-Th
Information networks

1,222 16,714 Political blogs
13,332 148,038 Reuters news,

Sept 9-11,2001.
Web graphs
2,983,494 35,048,116 Wikipedia 2006-Sep-25
3,148,440 37,043,458 Wikipedia 2006-Nov-04
Internet networks

13,579 37,448 AS Oregon
23,389 47,448 CAIDA AS 2004 to 2008

(means over 151 timestamps)

Table 2. Summary of real-world networks
used.

the count of nodes participating in that many triangles.
Both scales are logarithmic. We show the results only
for three of the datasets for brevity (Epinions, Anony-
mous social network and HEP-TH) , because the rest
have similar behavior. The over-arching observation
is that the number of participating triangles follows ei-
ther a power law, or a lognormal-like distribution, with
a power-law tail. The important point is that gener-
ating these plots can be from 30x to 1000x faster with
our proposed algorithms with high accuracy.

5.2 Degree-Triangle law

Is there a correlation between the i-th largest degree
di, and the number of triangles? This is the focus of our
exploration. The results are surprising, and shown in
Figure 7. The Figure plots the degree di vs. the mean
number of triangles over all nodes with degree di for
the specified networks (the rest of the networks we used
had similar behavior and are omitted for brevity). The
Figure also has insets, showing the degree distribution
(PDF), in log-log scales. We performed least square
fitting.

We have the following observations from there.

• Degree-Triangle power law: ∆di
avg (see table 1

for notation) follows a power-law with respect to
the degree di.

Figure 5. Local triangle reconstruction for
three real-world networks using rank 1 to 10
approximation of the diagonal of A3. Pear-
son’s correlation coefficient ρ vs. approxima-
tion rank.Notice that after rank 2 ρ is greater
than 99.9% for all three networks.

• Slope-complement: it is surprising (at least to
us) that the slope τ of the Degree-Triangle
power law is extremely close to the negative of the
slope of the degree distribution, whenever the lat-
ter follows a power law (figure 7(a),(b) and (d)) or
lognormal-like distribution(figure 7(c)). For the
later, we performed a second least squares fitting,
by fixing the slope of the fitted line to be the com-
plementary of the slope of the degree distribution’s
fitted line. The result would have occured if we
had done a manual-visual fitting.

• High-degree deviation: high degree nodes tend
to deviate from the earlier slope. This is proba-
bly due to the phenomenon that high-degree nodes
have a lot of degree-1 nodes, which, obviously, do
not contribute to triangles.

6 Theoretical Ramifications

6.1 Kronecker graphs

Kronecker graphs ([21]) have attracted recent inter-
est, because they can be made to mimick real graphs
well ([22]). Here we give a closed formula that esti-
mates the number of triangles for a Kronecker graph.
Some definitions first:

Let A be the nxn adjacency matrix of an n-node
graph GA with ∆(GA) triangles, and let B = A[k] be
the k-th Kronecker power of it, that is, an nk × nk

adjacency matrix (see [21] for the exact definition of

7

(a) HEP-TH (b) ASN (c) Epinions

Figure 6. PDF of participating triangles: Figure plots the count of nodes with ∆ triangles vs. ∆ in
log-log scale. We observe power laws or power law tails in the PDFs .

(a) Epinions (b) ASN (c) Reuters

Figure 7. Figure plots degree ∆di
avg, the mean number of triangles over all nodes with degree di vs.

di for (a) Epinions (b) ASN (c) HEP-th and (d) Reuters networks. Two surprising observations: (i) A
power law emerges.(ii) The slope of the fitted line is the complementary of the slope of the fitted line
of the degree distribution in the insets (least squares fitting).

the Kronecker matrix multiplication). Let GB denote
the corresponding graph.

Let ~λ = (λ1, .., λn) be the eigenvalues of matrix A.
Then we have:
Theorem 6.1 (KroneckerTRC) The number of tri-
angles ∆(GB) of GB can be computed from the n eigen-
values of A:

∆(GB) = 62k−1∆(GA)2
k

= 62k−1(
∑n
i=1 λ

3
i

6
)2

k

, k ≥ 0.

(4)

Proof We use induction on the depth of the recursion
k. For k = 0, KroneckerTRC trivially holds (see
thrm. 3.1). So the base case is true. Let Kroneck-
erTRC hold for some r ≥ 1. For notation simplicity,
let C = A[r] with eigenvalues [γi]i=1..s and D = A[r+1].

According to the induction assumption:

δ(GC) = 62r−1

(∑n
i=1 λ

3
i

6

)2r

Now, we will show that KroneckerTRC
holds for r + 1. The eigenvalues ψ1, .., ψs2
of D are the terms of the sum (

∑s
i=1 γi)

2.

We see now that
∑s2

i=1 ψ
3
i = (

∑s
i=1 γ

3
i)2 ⇔

δ(GD)=6δ(GC)2⇔δ(GD)=62r+1−1(
∑n

i=1 λ
3
i

6)2
r+1

.
So, KroneckerTRC holds for all k ≥ 0. The expres-

sion can be further simplified: ∆(GB) = (∑n
i=1 λ

3
i)2k

6 .
Q.E.D

This results in tremendous speed savings, and per-
fect accuracy.

8

Timing results, and stochastic Kronecker
graphs Experimenting on a small deterministic Kro-
necker graph with 6,561 nodes and 839,808 edges com-
ing from the 3-clique initiator with depth of recursion
equal to 3, we get 106 faster performance. As the size
of the Kronecker graph increases, we obtain arbitrarily
huge speedups.

What is interesting is that the KroneckerTRC
theorem also leads to fast estimation of triangles, even
for stochastic Kronecker graphs (see [22] for the defini-
tions). Stochastic Kronecker graphs have been shown
to mimick real graphs very well. Intuitively, a stochas-
tic Kronecker graph is like a deterministic one, with
a few random edge deletions and additions. Our ex-
periments with a stochastic Kronecker graphs show
that these random edge manipulations have little ef-
fect on the accuracy. Specifically, our experiments
with n=6,561 and m=2,202,8084, show that we obtain
1.5 ∗ 106x faster execution, while maintaining 99.34%
accuracy. Similar results hold for other experiments we
conducted as well. Proving bounds for the accuracy for
stochastic Kronecker graphs is an interesting research
direction.

6.2 Erdős-Rényi graphs

It is interesting to notice that our algorithm is
guaranteed to give high accuracy and speedup perfor-
mance for random Erdős-Rényi graphs. This is due to
the so-called Wigner’s semi-circle law for all but the
first eigenvalue [15]. For example, for a graph with
n = 20, 000 and p = 0.6, using EigenTriangleLo-
cal with 0.05 tolerance parameter, we get 1600 faster
performance compared to the Node Iterator with rela-
tive error 5 ∗ 10−5 and Pearson’s correlation coefficient
almost equal to 15.

7 Conclusions

The main contribution of this work is the Eigen-
Triangle algorithm. It uses a link between the num-
ber of triangles and the eigenvalues (Theorem 3.1) of
the adjacency matrix and the observation that just
the top eigenvalues contribute significantly to the to-
tal number of the triangles. This is a major observa-
tion opening the door to the vast machinery of readily
available, highly fine-tuned eigenvalue algorithms and
implementations. These algorithms are not only fast,

4Initiator matrix (using MATLAB’s notation): [.99 .9 .9;.9
.99 .1;.9 .1 .99],depth of recursion: 3

5It makes no sense to apply EigenTriangle on Erdős-Rényi

since the total number of triangles is approximately (
n
3

)p3.

but, most of them have been parallelized, or can be eas-
ily parallelized on the emerging map/reduce (’hadoop’)
architecture. Thus, our method can be trivially applied
on huge, peta-byte scale graphs, as long as there is an
eigenvalue implementation available, like Lanczos.

The main contributions of this work are the follow-
ing:

• We give the EigenTriangle algorithm, which
gives excellent accuracy, for huge speedups: over
95% accuracy, for 30x to 1000x speedups, for all
the 158 real networks we tried.

• We give the EigenTriangleLocal algorithm
based on Theorem 3.2, which can quickly estimate
the number of triangles that a given node partici-
pates in. Again, the accuracy/speedup results are
excellent, for all the datasets we tried.

• Both algorithms, as Figure 3(b) implies, appear to
have a trend of increasing speedup savings as the
network size grows. Furthermore in all datasets
we experimented with, 30 eigenvalues are always
enough to obtain high accuracy, no matter the size
of the network. Figure 3(a) indicates strongly this
fact.

• We were able to discover two new laws with certain
surprising properties (at least to us): the Trian-
gleParticipation and the Degree-Triangle
laws. Thanks to our fast triangle-counting meth-
ods these laws can be found fast with high accu-
racy.

A very promising direction is mining huge graphs,
using a map/reduce (‘hadoop’) architecture ([10]). Our
algorithms are steps towards this direction.

References

[1] L. A. Adamic and N. Glance. The political blogo-
sphere and the 2004 u.s. election: divided they
blog. In LinkKDD ’05: Proceedings of the 3rd
international workshop on Link discovery, pages
36–43, New York, NY, USA, 2005. ACM.

[2] N. Alon, R. Yuster, and U. Zwick. Finding
and counting given length cycles. Algorithmica,
17(3):209–223, 1997.

[3] Z. Bar-Yosseff, R. Kumar, and D. Sivakumar. Re-
ductions in streaming algorithms, with an appli-
cation to counting triangles in graphs. In SODA
’02: Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, pages
623–632, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics.

9

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis.
Efficient semi-streaming algorithms for local tri-
angle counting in massive graphs. In Proceedings
of ACM KDD, Las Vegas, NV, USA, August 2008.

[5] L. S. Buriol, G. Frahling, S. Leonardi,
A. Marchetti-Spaccamela, and C. Sohler. Count-
ing triangles in data streams. In PODS ’06:
Proceedings of the twenty-fifth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of
database systems, pages 253–262, New York, NY,
USA, 2006. ACM.

[6] F. Chung, L. Lu, and V. Vu. Eigenvalues of ran-
dom power law graphs. Annals of Combinatorics,
7(1):21–33, June 2003.

[7] F. R. K. Chung. Spectral Graph Theory. American
Mathematical Society.

[8] D. Coppersmith and S. Winograd. Matrix mul-
tiplication via arithmetic progressions. In STOC
’87: Proceedings of the nineteenth annual ACM
conference on Theory of computing, pages 1–6,
New York, NY, USA, 1987. ACM.

[9] J. K. Cullum and R. A. Willoughby. Lanczos Al-
gorithms for Large Symmetric Eigenvalue Compu-
tations, Vol. 1. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2002.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI ’04, pages
137–150, December 2004.

[11] J.-P. Eckmann and E. Moses. Curvature of co-
links uncovers hidden thematic layers in the world
wide web. PNAS, 99(9):5825–5829, April 2002.

[12] E. Estrada. Spectral scaling and good expansion
properties in complex networks. Europhysics Let-
ters, 73:649–655, 2006.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology.
In SIGCOMM, pages 251–262, 1999.

[14] I. J. Farkas, I. Derenyi, A.-L. Barabasi, and
T. Vicsek. Spectra of ”real-world” graphs: Be-
yond the semi-circle law. Physical Review E, 64:1,
2001.

[15] Z. Füredi and J. Komlós. The eigenvalues
of random symmetric matrices. Combinatorica,
1(3):233–241, 1981.

[16] R. G. Godsil C.D. Algebraic Graph Theory.
Springer, 2001.

[17] G. Golub and C. Van Loan. Matrix Computations.
JohnsHopkinsPress, Baltimore, MD, second edi-
tion, 1989.

[18] S. A. J. Harary F. The spectral approach to de-
termining the number of walks in a graph. Pacific
J. Math., 80:443–449, 1979.

[19] D. J. Applied Numerical Linear Algebra. SIAM,
Philadelphia, PA, 1997.

[20] M. Latapy. Practical algorithms for triangle
computations in very large (sparse (power-law))
graphs. Submitted, 2007.

[21] J. Leskovec, D. Chakrabarti, J. Kleinberg, and
C. Faloutsos. Realistic, mathematically tractable
graph generation and evolution, using kro-
necker multiplication. Knowledge Discovery in
Databases: PKDD 2005, pages 133–145, 2005.

[22] J. Leskovec and C. Faloutsos. Scalable modeling
of real graphs using kronecker multiplication. In
ICML ’07: Proceedings of the 24th international
conference on Machine learning, pages 497–504,
New York, NY, USA, 2007. ACM.

[23] C. D. Mason J.C. Chebyshev Polynomials. CRC
Press, 2002.

[24] M. Mihail and C. Papadimitriou. the eigenvalue
power law, 2002.

[25] G. Strang. Introduction to Linear Algebra. SIAM,
Philadelphia, PA, 2003.

[26] Thomas Schank and Dorothea Wagner . DELIS-
TR-0043 - finding, counting and listing all trian-
gles in large graphs, an experimental study. techre-
port 0043, submitted, 2004.

[27] S. Wasserman and K. Faust. Social network anal-
ysis. Cambridge University Press, Cambridge,
1994.

[28] P. Ye, B. D. Peyser, F. A. Spencer, and J. S.
Bader. Commensurate distances and similar mo-
tifs in genetic congruence and protein interaction
networks in yeast. BMC Bioinformatics, 6:270,
2005.

10

