
Under consideration for publication in Knowledge and Information
Systems

PEGASUS: Mining Peta-Scale Graphs

U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos

School of Computer Science, Carnegie Mellon University, Pittsburgh PA, USA

Abstract. In this paper, we describe PeGaSus, an open source Peta Graph Mining
library which performs typical graph mining tasks such as computing the diameter
of the graph, computing the radius of each node and finding the connected compo-
nents. As the size of graphs reaches several Giga-, Tera- or Peta-bytes, the necessity
for such a library grows too. To the best of our knowledge, PeGaSus is the first such
library, implemented on the top of the Hadoop platform, the open source version of
MapReduce.

Many graph mining operations (PageRank, spectral clustering, diameter estimation,
connected components etc.) are essentially a repeated matrix-vector multiplication. In
this paper we describe a very important primitive for PeGaSus, called GIM-V (Gen-
eralized Iterated Matrix-Vector multiplication). GIM-V is highly optimized, achieving
(a) good scale-up on the number of available machines, (b) linear running time on the
number of edges, and (c) more than 5 times faster performance over the non-optimized
version of GIM-V.

Our experiments ran on M45, one of the top 50 supercomputers in the world. We
report our findings on several real graphs, including one of the largest publicly available
Web Graphs, thanks to Yahoo!, with ≈ 6,7 billion edges.

Keywords: PEGASUS; graph mining; GIM-V; Generalized Iterative Matrix-Vector
Multiplication; Hadoop

1. Introduction

Graphs are ubiquitous: computer networks, social networks, mobile call networks,
the World Wide Web (Broder et al, 2000), protein regulation networks to name
a few.

The large volume of available data, the low cost of storage and the stunning
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success of online social networks and web2.0 applications all lead to graphs of
unprecedented size. Typical graph mining algorithms silently assume that the
graph fits in the memory of a typical workstation, or at least on a single disk;
the above graphs violate these assumptions, spanning multiple Giga-bytes, and
heading to Tera- and Peta-bytes of data.

A promising tool is parallelism, and specifically MapReduce (Dean et al,
2004) and its open source version, Hadoop. Based on Hadoop, here we describe
PeGaSus, a graph mining package for handling graphs with billions of nodes
and edges. The PeGaSus code and several dataset are at
http://www.cs.cmu.edu/∼pegasus. The contributions are the following:

1. Unification of seemingly different graph mining tasks, via a generalization of
matrix-vector multiplication (GIM-V).

2. The careful implementation of GIM-V, with several optimizations, and sev-
eral graph mining operations (PageRank, Random Walk with Restart(RWR),
diameter estimation, and connected components). Moreover, the method is
linear on the number of edges, and scales up well with the number of available
machines.

3. Performance analysis, pinpointing the most successful combination of opti-
mizations, which lead to up to 5 times better speed than naive implementa-
tion.

4. Analysis of large, real graphs, including one of the largest publicly available
graph that was ever analyzed, Yahoo’s web graph.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 describes our framework and explains several graph mining al-
gorithms. Section 4 discusses optimizations that allow us to achieve significantly
faster performance in practice. In Section 5 we present timing results and Sec-
tion 6 our findings in real world, large scale graphs. We conclude in Section
7.

2. Background and Related Work

The related work forms two groups, graph mining, and Hadoop.

Large-Scale Graph Mining. There are a huge number of graph mining algo-
rithms, computing communities (eg., (Chen et al, 2009), DENGRAPH (Falkowski
et al, 2007), METIS (Karypis et al, 1999), (Narasimhamurthy et al, 2010)), sub-
graph discovery(e.g., GraphSig (Ranu et al, 2009), (Ke et al, 2009), (Hintsanen
et al, 2008), (Cheng et al, 2008), gPrune (Zhu et al, 2007), gApprox (Chen et
al, 2007), gSpan (Yan et al, 2002), Subdue (Ketkar et al, 2005), HSIGRAM /
VSIGRAM (Kuramochi et al, 2004), ADI (Wang et al, 2004), CSV (Wang et al,
2008), (Lahiri et al, 2010)), finding important nodes (e.g., PageRank (Brin et al,
1998) and HITS (Kleinberg, 1998)), computing the number of triangles (Tsourakakis
et al, KDD, 2009; Tsourakakis et al, Arxiv, 2009; Tsourakakis, 2010), computing
the diameter (Kang et al, 2010), topic detection (Qian et al, 2009), attack detec-
tion (Shrivastava et al, 2008), clustering (Peng et al, 2010) (Long et al, 2010),
with too-many-to-list alternatives for each of the above tasks. Most of the pre-
vious algorithms do not scale, at least directly, to several millions and billions of
nodes and edges.

For connected components, there are several algorithms, using Breadth-First
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Search, Depth-First-Search, “propagation” (Shiloach et al, 1982; Awerbuch et
al, 1983; Hirschberg et al, 1979), or “contraction” (Greiner, 1994) . These works
rely on a shared memory model which limits their ability to handle large, disk-
resident graphs.

MapReduce and Hadoop. MapReduce is a programming framework (Dean
et al, 2004) (Aggarwal et al, 2004) for processing huge amounts of unstructured
data in a massively parallel way. MapReduce has two major advantages: (a)
the programmer is oblivious of the details of the data distribution, replication,
load balancing etc. and furthermore (b) the programming concept is familiar,
i.e., the concept of functional programming. Briefly, the programmer needs to
provide only two functions, a map and a reduce. The typical framework is as
follows (Ralf, 2008): (a) the map stage sequentially passes over the input file and
outputs (key, value) pairs; (b) the shuffling stage groups of all values by key, (c)
the reduce stage processes the values with the same key and outputs the final
result.

Hadoop is the open source implementation of MapReduce. Hadoop pro-
vides the Distributed File System (HDFS) and PIG, a high level language for
data analysis (Olston et al, 2008). Due to its power, simplicity and the fact that
building a small cluster is relatively cheap, Hadoop is a very promising tool for
large scale graph mining applications, something already reflected in academia,
see (Papadimitriou et al, 2008; Kang et al, 2009). In addition to PIG, there
are several high-level language and environments for advanced MapReduce-
like systems, including SCOPE (Chaiken et al, 2008), Sawzall (Pike et al, 2005),
and Sphere (Grossman et al, 2008).

3. Proposed Method

How can we quickly find connected components, diameter, PageRank, node prox-
imities of very large graphs? We show that, even if they seem unrelated, even-
tually we can unify them using the GIM-V primitive, standing for Generalized
Iterative Matrix-Vector multiplication, which we describe in the next.

3.1. Main Idea

GIM-V, or ‘Generalized Iterative Matrix-Vector multiplication’ is a generalization
of normal matrix-vector multiplication. Suppose we have a n by n matrix M and
a vector v of size n. Let mi,j denote the (i, j)-th element of M . Then the usual
matrix-vector multiplication is

M × v = v′ where v′i =
∑n

j=1 mi,jvj .

There are three operations in the previous formula, which, if customized
separately, will give a surprising number of useful graph mining algorithms:

1. combine2: multiply mi,j and vj .
2. combineAll: sum n multiplication results for node i.
3. assign: overwrite previous value of vi with new result to make v′i.

In GIM-V, let’s define the operator ×G, where the three operations can be
defined arbitrarily. Formally, we have:



4 U. Kang et al

SELECT E.sid, combineAllE.sid(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

v′ = M ×G v
where v′i = assign(vi,combineAlli({xj | j = 1..n, and xj =combine2(mi,j, vj)})).

The functions combine2(), combineAll(), and assign() have the following
signatures (generalizing the product, sum and assignment, respectively, that the
traditional matrix-vector multiplication requires):

1. combine2(mi,j, vj) : combine mi,j and vj .
2. combineAlli(x1, ..., xn) : combine all the results from combine2() for node i.
3. assign(vi, vnew) : decide how to update vi with vnew.

The ‘Iterative’ in the name of GIM-V denotes that we apply the ×G opera-
tion until an algorithm-specific convergence criterion is met. As we will see in a
moment, by customizing these operations, we can obtain different, useful algo-
rithms including PageRank, Random Walk with Restart, connected components,
and diameter estimation. But first we want to highlight the strong connection
of GIM-V with SQL: When combineAlli() and assign() can be implemented
by user defined functions, the operator ×G can be expressed concisely in terms
of SQL. This viewpoint is important when we implement GIM-V in large scale
parallel processing platforms, including Hadoop, if they can be customized to
support several SQL primitives including JOIN and GROUP BY. Suppose we
have an edge table E(sid, did, val) and a vector table V(id, val), corre-
sponding to a matrix and a vector, respectively. Then, ×G corresponds to the
following SQL statement - we assume that we have (built-in or user-defined)
functions combineAlli() and combine2()) and we also assume that the resulting
table/vector will be fed into the assign() function (omitted, for clarity):

In the following sections we show how we can customize GIM-V, to handle
important graph mining operations including PageRank, Random Walk with
Restart, diameter estimation, and connected components.

3.2. GIM-V and PageRank

Our first application of GIM-V is PageRank, a famous algorithm that was used
by Google to calculate relative importance of web pages (Brin et al, 1998). The
PageRank vector p of n web pages satisfies the following eigenvector equation:

p = (cET + (1− c)U)p

where c is a damping factor (usually set to 0.85), E is the row-normalized
adjacency matrix (source, destination), and U is a matrix with all elements set
to 1/n.

To calculate the eigenvector p we can use the power method, which multiplies
an initial vector with the matrix, several times. We initialize the current PageR-
ank vector pcur and set all its elements to 1/n. Then the next PageRank pnext is
calculated by pnext = (cET +(1−c)U)pcur. We continue to do the multiplication
until p converges.
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PageRank is a direct application of GIM-V. In this view, we first construct
a matrix M by column-normalize ET such that every column of M sum to 1.
Then the next PageRank is calculated by pnext = M ×G pcur where the three
operations are defined as follows:

1. combine2(mi,j, vj) = c×mi,j × vj

2. combineAlli(x1, ..., xn) = (1−c)
n

+
∑n

j=1 xj

3. assign(vi, vnew) = vnew

3.3. GIM-V and Random Walk with Restart

Random Walk with Restart(RWR) is an algorithm to measure the proximity of
nodes in graph (Pan et al, 2004). In RWR, the proximity vector rk from node k
satisfies the equation:

rk = cMrk + (1− c)ek

where ek is a n-vector whose kth element is 1, and every other elements are 0.
c is a restart probability parameter which is typically set to 0.85 (Pan et al, 2004).
M is a column-normalized and transposed adjacency matrix, as in Section 3.2.
In GIM-V, RWR is formulated by rnext

k = M ×G rcur
k where the three operations

are defined as follows ( δik is the Kronecker delta, equal to 1 if i = k and 0
otherwise):

1. combine2(mi,j, vj) = c×mi,j × vj

2. combineAlli(x1, ..., xn) = (1− c)δik +
∑n

j=1 xj

3. assign(vi, vnew) = vnew

3.4. GIM-V and Diameter Estimation

Hadi (Kang et al, 2010) is an algorithm to estimate the diameter and radius
of large graphs. The diameter of a graph is the maximum of the length of the
shortest path between every pair of nodes. The radius of a node vi is the number
of hops that we need to reach the farthest-away node from vi. The main idea
of Hadi is as follows. For each node vi in the graph, we maintain the number
of neighbors reachable from vi within h hops. As h increases, the number of
neighbors increases until h reaches it maximum value. The diameter is h where
the number of neighbors within h+1 does not increase for every node. For further
details and optimizations, see (Kang et al, 2010).

The main operation of Hadi is updating the number of neighbors as h in-
creases. Specifically, the number of neighbors within hop h reachable from node
vi is encoded in a probabilistic bitstring bh

i which is updated as follows:

bh+1
i = bh

i BITWISE-OR {bh
k | (i, k) ∈ E}

In GIM-V, the bitstring update of Hadi is represented by

bh+1 = M ×G bh

where M is an adjacency matrix, bh+1 is a vector of length n which is updated
by
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bh+1
i =assign(bh

i ,combineAlli({xj | j = 1..n, and xj =combine2(mi,j, b
h
j )})),

and the three operations are defined as follows:

1. combine2(mi,j, vj) = mi,j × vj .
2. combineAlli(x1, ..., xn) = BITWISE-OR{xj | j = 1..n}
3. assign(vi, vnew) = BITWISE-OR(vi, vnew).

The ×G operation is run iteratively until the bitstring for all the nodes do
not change.

3.5. GIM-V and Connected Components

We propose Hcc, a new algorithm for finding connected components in large
graphs. Like Hadi, Hcc is an application of GIM-V with custom functions. The
main idea is as follows. For every node vi in the graph, we maintain a component
id ch

i which is the minimum node id within h hops from vi. Initially, ch
i of vi is set

to its own node id: that is, c0
i = i. For each iteration, each node sends its current

ch
i to its neighbors. Then ch+1

i , component id of vi at the next step, is set to the
minimum value among its current component id and the received component ids
from its neighbors. The crucial observation is that this communication between
neighbors can be formulated in GIM-V as follows:

ch+1 = M ×G ch

where M is an adjacency matrix, ch+1 is a vector of length n which is updated
by
ch+1
i =assign(ch

i ,combineAlli({xj | j = 1..n, and xj =combine2(mi,j, c
h
j )})),

and the three operations are defined as follows:

1. combine2(mi,j, vj) = mi,j × vj .
2. combineAlli(x1, ..., xn) = MIN{xj | j = 1..n}.
3. assign(vi, vnew) = MIN(vi, vnew).

By repeating this process, component ids of nodes in a component are set
to the minimum node id of the component. We iteratively do the multiplication
until component ids converge. The upper bound of the number of iterations in
Hcc are determined by the following theorem.

Theorem 1 (Upper bound of iterations in Hcc). Hcc requires maximum
d iterations where d is the diameter of the graph.

Proof. The minimum node id is propagated to its neighbors at most d times.

Since the diameter of real graphs are relatively small, Hcc completes after
small number of iterations.

4. Fast Algorithms for GIM-V

How can we parallelize the algorithm presented in the previous section? In this
section, we first describe naive Hadoop algorithms for GIM-V. After that we
propose several faster methods for GIM-V.
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Algorithm 1 GIM-V BASE Stage 1.

Input: Matrix M = {(idsrc, (iddst, mval))}, Vector V = {(id, vval)}
Output: Partial vector V ′ = {(idsrc, combine2(mval, vval)}
1: Stage1-Map(Key k, Value v):
2: if (k, v) is of type V then
3: Output(k, v); // (k: id, v: vval)
4: else if (k, v) is of type M then
5: (iddst, mval)← v;
6: Output(iddst, (k, mval)); // (k: idsrc)
7: end if
8:

9: Stage1-Reduce(Key k, Value v[1..m]):
10: saved kv ←[ ];
11: saved v ←[ ];
12: for v ∈ v[1..m] do
13: if (k, v) is of type V then
14: saved v ← v;
15: Output(k, (“self”, saved v));
16: else if (k, v) is of type M then
17: Add v to saved kv; // (v: (idsrc, mval))
18: end if
19: end for
20: for (id′src, mval′) ∈ saved kv do
21: Output(id′src, (“others”,combine2(mval′, saved v)));
22: end for

4.1. GIM-V BASE: Naive Multiplication

GIM-V BASE is a two-stage algorithm whose pseudo code is in Algorithm 1
and 2. The inputs are an edge file and a vector file. Each line of the edge file
contains one (idsrc, iddst, mval) which corresponds to a non-zero cell in the ad-
jacency matrix M . Similarly, each line of the vector file contains one (id, vval)
which corresponds to an element in the vector V . Stage1 performs combine2
operation by combining columns of matrix(iddst of M) with rows of vector(id
of V ). The output of Stage1 are (key, value) pairs where key is the source
node id of the matrix(idsrc of M) and the value is the partially combined re-
sult(combine2(mval, vval)). This output of Stage1 becomes the input of Stage2.
Stage2 combines all partial results from Stage1 and assigns the new vector to
the old vector. The combineAlli() and assign() operations are done in line 15
of Stage2, where the “self” and “others” tags in line 15 and line 21 of Stage1
are used to make vi and vnew of GIM-V, respectively.

This two-stage algorithm is run iteratively until application-specific conver-
gence criterion is met. In Algorithm 1 and 2, Output(k, v) means to output
data with the key k and the value v.

4.2. GIM-V BL: Block Multiplication

GIM-V BL is a fast algorithm for GIM-V which is based on block multiplication.
The main idea is to group elements of the input matrix into blocks or submatrices
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Algorithm 2 GIM-V BASE Stage 2.

Input: Partial vector V ′ = {(idsrc, vval′)}
Output: Result Vector V = {(idsrc, vval)}
1: Stage2-Map(Key k, Value v):
2: Output(k, v);
3:

4: Stage2-Reduce(Key k, Value v[1..m]):
5: others v ←[ ];
6: self v ←[ ];
7: for v ∈ v[1..m] do
8: (tag, v′)← v;
9: if tag = “same” then

10: self v ← v′;
11: else if tag = “others” then
12: Add v′ to others v;
13: end if
14: end for
15: Output(k,assign(self v,combineAllk(others v)));

Fig. 1. GIM-V BL using 2 x 2 blocks. Bi,j represents a matrix block, and vi represents a vector
block. The matrix and vector are joined block-wise, not element-wise.

of size b by b. Also we group elements of input vectors into blocks of length b.
Here the grouping means we put all the elements in a group into one line of input
file. Each block contains only non-zero elements of the matrix or vector. The
format of a matrix block with k nonzero elements is (rowblock , colblock, rowelem1

,
colelem1

, mvalelem1
, ..., rowelemk

, colelemk
, mvalelemk

). Similarly, the format of a
vector block with k nonzero elements is (idblock, idelem1

, vvalelem1
, ..., idelemk

,
vvalelemk

). Only blocks with at least one nonzero elements are saved to disk.
This block encoding forces nearby edges in the adjacency matrix to be closely
located; it is different from Hadoop’s default behavior which do not guarantee
co-locating them. After grouping, GIM-V is performed on blocks, not on individual
elements. GIM-V BL is illustrated in Figure 1.

In our experiment at Section 5, GIM-V BL is more than 5 times faster than
GIM-V BASE. There are two main reasons for this speed-up.

– Sorting Time Block encoding decrease the number of items to sort in the
shuffling stage of Hadoop. We observed that one of the main bottleneck of
programs in Hadoop is its shuffling stage where network transfer, sorting, and
disk I/O happens. By encoding to blocks of width b, the number of lines in
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Fig. 2. Clustered vs. non-clustered adjacency matrices for two isomorphic graphs. The edges
are grouped into 2 by 2 blocks. The left graph uses only 3 blocks while the right graph uses 9
blocks.

the matrix and the vector file decreases to 1/b2 and 1/b times of their original
size, respectively for full matrices and vectors.

– Compression The size of the data decreases significantly by converting edges
and vectors to block format. The reason is that in GIM-V BASE we need 4× 2
bytes to save each (srcid, dstid) pair since we need 4 bytes to save a node id
using Integer. However in GIM-V BL we can specify each block using a block
row id and a block column id with two 4-byte Integers, and refer to elements
inside the block using 2×logb bits. This is possible because we can use logb bits
to refer to a row or column inside a block. By this block method we decreased
the edge file size(e.g., more than 50% for YahooWeb graph in Section 5).

4.3. GIM-V CL: Clustered Edges

When we use block multiplication, another advantage is that we can benefit
from clustered edges. As can be seen from Figure 2, we can use smaller number
of blocks if input edge files are clustered. Clustered edges can be built if we
can use heuristics in data preprocessing stage so that edges are clustered, or
by co-clustering (e.g., see (Papadimitriou et al, 2008)). The preprocessing for
edge clustering need to be done only once; however, they can be used by every
iteration of various application of GIM-V. So we have two variants of GIM-V:
GIM-V CL, which is GIM-V BASE with clustered edges, and GIM-V BL-CL, which
is GIM-V BL with clustered edges. Be aware that clustered edges is only useful
when combined with block encoding. If every element is treated separately, then
clustered edges don’t help anything for the performance of GIM-V.

4.4. GIM-V DI: Diagonal Block Iteration

As mentioned in Section 4.2, the main bottleneck of GIM-V is its shuffling and
disk I/O steps. Since GIM-V iteratively runs Algorithm 1 and 2, and each Stage
requires disk IO and shuffling, we could decrease running time if we decrease the
number of iterations.

In Hcc, it is possible to decrease the number of iterations. The main idea
is to multiply diagonal matrix blocks and corresponding vector blocks as much
as possible in one iteration. Remember that multiplying a matrix and a vector
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Fig. 3. Propagation of component id(=1) when block width is 4. Each element in the adjacency
matrix of (a) represents a 4 by 4 block; each column in (b) and (c) represents the vector after
each iteration. GIM-V DL finishes in 4 iterations while GIM-V BL requires 8 iterations.

corresponds to passing node ids to one step neighbors in Hcc. By multiplying
diagonal blocks and vectors until the contents of the vectors do not change in one
iteration, we can pass node ids to neighbors located more than one step away.
This is illustrated in Figure 3.

We see that in Figure 3 (c) we multiply Bi,i with vi several times until vi

do not change in one iteration. For example in the first iteration v0 changed
from {1,2,3,4} to {1,1,1,1} since it is multiplied to B0,0 four times. GIM-V DI is
especially useful in graphs with long chains.

The upper bound of the number of iterations in Hcc DI with chain graphs
are determined by the following theorem.

Theorem 2 (Upper bound of iterations in Hcc DI). In a chain graph with
length m, it takes maximum 2 ∗ ⌈m/b⌉ − 1 iterations in Hcc DI with block size
b.

Proof. The worst case happens when the minimum node id is in the beginning of
the chain. It requires 2 iterations(one for propagating the minimum node id inside
the block, another for passing it to the next block) for the minimum node id to
move to an adjacent block. Since the farthest block is ⌈m/b⌉ − 1 steps away, we
need 2 ∗ (⌈m/b⌉−1) iterations. When the minimum node id reached the farthest
away block, GIM-V DI requires one more iteration to propagate the minimum
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Algorithm 3 Renumbering the minimum node

Input: Edge E = {(idsrc, iddst)},
current minimum node id minidcur,
new minimum node id minidnew

Output: Renumbered Edge V = {(id′src, id
′

dst)}
1: Renumber–Map(key k, value v):
2: src← k;
3: dst← v;
4: if src = minidcur then
5: src← minidnew;
6: else if src = minidnew then
7: src← minidcur;
8: end if
9: if dst = minidcur then

10: dst← minidnew;
11: else if dst = minidnew then
12: dst← minidcur;
13: end if
14: Output(src, dst);

node id inside the last block. Therefore, we need 2∗(⌈m/b⌉−1)+1 = 2∗⌈m/b⌉−1
iterations.

4.5. GIM-V NR: Node Renumbering

In HCC, the minimum node id is propagated to the other parts of the network
within at most d steps, where d is the diameter of the network. If the node with
the minimum id(which we call ‘minimum node’) is located at the center of the
network, then the number of iterations is small, close to d/2. However, if it is
located at the boundary of the network, then the number of iteration can be
close to d. Therefore, if we preprocess the edges so that the minimum node id is
swapped to the center node id, the number of iterations and the total running
time of HCC would decrease.

Finding the center node with the minimum radius could be done with the
HADI (Kang et al, 2010) algorithm. However, the algorithm is expensive for
the pre-processing step of HCC. Therefore, we instead propose the following
heuristic for finding the center node: we choose the center node by sampling
from the highest-degree nodes. This heuristic is based on the fact that nodes
with large degree have small radii (Kang et al, 2010). Moreover, computing the
degree of very large graphs is trivial in MapReduce and could be performed
quickly with one job.

After finding a center node, we need to renumber the edge file to swap the
current minimum node id with the center node id. The MapReduce algorithm
for this renumbering is shown in Algorithm 3. Since the renumbering requires
only filtering, it can be done with a Map-only job.
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4.6. Analysis

We analyze the time and space complexity of GIM-V. In the theorems below, M
is the number of machines.

Theorem 3 (Time Complexity of GIM-V). One iteration of GIM-V takes
O(V +E

M
log V +E

M
) time.

Proof. Assuming uniformity, mappers and reducers of Stage1 and Stage2 re-
ceives O(V +E

M
) records per machine. The running time is dominated by the

sorting time for V +E
M

records, which is O(V +E
M

log V +E
M

).

Theorem 4 (Space Complexity of GIM-V). GIM-V requires O(V +E) space.

Proof. We assume the value of the elements of the input vector v is constant.
Then the theorem is proved by noticing that the maximum storage is required at
the output of Stage1 mappers which requires O(V + E) space up to a constant.

5. Performance and Scalability

We do experiments to answer following questions:

Q1 How does GIM-V scale up?
Q2 Which of the proposed optimizations(block multiplication, clustered edges,

and diagonal block iteration, node renumbering) gives the highest performance
gains?

The graphs we used in our experiments at Section 5 and 6 are described in
Table 1 1 .

We run PeGaSus in M45 Hadoop cluster by Yahoo! and our own cluster
composed of 9 machines. M45 is one of the top 50 supercomputers in the world
with 1.5 Pb total storage and 3.5 Tb memory. For the performance and scalability
experiments, we used synthetic Kronecker graphs (Leskovec et al, 2005) since we
can generate them with any size, and they are one of the most realistic graphs
among synthetic graphs.

5.1. Results

We first show how the performance of our method changes as we add more ma-
chines. Figure 4 shows the running time and performance of GIM-V for PageRank
with Kronecker graph of 282 million edges, and size 32 blocks if necessary.

In Figure 4 (a), for all of the methods the running time decreases as we add
more machines. Note that clustered edges(GIM-V CL) didn’t help performance
unless it is combined with block encoding. When it is combined, however, it
showed the best performance (GIM-V BL-CL).

1 Wikipedia: http://www.cise.ufl.edu/research/sparse/matrices/
Kronecker, DBLP: http://www.cs.cmu.edu/∼pegasus
YahooWeb, LinkedIn: released under NDA.
flickr, Epinions, patent: not public data.
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Name Nodes Edges Description

YahooWeb 1,413 M 6,636 M WWW pages in 2002
LinkedIn 7.5 M 58 M person-person in 2006

4.4 M 27 M person-person in 2005
1.6 M 6.8 M person-person in 2004
85 K 230 K person-person in 2003

Wikipedia 3.5 M 42 M doc-doc in 2007/02
3 M 35 M doc-doc in 2006/09

1.6 M 18.5 M doc-doc in 2005/11
Kronecker 177 K 1,977 M synthetic

120 K 1,145 M synthetic
59 K 282 M synthetic
19 K 40 M synthetic

WWW-Barabasi 325 K 1,497 K WWW pages in nd.edu
DBLP 471 K 112 K document-document
flickr 404 K 2.1 M person-person
Epinions 75 K 508 K who trusts whom

Table 1. Order and size of networks.
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Fig. 4. Scalability and Performance of GIM-V. (a) Running time decreases quickly as more
machines are added. (b) The performance(=1/running time) of ’BL-CL’ wins more than 5x
(for n=3 machines) over the ’BASE’. (c) Every version of GIM-V shows linear scalability.
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Fig. 5. Comparison of GIM-V DI and GIM-V BL-CL for Hcc. GIM-V DI finishes in 6 iterations
while GIM-V BL-CL finishes in 18 iterations due to long chains.

In Figure 4 (b), we see that the relative performance of each method com-
pared to GIM-V BASE method decreases as number of machines increases. With
3 machines (minimum number of machines which Hadoop ‘distributed mode’
supports), the fastest method(GIM-V BL-CL) ran 5.27 times faster than GIM-V
BASE. With 90 machines, GIM-V BL-CL ran 2.93 times faster than GIM-V BASE.
This is expected since there are fixed component(JVM load time, disk I/O, net-
work communication) which can not be optimized even if we add more machines.

Next we show how the performance of our methods changes as the input size
grows. Figure 4 (c) shows the running time of GIM-V with different number of
edges under 10 machines. As we can see, all of the methods scales linearly with
the number of edges.

Next, we compare the performance of GIM-V DI and GIM-V BL-CL for Hcc

in graphs with long chains. For this experiment we made a new graph whose
diameter is 17, by adding a length 15 chain to the 282 million Kronecker graph
which has diameter 2. As we see in Figure 5, GIM-V DI finished in 6 iteration
while GIM-V BL-CL finished in 18 iteration. The running time of both methods
for the first 6 iterations are nearly same. Therefore, the diagonal block iteration
method decrease the number of iterations while not affecting the running time
of each iteration much.

Finally, we compare the number of iterations with/without renumbering. Fig-
ure 6 shows the degree distribution of LinkedIn. Without renumbering, the min-
imum node has degree 1, which is not surprising since about 46 % of the nodes
have degree 1 due to the power-law behavior of the degree distribution. We show
the number of iterations after changing the minimum node to each of the top
5 highest-degree nodes in Figure 7. We see that the renumbering decreased the
number of iterations to 81 % of the original. Similar results are observed for the
Wikipedia graph in Figure 8 and 9. The original minimum node has degree 1,
and the number of iterations decreased to 83 % of the original after renumbering.
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Fig. 6. Degree distribution of LinkedIn. Notice that the original minimum node has degree
1, which is highly probable given the power-law behavior of the degree distribution. After the
renumbering, the minimum node is replaced with a highest-degree node.

Fig. 7. Number of iterations vs. the minimum node of LinkedIn, for connected components.
Di represents the node with i-th largest degree. Notice that the number of iterations decreased
by 19 % after renumbering.

6. GIM-V At Work

In this section we use PeGaSus for mining very large graphs. We analyze con-
nected components, diameter, and PageRank of large real world graphs. We
show that PeGaSus can be useful for finding patterns, outliers, and interesting
observations.

6.1. Connected Components of Real Networks

We used the LinkedIn social network and Wikipedia page-linking-to-page net-
work, along with the YahooWeb graph for connected component analysis. Fig-
ure 10 show the evolution of connected components of LinkedIn and Wikipedia
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Fig. 8. Degree distribution of Wikipedia. Notice that the original minimum node has degree
1, as in LinkedIn. After the renumbering, the minimum node is replaced with a highest-degree
node.

Fig. 9. Number of iterations vs. the minimum node of Wikipedia, for connected components.
Di represents the node with i-th largest degree. Notice that the number of iterations decreased
by 17 % after renumbering.

data. Figure 11 show the distribution of connected components in the YahooWeb
graph. We have following observations.

Power Law Tails in Connected Components Distributions We ob-
served power law relation of count and size of small connected components in
Figure 10(a),(b) and Figure 11. This reflects that the connected components in
real networks are formed by processes similar to Chinese Restaurant Process and
Yule distribution (Newman, 2005).

Stable Connected Components After Gelling Point In Figure 10(a),
the distribution of connected components remain stable after a ‘gelling’ point(McGlohon
et al, 2008) at year 2003.We can see that the slope of tail distribution do not
change after year 2003. We observed the same phenomenon in Wikipedia graph
in Figure 10 (b). The graph show stable tail slopes from the beginning, since the
network were already mature in year 2005.

Absorbed Connected Components and Dunbar’s number In Fig-
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(a) Connected Components of LinkedIn

(b) Connected Components of Wikipedia

Fig. 10. The evolution of connected components. (a) The giant connected component grows
for each year. However, the second largest connected component do not grow above Dunbar’s
number(≈ 150) and the slope of the tail remains constant after the gelling point at year 2003.
(b) As in LinkedIn, notice the growth of giant connected component and the constant slope
for tails.

ure 10(a), we find two large connected components in year 2003. However it
became merged in year 2004. The giant connected component keeps growing,
while the second and the third largest connected components do not grow beyond
size 100 until they are absorbed to the giant connected component in Figure 10
(a) and (b). This agrees with the observation(McGlohon et al, 2008) that the size
of the second/third connected components remains constant or oscillates. Lastly,
the maximum connected component size except the giant connected component
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Fig. 11. Connected Components of YahooWeb. Notice the two anomalous spikes which are far
from the constant-slope tail. They are domain selling or porn sites which are replicated from
templates.

in the LinkedIn graph agrees well with Dunbar’s number(Dunbar, 1998), which
says that the maximum community size in social networks is roughly 150.

Anomalous Connected Components In Figure 11, we found two out-
standing spikes. In the first spike at size 300, more than half of the components
have exactly the same structure and they were made from a domain selling com-
pany where each component represents a domain to be sold. The spike happened
because the company replicated sites using the same template, and injected the
disconnected components into WWW network. In the second spike at size 1101,
more than 80 % of the components are porn sites disconnected from the giant
connected component. By looking at the distribution plot of connected compo-
nents, we could find interesting communities with special purposes which are
disconnected from the rest of the Internet.

6.2. PageRank scores of Real Networks

We analyzed the PageRank scores of the nodes of real graphs, using PeGaSus.
Figure 12 and 13 show the distribution of the PageRank scores for the Web
graphs, and Figure 14 shows the evolution of PageRank scores of the LinkedIn
and Wikipedia graphs. We have the following observations.

Power Laws in PageRank Distributions In Figure 12, 13, and 14, we ob-
serve power-law relations between the PageRank score and the number of nodes
with such PageRank. Pandurangan et. al.(Pandurangan et al, 2002) observed
such a power-law relationship for a 1.69 million network. Our result is that the
same observation holds true for about 1,000 times larger network with 1.4 billion
pages snapshot of the Internet. The top 3 highest PageRank sites for the year
2002 are www.careerbank.com, access.adobe.com, and top100.rambler.ru.
As expected, they have huge in- degrees (from ≈70K to ≈70M).

PageRank and the Gelling Point In the LinkedIn network (see Figure 14
(a)), we see a discontinuity for the power-law exponent of the PageRank distri-
bution, before and after the gelling point at year 2003. For the year 2003 (up to
the gelling point), the exponent is 2.15; from 2004 (after the gelling point), the
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Fig. 12. PageRank distribution of YahooWeb. The distribution follows power law with expo-
nent 2.30.

Fig. 13. PageRank distribution of WWW-Barabasi. The distribution follows power law with
exponent 2.25.

exponent stabilizes around 2.59. Also, the maximum PageRank value at 2003 is
around 10−6, which is 1

10 of the maximum PageRank from 2004. This behavior
is explained by the emergence of the giant connected component at the gelling
point: Before the gelling point, there are many small connected components
where no outstanding node with large PageRank exists. After the gelling point,
several nodes with high PageRank appear within the giant connected compo-
nent. In the Wikipedia network (see Figure 14 (b)), we see the same behavior of
the network after the gelling point. Since the gelling point is before year 2005, we
see that the maximum PageRank-score and the slopes are similar for the three
graphs from 2005.
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(a) PageRanks of LinkedIn

(b) PageRanks of Wikipedia

Fig. 14. The evolution of PageRanks.(a) The distributions of PageRanks follows power-law.
However, the exponent at year 2003, which is around the gelling point, is much different from
year 2004, which are after the gelling point. The exponent increases after the gelling point
and becomes stable. Also notice the maximum PageRank after the gelling point is about 10
times larger than that before the gelling point due to the emergence of the giant connected
component. (b) Again, the distributions of PageRanks follows power-law. Since the gelling point
is before year 2005, the three plots shows similar characteristics: the maximum PageRanks and
the slopes are similar.

6.3. Diameter of Real Network

We analyzed the diameter and radius of real networks with PeGaSus. Figure 15
shows the radius plot of real networks. We have following observations:

Small Diameter For all the graphs in Figure 15, the average diameter was
less than 6.09. This means that the real world graphs are well connected.

Constant Diameter over Time For LinkedIn graph, the average diameter
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Fig. 15. Radius of real graphs. X axis: radius. Y axis: number of nodes. (Row 1) LinkedIn
from 2003 to 2006. (Row 2) Wikipedia from 2005 to 2007. (Row 3) DBLP, flickr, Epinion.
Notice that all the radius plots have the bimodal structure due to many smaller connected
components(first mode) and the giant connected component(second mode).

was in the range of 5.28 and 6.09. For Wikipedia graph, the average diameter
was in the range of 4.76 and 4.99. Note that the diameter do not monotonically
increase as network grows: they remain constant or shrinks over time.

Bimodal Structure of Radius Plot For every plot, we observe bimodal
shape which reflects the structure of these real graphs. The graphs have one
giant connected component where majority of nodes belong to, and many smaller
connected components whose size follows power law. Therefore, the first mode
is at radius zero which comes from one-node components; second mode(e.g., at
radius 6 in Epinion) comes from the giant connected component.

7. Conclusions

In this paper we proposed PeGaSus, a graph mining package for very large
graphs using the Hadoop architecture. The main contributions are followings:

– We identified the common, underlying primitive of several graph mining op-
erations, and we showed that it is a generalized form of a matrix-vector mul-
tiplication. We call this operation Generalized Iterative Matrix-Vector multi-
plication and showed that it includes the diameter estimation, the PageRank
estimation, RWR calculation, and finding connected-components, as special
cases.

– Given its importance, we proposed several optimizations (block-multiplication,
diagonal block iteration, node renumbering etc) and reported the winning
combination, which achieves more than 5 times faster performance to the
naive implementation.

– We implemented PeGaSus and ran it on M45, one of the 50 largest super-
computers in the world (3.5 Tb memory, 1.5Pb disk storage). Using PeGaSus

and our optimized Generalized Iterative Matrix-Vector multiplication variants,
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we analyzed real world graphs to reveal important patterns including power
law tails, stability of connected components, and anomalous components. Our
largest graph, “YahooWeb”, spanned 120Gb, and is one of the largest publicly
available graph that was ever studied.

Other open source libraries such as HAMA (Hadoop Matrix Algebra)can
benefit significantly from PeGaSus. One major research direction is to add to
PeGaSus an eigensolver, which will compute the top k eigenvectors and eigenval-
ues of a matrix. Another directions includes tensor analysis on Hadoop (Kolda
et al, 2008), and inferences of graphical models in large scale.

Acknowledgements. The authors would like to thank YAHOO! for providing us with
the web graph and access to the M45.

This material is based upon work supported by the National Science Foundation
under Grants No. IIS-0705359 IIS0808661 and under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344 (LLNL-CONF-404625), subcontracts B579447,
B580840.

Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation, or other funding parties.

References

Aggarwal G, Data M, Rajagopalan S, Ruhl M (2004) On the Streaming Model Augmented
with a Sorting Primitive. In Proceedings of FOCS, 2004

Awerbuch B, Shiloach A (1983) New Connectivity and MSF Algorithms for Ultracomputer
and PRAM. In ICPP, 1983

Brin S, Page L (1998) The anatomy of a large-scale hypertextual (Web) search engine. In
WWW, 1998

Broder A, Kumar R, Maghoul F, Prabhakar R, Rajagopalan S, Stata R, Tomkins A, Wiener
J (2000) Graph structure in the Web. In Computer Networks 33, 2000

Chaiken R, Jenkins B, Larson P, Ramsey B, Shakib D, Weaver S, Zhou J (2008) SCOPE: easy
and efficient parallel processing of massive data sets. In VLDB, 2008

Chen C, Yan X, Zhu F, Han J (2007) gApprox: Mining Frequent Approximate Patterns from
a Massive Network. In IEEE International Conference on Data Mining, 2007

Chen J, Zaiane O, Goebel R (2009) Detecting Communities in Social Networks using Max-Min
Modularity. In SIAM International Conference on Data Mining, 2009

Cheng J, Yu J, Ding B, Yu P, Wang H (2008) Fast Graph Pattern Matching. In ICDE, 2008
Dean J, Ghemawat S (2004) MapReduce: Simplified Data Processing on Large Clusters. In

OSDI, 2004
Dunbar R (1998) Grooming, Gossip, and the Evolution of Language. In Harvard Univ Press,

1998
Falkowski T, Barth A, Spiliopoulou M (2007) DENGRAPH: A Density-based Community

Detection Algorithm. In Web Intelligence, 2007
Greiner J (1994) A comparison of parallel algorithms for connected components. In Proceedings

of the 6th ACM Symposium on Parallel Algorithms and Architectures, 1994
Grossman R, Gu Y (2008) Data mining using high performance data clouds: experimental

studies using sector and sphere. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2008

Hintsanen P, Toivonen H (2008) Finding Reliable Subgraphs from Large Probabilistic Graphs.
In PKDD, 2008

Hirschberg D, Chandra A, Sarwate D (1979) Computing Connected Components on Parallel
Computers. In Communications of the ACM, 1979

Kang U, Tsourakakis C, Faloutsos C (2009) PEGASUS: A Peta-Scale Graph Mining System
- Implementation and Observations. In IEEE International Conference on Data Mining,
2009



PEGASUS: Mining Peta-Scale Graphs 23

Kang U, Tsourakakis C, Appel A, Faloutsos C, Leskovec J (2010) Radius Plots for Mining
Tera-byte Scale Graphs: Algorithms, Patterns, and Observations. In SIAM International
Conference on Data Mining, 2010

Karypis G, Kumar V (1999) Parallel multilevel k-way partitioning for irregular graphs. In
SIAM Review, 1999

Ke Y, Cheng J, Yu J (2009) Top-k Correlative Graph Mining. In SIAM International Confer-
ence on Data Mining, 2009

Ketkar N, Holder L, Cook D (2005) Subdue: Compression-Based Frequent Pattern Discovery
in Graph Data In OSDM, 2005

Kleinberg J (1998) Authoritative sources in a hyperlinked environment. In Proc. 9th ACM-
SIAM SODA, 1998

Kolda T, Sun J (2008) Scalable Tensor Decompsitions for Multi-aspect Data Mining In IEEE
International Conference on Data Mining, 2008

Kuramochi M, Karypis G (2004) Finding Frequent Patterns in a Large Sparse Graph. In SIAM
Data Mining Conference, 2004

Lahiri M, Berger-Wolf T (2010) Periodic subgraph mining in dynamic networks. In Knowledge
and Information Systems (KAIS), DOI: 10.1007/s10115-009-0253-8, 2010

Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C (2005) Realistic, Mathematically
Tractable Graph Generation and Evolution, Using Kronecker Multiplication. In Practice
of Knowledge Discovery in Databases (PKDD), 2005

Long B, Zhang Z, Yu P (2010) A general framework for relation graph clustering. In Knowledge
and Information Systems (KAIS), DOI: 10.1007/s10115-009-0255-6, 2010

McGlohon M, Akoglu L, Faloutsos C(2008) Weighted graphs and disconnected components:
patterns and a generator. In ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2008

Narasimhamurthy A, Greene D, Hurley N, Cunningham P (2010) Partitioning large net-
works without breaking communities. In Knowledge and Information Systems (KAIS),
DOI: 10.1007/s10115-009-0251-x, 2010

Newman M (2005) Power laws, Pareto distributions and Zipf’s law. In ontemporary Physics,
2005

Olston C, Reed B, Srivastava U, Kumar R, Tomkins A (2008) Pig latin: a not-so-foreign
language for data processing. In SIGMOD, 2008

Pan J, Yang H, Faloutsos C, Duygulu P (2004) Automatic Multimedia Cross-modal Correlation
Discovery. In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2004

Pandurangan G, Raghavan P, Upfal E (2002) Using PageRank to Characterize Web Structure.
In COCOON, 2002

Papadimitriou S, Sun J (2008) DisCo: Distributed Co-clustering with Map-Reduce. In IEEE
International Conference on Data Mining, 2008

Peng W, Li T (2010) Temporal relation co-clustering on directional social network and author-
topic evolution. In Knowledge and Information Systems (KAIS), DOI: 10.1007/s10115-010-
0289-92, 2010

Pike R, Dorward S, Griesemer R, Quinlan S (2005) Interpreting the data: Parallel analysis
with Sawzall. In Scientific Programming Journal, 2005

Qian T, Srivastava J, Peng Z, Sheu P (2009) Simultaneouly Finding Fundamental Articles and
New Topics Using a Community Tracking Method. In PAKDD, 2009

Ralf L (2008) Google’s MapReduce programming model – Revisited. In Science of Computer
Programming, 2008

Ranu S, Singh A (2009) GraphSig: A Scalable Approach to Mining Significant Subgraphs in
Large Graph Databases. In ICDE, 2009

Shiloach Y, Vishkin U (1982) An O(logn) Parallel Connectivity Algorithm. In Journal of Al-
gorithms, 1982

Shrivastava N, Majumder A, Rastogi R (2008) Mining (Social) Network Graphs to Detect
Random Link Attacks. In ICDE, 2008

Tsourakakis C, Kang U, Miller GL, Faloutsos C (2009) DOULION: counting triangles in mas-
sive graphs with a coin. In Knowledge Discovery and Data Mining (KDD), 2009

Tsourakakis C, Kolountzakis M, Miller GL Approximate Triangle Counting. In Arxiv
0904.3761, 2009

Tsourakakis C (2010) Counting triangles in real-world networks using projections. In Knowl-
edge and Information Systems (KAIS), DOI: 10.1007/s10115-010-0291-2, 2010

Wang C, Wang W, Pei J, Zhu Y, Shi B (2004) Scalable Mining of Large Disk-based Graph



24 U. Kang et al

Databases. In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2004

Wang N, Parthasarathy S, Tan K, Tung A (2008) CSV: Visualizing and Mining Cohesive
Subgraph. In SIGMOD, 2008

Yan X, Han J (2002) gSpan: Graph-Based Substructure Pattern Mining. In IEEE International
Conference on Data Mining, 2002

Zhu F, Yan X, Han J, Yu P (2007) gPrune: A Constraint Pushing Framework for Graph Pattern
Mining. In PAKDD, 2007

Author Biographies

U Kang is currently a Ph.D. student in the Computer Science De-
partment, at Carnegie Mellon University, USA. He holds a Diploma in
Computer Science and Engineering from the Seoul National Univer-
sity, Korea. His main research interests lie in the fields of large scale
graph mining.

Charalampos Tsourakakis is currently a Ph.D. candidate in the
Machine Learning Department, at Carnegie Mellon University, USA.
He holds a Diploma in Electrical and Computer Engineering from
the National Technical University of Athens. His main research inter-
ests lie in the fields of computational biology, machine learning and
(multi)linear algebra.

Christos Faloutsos is a Professor at Carnegie Mellon University. He
has received the Presidential Young Investigator Award by the Na-
tional Science Foundation (1989), the Research Contributions Award
in ICDM 2006, fifteen best paper awards, and several teaching awards.
He has served as a member of the executive committee of SIGKDD;
he has published over 200 refereed articles, 11 book chapters and one
monograph. He holds five patents and he has given over 20 tutorials
and 10 invited distinguished lectures. His research interests include
data mining for streams and graphs, fractals, database performance,
and indexing for multimedia and bio-informatics data.

Correspondence and offprint requests to: U Kang, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA 15213, USA. Email: ukang@cs.cmu.edu


