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Abstract

Many graph mining applications rely on detecting subgraphs which are large near-cliques.
There exists a dichotomy between the results in the existing work related to this problem: on
the one hand formulations that are geared towards finding large near-cliques are NP-hard and
frequently inapproximable due to connections with the Maximum Clique problem. On the other
hand, the densest subgraph problem (DS-Problem) which maximizes the average degree over
all subgraphs and other indirect approaches which optimize tractable objectives fail to detect
large near-cliques in many networks.

In this work, we propose a formulation which combines the best of both worlds: it is solvable
in polynomial time and succeeds consistently in finding large near-cliques. Surprisingly, our
formulation is a simple variation of the DS-Problem. Specifically, we define the triangle
densest subgraph problem (TDS-Problem): given a graph G(V,E), find a subset of vertices

S∗ such that τ(S∗) = max
S⊆V

t(S)
|S| , where t(S) is the number of triangles induced by the set

S. We provide various exact and approximation algorithms which the solve TDS-Problem
efficiently. Furthermore, we show how our algorithms adapt to the more general problem of
maximizing the k-clique average density, k ≥ 2. We illustrate the success of the proposed
formulation in extracting large near-cliques from graphs by performing numerous experiments
on real-world networks.

1 Introduction

A wide variety of graph mining applications relies on extracting dense subgraphs from large graphs.
A list of some important such applications follows.

(1) Bader and Hogue observe that protein complexes, namely groups of proteins co-operating to
achieve various biological functions, correspond to dense subgraphs in protein-protein interaction
networks [BH03]. This observation is the cornerstone for several research projects which aim to
identify such complexes, c.f. [BHG04, PLEO04, PWJ04].
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(2) Sharan and Shamir notice that finding tight co-expression clusters in microarray data can
be reduced to finding dense co-expression subgraphs [SS00]. Hu et al. capitalize on this observation
to mine dense subgraphs across a family of networks [HYH+05].

(3) Fratkin et al. show an approach to finding regulatory motifs in DNA based on finding dense
subgraphs [FNBB06].

(4) Iasemidis et al. rely on dense subgraph extraction to study epilepsy [IPSS01].
(5) Buehrer and Chellapilla show how to compress Web graphs using as their main primitive

the detection of dense subgraphs [BC08].
(6) Gibson et al. observe that an algorithm which extracts dense subgraphs can be used to

detect link spam in Web graphs [GKT05].
(7) Dense subgraphs are used for finding stories and events in micro-blogging streams [ASKS12].
(8) Alvarez-Hamelin et al. rely on dense subgraphs to provide a better understanding of the

Internet topology [AHDBV06].
(9) In the financial domain, extracting dense subgraphs has been applied to, among others,

predicting the behavior of financial instruments [BBP04], and finding price value motifs [DJD+09].
Among the various formulations for finding dense subgraphs, the densest subgraph problem (DS-

Problem) stands out for the facts that is solvable in polynomial time [Gol84] and 1
2
-approximable

in linear time [AHI02, Cha00, KS09]. To state the DS-Problem we introduce the necessary
notation first. In this work we focus on simple unweighted, undirected graphs. Given a graph
G = (V,E) and a subset of vertices S ⊆ V , let G(S) = (S,E(S)) be the subgraph induced by
S, and let e(S) = |E(S)| be the size of E(S). Also, the edge density of the set S is defined
as fe(S) = e(S)/

(|S|
2

)
. Notice that finding a subgraph which maximizes fe(S) is trivial. Since

0 ≤ fe(S) ≤ 1 for any S ⊆ V , a single edge achieves the maximum possible edge density. Therefore,
the direct maximization of fe is not a meaningful problem. The DS-Problem maximizes the
ratio e(S)

|S| over all subgraphs S ⊆ V . Notice that this is equivalent to maximizing the average
degree. The DS-Problem is a powerful primitive for many graph applications including social
piggybacking [GJL+13] reachability and distance query indexing [CHKZ02, JXRF09]. However, for
many applications, including most of the listed applications, the goal is to find subgraphs which are
large near-cliques. Since the DS-Problem fails to find such subgraphs frequently by tending to
favor large subgraphs with not very large edge density fe other formulations have been proposed,
see Section 2. Unfortunately, these formulations are NP-hard and also inapproximable due the
connections with the Maximum Clique problem [Has99].

1.1 Contributions

The main conceptual contribution of this work is the following: we propose a tractable formulation
which attacks efficiently the problem of extracting large near-cliques. Specifically, our contributions
are summarized as follows.

New objective. We introduce the average triangle density as a novel objective for finding dense
subgraphs. We refer to the problem of maximizing the average triangle density as the triangle-
densest subgraph problem (TDS-Problem).

Exact algorithms. We develop three exact algorithms for the TDS-Problem. The algorithm
which achieves the best running time is based on maximum flow computations. It is worth outlining
that Goldberg’s algorithm for the DS-Problem [Gol84] does not generalize to the TDS-Problem.
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For this purpose, we develop a novel approach that subsumes the DS-Problem and solves the
TDS-Problem. Furthermore, our approach can solve a generalization of the DS-Problem and
TDS-Problem that we introduce: maximize the average k-clique density for any k constant.

Approximation algorithm. We propose a 1
3
-approximation algorithm for the TDS-Problem

which runs asymptotically faster than any of the exact algorithms.

MapReduce implementation. We propose a 1
3+3ε

-approximation algorithm for any ε > 0 which
can be implemented efficiently in MapReduce. The algorithm requires O(log(n)/ε) rounds and
is MapReduce-efficient [KSV10] due to the existence of efficient MapReduce triangle counting
algorithms [SV11].

Experimental evaluation. It is clear that in general the DS-Problem and the TDS-Problem
can result in very different outputs. For instance, consider a graph which is the union of a triangle
and a large complete bipartite clique. The DS-Problem problem is optimized via the bipartite
clique, the TDS-Problem via the triangle. Based on experiments the two objectives behave
differently on real-world networks as well. For all datasets we have experimented with, we observe
that the TDS-Problem consistently succeeds in extracting near-cliques. For instance, in the
Football network (see Table 1 for a description of the dataset) the DS-Problem returns the whole
graph as the densest subgraph, with fe = 0.094 whereas the TDS-Problem returns a subgraph
on 18 vertices with fe = 0.48. Also, we perform numerous experiments on real datasets which show
that the performance of the 1

3
-approximation algorithm is close to the optimal performance.

Graph mining application. We propose a modified version of the TDS-Problem, the con-
strained triangle densest subgraph problem (Constrainted-TDS-Problem), which aims to max-
imize the triangle density subject to the constraint that the output should contain a prespecified
set of vertices Q. We show how to solve exactly the TDS-Problem. This variation is useful in
various data-mining and bioinformatics tasks, see [TBG+13].

The paper is organized as follows: Section 2 presents related work. Section 3 defines and moti-
vates the TDS-Problem. Section 4 presents our theoretical contributions. Section 5 presents
experimental findings on real-world networks. Section 6 presents the Constrainted-TDS-
Problem. Finally, Section 7 concludes the paper.

2 Related Work

In Sections 2.1 and 2.2 we review related work to finding dense subgraphs and counting triangles
respectively.

2.1 Finding Dense Subgraphs

Clique. A clique is a set of vertices S such that every two vertices in the subset are connected by
an edge. The Clique problem, i.e., finding whether there is a clique of a given size in a graph is
NP-complete. A maximum clique of a graph G is a clique of maximum possible size and its size
is called the graph’s clique number. Finding the clique number is NP-complete [Kar72]. Further-
more, Håstad proved [Has99] that unless P = NP there can be no polynomial time algorithm that
approximates the maximum clique to within a factor better than O(n1−ε), for any ε > 0. When
the max clique problem is parameterized by the order of the clique it is W[1]-hard [DF99]. Feige
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[Fei05] proposed a polynomial time algorithm that finds a clique of size O
(
( logn

log logn
)2
)

whenever the

graph has a clique of size O( n
lognb

) for any constant b. This algorithm leads to an algorithm that

approximates the max clique within a factor of O
(
n (log logn)2

logn3

)
. A maximal clique is a clique that is

not a subset of a larger clique. A maximum clique is therefore always maximal, but the converse
does not hold. The Bron-Kerbosch algorithm [BK73] is an exponential time method for finding all
maximal cliques in a graph. A near optimal time algorithm for sparse graphs was introduced in
[ELS10].

Densest Subgraph. In the densest subgraph problem we are given a graph G and we wish to
find the set S ⊆ V which maximizes the average degree [Gol84, KV99]. The densest subgraph can
be identified in polynomial time by solving a maximum flow problem [GGT89, Gol84]. Charikar
[Cha00] proved that the greedy algorithm proposed by Asashiro et al. [AITT00] produces a 1

2
-

approximation of the densest subgraph in linear time. Both algorithms are efficient in terms of
running times and scale to large networks. In the case of directed graphs, the densest subgraph
problem is solved in polynomial time as well [Cha00]. Khuller and Saha [KS09] provide a linear time
1
2
-approximation algorithm for the case of directed graphs among other contributions. We notice

that there is no size restriction of the output, i.e., |S| could be arbitrarily large. When restrictions
on the size of S are imposed the problem becomes NP-hard. Specifically, the DkS problem, namely
find the densest subgraph on k vertices, is NP-hard [AHI02]. For general k, Feige, Kortsarz and
Peleg [FKP01] provide an approximation guarantee of O(nα) where α < 1/3. Currently, the best
approximation guarantee is O(n1/4+ε) for any ε > 0 due to Bhaskara et al. [BCC+10]. The greedy
algorithm of Asahiro et al. [AITT00] results in the approximation ratio O(n/k). Therefore, when
k = Ω(n) Asashiro et al. gave a constant factor approximation algorithm [AITT00]. It is worth
mentioning that algorithms based on semidefinite programming have produced better approximation
ratios for certain values of k [FL01]. From the perspective of (in)approximability, Khot [Kho06]
proved that that there does not exist any PTAS for the DkS problem under a reasonable complexity
assumption. Arora, Karger, and Karpinski [AKK95] gave a PTAS for the special case k = Ω(n)
and m = Θ(n2). Two interesting variations of the DkS problem were introduced by Andersen and
Chellapilla [AC09]. The two problems ask for the set S that maximizes the density subject to
s ≤ k (DamkS) and s ≥ k (DalkS). They provide a practical 3-approximation algorithm for the
DalkS problem and a slower 2-approximation algorithm. Khuller and Saha proved that the DalkS
problem is NP-hard [KS09]. For the DamkS problem they provided indication that the DamkS is
computationally hard. Khuller and Saha strengthened the results by showing that the DamkS is as
hard as the DkS within a constant factor.

Quasi-cliques. A set S ⊆ V is a α-quasiclique if e(S) ≥ α
(|S|

2

)
, i.e., if the edge density fe(S)

exceeds a threshold parameter 0 < α ≤ 1. Abello et al. [ARS02] propose an algorithm for finding
maximal quasi-cliques. Their algorithm starts with a random vertex and at every step it adds a
new vertex to the current set S as long as the density of the induced graph exceeds the prespecified
threshold α. Vertices that have many neighbors in S and many other neighbors that can also extend
S are preferred. The algorithm iterates until it finds a maximal α-quasi-clique. Uno presents an
algorithm to enumerate all α-pseudo-cliques [Uno10].

Recently, [TBG+13] introduced a general framework for dense subgraph extraction and proposed
the optimal quasi-clique problem for extracting compact, dense subgraphs. The optimal quasi-clique
problem is NP-hard and inapproximable too [Tso13].

k-Core. A k-degenerate graph G is a graph in which every subgraph has a vertex of degree at

4



most k. The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The
degeneracy is more known in the graph mining community as the k-core number. A k-core is a
maximal connected subgraph of G in which all vertices have degree at least k. There exists a linear
time algorithm for finding k cores by repeatedly removing the vertex of the smallest degree [BZ03].
A closely related concept is the triangle k-core, a maximal induced subgraph of G for which each
edge participates in at least k triangles [ZP12]. To find a triangle k-core, edges that participate in
fewer than k triangles are repeatedly removed.

k-clubs, kd-cliques. A subgraph G(S) induced by the vertex set S is a k-club if the diameter
of G(S) is at most k [Mok79]. kd-cliques are conceptually very close to k-clubs. The difference
of a kd-clique from a k-club is that shortest paths between pairs of vertices from S are allowed to
include vertices from V \S.

Shingling. Gibson, Kumar and Tomkins [GKT05] propose techniques to identify dense bipar-
tite subgraphs via recursive shingling, a technique introduced by Broder et al. [BGMZ97]. This
technique is geared towards large subgraphs and is based on min-wise independent permutations
[BCFM98].

Triangle dense decompositions. Recently Gupta, Roughgarden and Seshadri prove construc-
tively that when the graph has a constant transitivity ratio then the graph can be decomposed into
disjoint dense clusters of radius at most two, containing a constant fraction of the triangles of G
[GRS14].

2.2 Triangle Counting and Listing

The state of the art algorithm for exact triangle counting is due to Alon, Yuster and Zwick [AYZ97]

and runs in O(m
2ω
ω+1 ), where currently the fast matrix multiplication exponent ω is 2.3729 [Wil12].

Thus, their algorithm currently runs in O(m1.4081) time. The best known listing algorithm until
recently was due to Itai and Rodeh [IR78] which runs in O(m3/2) time. Recently, Björklund, Pagh,
Williams and Zwick gave refined algorithms which are output sensitive algorithms [BPWVZ14].

3 Problem Definition

In this Section we define and motivate the main problem we consider in this work. We first define
formally the notion of average triangle density.

Definition 1 (Triangle Density). Let G(V,E) be an undirected graph. For any S ⊆ V we define its
triangle density τ(S) as

τG(S) =
t(S)

s
,

where t(S) is the number of triangles induced by S and s = |S|.

Notice that 3τ(S) is the average number of (induced) triangles per vertex in S. In this work we
discuss the following problems which extend the well-known DS-Problem [Cha00, Gol84, KV99,
KS09].

5



Problem 1 (TDS-Problem). Given G(V,E), find a subset of vertices S∗ such that τ(S∗) = τ ∗G
where

τ ∗G = max
S⊆V

τG(S).

We omit the index G whenever it is obvious to which graph we refer to.
It is clear that the DS-Problem and the TDS-Problem in general can result in significantly

different solutions. Consider for instance a graph G on 2n + 3 vertices which is the union of a
triangle K3 and of a bipartite clique Kn,n. The optimal solutions of the DS-Problem and the
TDS-Problem are the bipartite clique and the triangle respectively. Therefore, the interesting
question is whether maximizing the average degree and the triangle density result in different results
in real-world networks.

Table 2 shows the results of the optimal subgraphs for the DS-Problem and TDS-Problem
respectively on some popular real-world networks. The results are representative on what we have
observed on numerous datasets we have experimented with: the TDS-Problem optimal solution
compared to the DS-Problem optimal solution is a smaller and tighter/denser subgraph which
exhibits a strong near-clique structure. Therefore, the TDS-Problem combines the best of both
worlds: polynomial time solvability and extraction of large near-cliques.

As we will see in Section 5 in detail, the TDS-Problem consistently succeeds in finding
large near-cliques, even in cases where the DS-Problem fails. Furthermore, even when the DS-
Problem succeeds in finding dense, compact subgraphs, the TDS-Problem output is always
superior in terms of the edge density fe = e(S)/

(|S|
2

)
and triangle density ft = t(S)/

(|S|
3

)
1.

s 
 

t 
 

A=V(G) B=T(G) 

tv 

2 

1 

3α 

v 

Figure 1: Figure shows the network H that Algorithm 2 outputs, given a graph G and a parameter
α > 0 as its input. Set A corresponds to the vertex set V (G), whereas each vertex in set B
corresponds to a triangle in set T (G), the set of all triangles in G. For details, see text.

1We will use the term triangle density for both τ(S) and ft. It will always be clear from the notation to which of
the two measures we are referring at.
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4 Proposed Method

Section 4.1 provides three algorithms which solve the TDS-Problem exactly. Sections 4.2 and 4.3
provide a 1

3
-approximation algorithm for the TDS-Problem and an efficient MapReduce im-

plementation respectively. Finally, Section 4.4 provides a generalization of the DS-Problem and
the TDS-Problem to maximizing the average k-clique density and shows how the results from
previous Sections adapt to this problem.

4.1 Exact Solutions

Let n,m, t are the number of vertices, edges and triangles in graph G respectively. The algorithm
presented in Section 4.1.1 achieves the best running time. We present an algorithm which relies on
the supermodularity property of our objective in Section 4.1.2. The latter algorithm, even if slower,
requires O(n + m) space, whereas the former O(n + t) space. In real-world networks, typically
m � t. Section 4.1.3 presents a linear programming approach which extends Charikar’s linear
program [Cha00] to the TDS-Problem.

4.1.1 An O
(
m3/2 + nt+ min (n, t)3)-time exact solution

Algorithm 1 triangle-densest subgraph(G)

1: l← 0, u← n3, S∗ ← ∅
2: List the set of triangles T (G)
3: while u ≥ l + 1

n(n−1)
do

4: α← l+u
2

5: Hα ← Construct-Network(G,α, T (G))
6: (S, T )← min st-cut in Hα

7: if S = {s} then
8: u← α
9: else

10: l← α
11: S∗ ←

(
S\{s}

)
∩ V (G)

12: end if
13: Return S∗

14: end while

Algorithm 2 Construct-Network (G,α, T (G))

1: V (H)← {s} ∪ V (G) ∪ T (G) ∪ {t}.
2: For each vertex v ∈ V (G) add an arc of capacity 1 to each triangle ti it participates in.
3: For each triangle ∆ = (u, v, w) ∈ T (G) add arcs to u, v, w of capacity 2.
4: Add directed arc (s, v) ∈ A(H) of capacity tv for each v ∈ V (G).
5: Add weighted directed arc (v, t) ∈ A(H) of capacity 3α for each v ∈ V (G).
6: Return network H(V (H), A(H), w), s, t ∈ V (H).
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Our main theoretical result is the following theorem. Its proof is constructive.

Theorem 1. There exists an algorithm which which solves the TDS-Problem and runs in
O
(
m3/2 + nt+ min (n, t)3) time..

The first term O(m3/2) comes from using the Itai-Rodeh algorithm [IR78] as our triangle listing
blackbox. If we use the naive O(n3) triangle listing algorithm then the running time expression is
simplified to O(n3+nt). On the other hand, if we use the algorithms of Björklund et al. [BPWVZ14]
the first term becomes for dense graphs Õ

(
nω + n3(ω−1)/(5−ω)t2(3−ω)/(5−ω)

)
and for sparse graphs

Õ
(
m2ω/(ω+1) +m3(ω−1)/(ω+1)t(3−ω)/(ω+1)

)
, where ω is the matrix multiplication exponent. Currently

ω < 2.3729 due to [Wil12]. We maintain [IR78] as our black-box to keep the expressions simpler.
However, the reader should keep in mind that the result presented in [BPWVZ14] improves the
total running time of the first term.

We work our way to proving Theorem 1 by proving first the following key lemma. Then, we
remove the logarithmic factor.

Lemma 1. Algorithm 1 solves the TDS-Problem in O
(
m3/2 + (nt+ min (n, t)3) log(n)

)
time.

Algorithm 1 uses maximum flow computations to solve the TDS-Problem. It is worth outlining
that Goldberg’s maximum flow algorithm [Gol84] for the DS-Problem does not adapt to the
case of TDS-Problem by changing the arc capacities. Algorithm 1 returns an optimal subgraph
S∗, i.e., τ(S∗) = τ ∗. The algorithm performs a binary search on the triangle density value α.
Specifically, each binary search query corresponds to querying does there exist a set S ⊆ V such
that t(S)/|S| > α?. For each binary search, we construct a bipartite network H by invoking
Algorithm 2. Let T (G) be the set of triangles in G. Figure 1 illustrates this network. The vertex
set of H is V (H) = {s} ∪A∪B ∪ {t}, where A = V (G) and B = T (G). For the purpose of finding
T (G), a triangle listing algorithm is required [BPWVZ14, IR78]. The arc set of graph H is created
as follows. For each vertex r ∈ B corresponding to triangle ∆(u, v, w) we add three incoming and
three outcoming arcs. The incoming arcs come from the vertices u, v, w ∈ A which form triangle
∆(u, v, w). Each of these arcs has capacity equal to 1. The outgoing arcs go to the same set of
vertices u, v, w, but the capacities are equal to 2. In addition to the arcs of capacity 1 from each
vertex u ∈ A to the triangles it participates in, we add an outgoing arc of capacity 3α to the sink
vertex t. From the source vertex s we add an outgoing arc to each u ∈ A of capacity tv, where
tv is the number of triangles vertex v participates in G. As we have already noticed, H can be
constructed in O(m3/2) time [IR78]. It is worth outlining that after computing H for the first time,
subsequent networks need to update only the arcs that depend on the parameter α, something not
shown in the pseudocode for simplicity. To prove that Algorithm 1 solves the TDS-Problem and
runs in O

(
m3/2 + (nt+ min (n, t)3) log(n)

)
time we will proceed in steps.

For the sake of the proof, we introduce the following definitions and notation. For a given set of
vertices S let ti(S) be the number of triangles that involve exactly i vertices from S, i ∈ {1, 2, 3}.
Notice that t3(S) is the number of induced triangles by S, for which we have been using the simpler
notation t(S) so far.

We use the following claim as our criterion to set the initial values l, u in the binary search.
Claim 1 0 ≤ τ(S) < n3 for any S ⊆ V .
The lower bound is trivial. The upper bound also follows trivially by observing that t3(S) ≤

(
n
3

)
and |S| ≥ 1 for any ∅ 6= S ⊆ V . This suggests that the optimal value τ ∗ is always less than n3.
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The next claim serves as a criterion to decide when to stop the binary search.
Claim 2 The smallest possible difference among two distinct values τ(S1), τ(S2) is equal to 1

n(n−1)
.

To see why, notice that the difference δ between two possible different triangle density values is

δ =
t(S1)|S2| − t(S2)|S1|

|S1||S2|
.

If |S1| = |S2| then |δ| ≥ 1
n
> 1

n(n−1)
, otherwise |δ| ≥ 1

|S1||S2| ≥
1

n(n−1)
. Notice that combining the

above two claims shows that the binary search terminates in at most 5 log n queries. The following
lemma is a structural lemma for the optimal s− t cut the network Hα.

Lemma 2. Consider any st min-cut (S, T ) in the network Hα. Let A1 = S ∩ A,B1 = S ∩ B and
A2 = T ∩ A,B2 = T ∩B. The cost of the min-cut is equal to∑

v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1|.

Proof. Case I: A1 = ∅: In this case the proposition trivially holds, as the cost is equal to
∑
v∈A

tv = 3t.

It is worth noticing that in this case B1 has to be also empty, otherwise we contradict the optimality
of (S, T ). Hence S = {s}, T = A ∪B ∪ {t}.

Case II: A1 6= ∅:
Consider the cost of the arcs from A1∪B1 to A2∪B2. We consider three different subcases, one

per each type of triangle with respect to set A1.
Type 3: If there exist three vertices u, v, w ∈ A1 that form a triangle ∆(u, v, w), then the vertex

r ∈ B corresponding to this specific triangle has to be in B1. If not, then r ∈ B2, and we could
reduce the cost of the min-cut by 3, if we move the triangle to B1. Therefore the cost we pay for
triangles of type three is 0.

Type 2: Consider three vertices u, v, w such that they form a triangle ∆(u, v, w) and u, v ∈
A1, w ∈ A2. Then, the vertex r ∈ B corresponding to this triangle can be either in B1 or B2. In
both cases we always pay 2 in the cut for each triangle of type two.

Type 1: Finally, in the case u, v, w form a triangle, u ∈ A1, v, w ∈ A2 the vertex r ∈ B
corresponding to triangle ∆(u, v, w) will be in B2. If not, then it lies in B1 and we could decrease
the cost of the cut by 3 if we move it in B2. Hence, we pay 1 in the cut for each triangle of type
one.

Therefore the cost due to the various types of triangles with respect to A1 is equal to 2t2(A1) +
t1(A1).

Furthermore, the cost of the arcs from source s to T is equal to
∑

v∈A2
tv =

∑
v/∈A1

tv. The cost of

the arcs from A1 to T is equal to 3α|A1|. Summing up the individual cost terms, we obtain that
the total cost is equal to

∑
v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1|.

The next lemma proves the correctness of the binary search in Algorithm 1.

Lemma 3. (a) If there exists a set W ⊆ V (G) such that t3(W ) > α|W | then any st-min-cut (S,T)
in Hα satisfies S\{s} 6= ∅. (b) Furthermore, if there does not exists a set W such that t3(W ) > α|W |
then the cut ({s}, A ∪B ∪ {t}) is a minimum st-cut.
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Proof. (a) Let W ⊆ V be such that

t3(W ) > α|W |. (1)

Suppose for the sake of contradiction that the minimum st-cut is achieved by ({s}, A∪B∪{t}).
In this case the cost of the minimum st-cut is

∑
v∈A tv = 3t. Now, consider the following (S, T )

cut. Set S consists of the source vertex s, A1 = W and B1 be the set of triangles of type 3 and 2
induced by A1. Let T be the rest of the vertices in H. The cost of this cut is

cap(S, T ) =
∑
v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1|.

Therefore, by our assumption that the minimum st-cut is achieved by ({s}, A∪B ∪ {t}) we obtain

3t ≤
∑
v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1|. (2)

Now, notice that by double counting∑
v∈A1

tv = 3t3(A1) + 2t2(A1) + t1(A1).

Furthermore, we observe ∑
v∈A1

tv +
∑
v/∈A1

tv = 3t.

By combining these two facts, and the fact that 3t is the capacity of the minimum cut, we obtain
the following contradiction of Inequality (1).

3t ≤
∑
v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1| ⇔ t3(W ) ≤ α|W |.

(b) By Lemma 2, for any minimum st-cut (S, T ) the capacity of the cut is equal to
∑
v/∈A1

tv +

2t2(A1) + t1(A1) + 3α|A1|, where A1 = A ∩ S,A2 = A ∩ T . Suppose for the sake of contradiction
that the cut ({s}, A ∪B ∪ {t}) is not a minimum cut. Therefore,

cap({s}, A ∪B ∪ {t}) = 3t >
∑
v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1|.

Using the same algebraic analysis as in (a), the above statement implies the contradiction
t3(W ) > α|W |, where W = A1.

Now we can complete the proof of Lemma 1.

Proof. The termination of Algorithm 1 follows directly from Claims 1, 2. The correctness follows
from Lemmata 2, 3. The running time follows from Claims 1,2 which show that the number of binary
search queries is O(log(n)) and each binary search query can be performed in O

(
nt + min (n, t)3)

10



time using the algorithm due to Ahuja, Orlin, Stein and Tarjan [AOST94]2 or Gusfield’s algorithm
[Gus91].

The proof of Theorem 1 follows fromLemma 1 and the fact that the parametric maximum flow
algorithm of Ahuja, Orlin, Stein and Tarjan [AOST94], see also [GGT89], saves the logarithmic
factor from the running time.

4.1.2 An O
(
(n5m1.4081 + n6)) log(n)

)
-time exact solution

In this Section we provide a second exact algorithm for the TDS-Problem. First, we provide the
necessary theoretical background.

Definition 2 (Supermodular function). Let V be a finite set. The set function f : 2V → R is
supermodular if and only if for all A,B ⊆ V

f(A ∪B) ≥ f(A) + f(B)− f(A ∩B).

A function f is supermodular if and only if −f is submodular.

Sub- and supermodular functions constitute an important class of functions with various exciting
properties. In this work, we are primarily interested in the fact that maximizing a supermodular
function is solvable in strongly polynomial time [GLS88, IFF01, Lov83, Sch00]. For our purposes,
we state the following result which we use as a subroutine in our proposed algorithm.

Theorem 2 ([Orl09]). There exists an algorithm for maximizing an integer valued supermodular
function f which runs in O

(
n5EO + n6)

)
time, where n = |V | is the size of the ground set V and

EO is the maximum amount of time to evaluate f(S) for a subset S ⊆ V .

We show in the following that when the ground set is the set of vertices V and fα : 2V → R
is defined by fα(S) = t(S) − α|S| where α ∈ R+, we can solve the TDS-Problem in polynomial
time.

Theorem 3. Function f : V → R where f(S) = t(S)− α|S| is supermodular.

Proof. Let A,B ⊆ V . Let t : 2V → R be the function which for each set of vertices S returns the
number of induced triangles t(S). By careful counting

t(A ∪B) = t(A) + t(B)− t(A ∩B) + t1(A : B\A) + t2(A : B\A),

where t1(A : B\A), t2(A : B\A) are the number of triangle with one, two vertices in A and two,
one vertices in B\A respectively. Hence, for any A,B ⊆ V

t(A ∪B) + t(A ∩B) ≥ t(A) + t(B)

and the function t is supermodular. Furthermore, for any α > 0 the function −α|S| is supermodular.
Since the sum of two supermodular functions is supermodular, the result follows.

2Notice that the network Hα has O(n+ t) arcs, therefore the running time of [AOST94] is O(min (n, t)(n+ t) +

min (n, t)
3
) = O(nt+ min (n, t)

3
).
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Theorem 3 naturally suggests Algorithm 3. The algorithm will run in a logarithmic number of
rounds. In each round we maximize function fα using Orlin’s algorithm Orlin-Supermodular-Opt
which takes as input arguments the graph G and the parameter α > 0. We assume for simplicity
that within the procedure Orlin-Supermodular-Opt function f is evaluated using an efficient exact
triangle counting algorithm [AYZ97]. The algorithm of Alon, Yuster and Zwick [AYZ97] runs in
O(m2ω/(ω+1)) time where ω < 2.3729 [Wil12]. This suggests the EO = O(m1.4081). The overall
running time of Algorithm 3 is O

(
(n5m1.4081 + n6) log(n)

)
and the space usage O(n + m) rather

than O(n+ t).

Algorithm 3 triangle-densest subgraph(G) [Supermodularity]

1: l← 0, u← n3, S∗ ← V
2: while u ≥ l + 1

n(n−1)
do

3: α← l+u
2

4: (val, S)← Orlin-Supermodular-Opt(G,α)
5: if val < 0 then
6: u← α
7: else
8: l← α
9: S∗ ← S

10: end if
11: Return S∗

12: end while

4.1.3 A Linear Programming Approach

We show how to generalize Charikar’s linear program, see §2 in [Cha00], to provide a linear program
(LP) which solves the TDS-Problem. The difference compared to Charikar’s LP is the fact that
we introduce a variable xijk for each triangle (i, j, k) ∈ T (G). The LP follows.

max
∑

(i,j,k)∈T (G)

xijk

s.t. xijk ≤ yi ∀(i, j, k) ∈ T (G)

xijk ≤ yj ∀(i, j, k) ∈ T (G)

xijk ≤ yk ∀(i, j, k) ∈ T (G)∑
i

yi ≤ 1

xijk ≥ 0 ∀(i, j, k) ∈ T (G)

yi ≥ 0 ∀i ∈ V (G)

(3)

For the sake of completeness we present an extension of Charikar’s rounding algorithm as a con-
structive proof to the following theorem.
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Theorem 4. Let OPTLP be the value of the optimal solution to the LP 3. Then,

τ ∗ = OPTLP .

Furthermore, a set S achieving triangle density equal to τ ∗ can be computed from the optimal solution
to the LP.

Proof. We break the proof of τ ∗ = OPTLP in two cases. The second case provides a constructive
procedure for finding a set S∗ which achieves triangle density equal to τ ∗.

Case I: τ ∗ ≤ OPTLP
We will prove a more general statement: for any S ⊆ V , the value of the LP is at least τ(S). We
provide a feasible LP solution which achieves an objective value equal to τ(S). Let yi = 1

|S|1(i ∈ S)

for each i ∈ V . For each triangle ∆(i, j, k) induced by S let xijk = 1
|S| . For every other triangle

∆(i, j, k) set xijk = 0. This is a feasible solution to the LP which achieves an objective value equal

to t(S)
|S| . By setting S = S∗, we obtain τ ∗ ≤ OPTLP .
Case II: τ ∗ ≥ OPTLP

Let (x̄, ȳ) be the optimal solution to the LP. We define S(r) = {i : ȳi ≥ r}, T (r) = {∆(i, j, k) ∈
T (G) : x̄ijk ≥ r}. Notice that since x̄ijk ≤ min (ȳi, ȳj, ȳk), the inequality x̄ijk ≥ r implies that

vertices i, j, k belong in set S(r). Furthermore,
∫ 1

0
|S(r)|dr =

∑n
i=1 ȳi ≤ 1 and

∫ 1

0
|T (r)|dr =∑

∆(i,j,k) xijk. If we assume that there exists no value r such that |T (r)|/|S(r)| ≥ OPTLP we obtain
the contradiction

OPTLP =

∫ 1

0

|T (r)|dr < OPTLP

∫ 1

0

|S(r)|dr ≤ OPTLP .

Hence, τ ∗ ≥ OPTLP . To find a set S∗ that achieves triangle density at least OPTLP , we need to
check at most n different values of r and checking the corresponding sets S(r).

4.2 A 1
3-approximation algorithm

In this Section we provide an algorithm for the TDS-Problem which provides a 1
3
-approximation.

Our algorithm follows the peeling paradigm, see [AITT00, Cha00, KS09, JMT13]. Specifically, in
each round it removes the vertex which participates in the smallest number of triangles and returns
the subgraph that achieves the largest triangle density. The pseudocode is shown in Algorithm 4.

Algorithm 4 Peel-Triangles(G)

1: n← |V |, Hn ← G
2: for i← n to 2 do
3: Let v be the vertex of Gi of minimum number of triangles
4: Hi−1 ← Hi\v
5: end for
6: Return Hj that achieves maximum triangle density among His, i = 1, . . . , n.

Theorem 5. Algorithm 4 is a 1
3
-approximation algorithm for the TDS-Problem.
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Proof. Let S∗ be an optimal set. Let v ∈ S∗, |S∗| = s∗ and tA(v) be the number of induced triangles
by A that v participates in. Then,

τ ∗G =
t(S∗)

s∗
≥ t(S∗\{v})

s∗ − 1
⇔ tS∗(v) ≥ τ ∗G,

since t(S∗\{v}) = t(S∗) − tS∗(v). Consider the iteration before the algorithm removes the first
vertex v that belongs in S∗. Call the set of vertices W . Clearly, S∗ ⊆ W and for each vertex u ∈ W
the following lower bound holds tW (u) ≥ tW (v) ≥ tS∗(v) > τ ∗G due to the greediness of Algorithm 3.
This provides a lower bound on the total number of triangles induced by W

t(W ) =
1

3

∑
u∈W

tW (u) ≥ 1

3
|W |τ ∗G ⇒

t(W )

|W |
≥ 1

3
τ ∗G.

To complete the proof, notice that the algorithm returns a subgraph S such that τ(S) ≥ τ(W ) ≥
1
3
τ ∗G.

In Section 5.1 we provide a simple implementation which runs in O
(∑

v

(
deg(v)

2

))
= O(mn) time

with the use of extra space. The key differences compared to the DS-Problem peeling algorithm
[Cha00], are (i) we need to count triangles initially and (b) when we remove a vertex, the counts of
its neighbors can decrease more than 1 in general. Therefore, when vertex v is removed, we update

the counts of its neighbors in O
((

deg(v)
2

))
time.

4.3 MapReduce Implementation

The MapReduce framework [DG08] has become the de facto standard for processing large-
scale datasets. Since the original work of Dean and Ghemawat [DG08], a lot of research has
focused on developing efficient algorithms for various graph theoretic problems including the dens-
est subgraph problem [BKV12], minimum spanning trees [KSV10, LMSV11], finding connected
components [KTF09, KSV10, LMSV11] and estimating the diameter [KTA+11], triangle counting
[PT12, SV11, TKM11] and matchings, covers and min-cuts [LMSV11].

In the following, we show how we can approximate efficiently the TDS-Problem in MapRe-
duce. Before we describe the algorithm, we show that Algorithm 5 for any ε > 0 terminates
and provides a 1

3+3ε
-approximation. The idea behind this algorithm is to peel vertices in batches

[BKV12, GP11] rather than one by one.

Lemma 4. For any ε > 0, Algorithm 5 provides a 1
(3+3ε)

-approximation to the TDS-Problem.

Furthermore, it terminates in O(log1+ε(n)) passes.

Proof. Let S∗ be an optimal solution to the TDS-Problem. As we proved in Theorem 5, for any

v ∈ S∗ it is true that tS∗(v) ≥ τ ∗G. Furthermore, in each round at least one vertex is removed. To
see why, assume for the sake of contradiction that A(S) = ∅ for some S during the execution of
the algorithm. Then, we obtain the contradiction that 3|S|τ(S) =

∑
v∈S tS(v) ≥ (3 + 3ε)|S|τ(S).

Consider the round where the algorithm for the first time removes a vertex v ∈ S∗. Let W be the

14



Algorithm 5 Peel-Triangles-in-Batches(G, ε > 0)

1: Sout, S ← V
2: while S 6= ∅ do
3: A(S)← {i ∈ S : tS(i) ≤ 3(1 + ε)τ(S)}
4: S ← S\A(S)
5: if τ(S) ≥ τ(Sout) then
6: Sout ← S
7: end if
8: end while
9: Return Sout.

corresponding set of vertices. Since v ∈ A(W ) is peeled off, we obtain an upper bound on its induced
degree, namely v ∈ A(W )⇒ tW (v) ≤ (3 + 3ε)τ(W ). Since S∗ ⊆ W , we obtain

(3 + 3ε)τ(W ) ≥ tW (v) ≥ tS∗(v) ≥ τ(S∗),

which proves that Algorithm 5 is a 1
(3+3ε)

-approximation to the TDS-Problem. To see why the
algorithm terminates in logarithmic number of rounds, notice that

3t(S) >
∑

v∈S\A(S)

tS(v) ≥ (3 + 3ε)
(
|S| − |A(S)|

)t(S)

|S|
⇔

|A(S)| ≥ ε

1 + ε
|S| ⇔ |S\A(S)| ≤ 1

1 + ε
|S|.

Since S decreases by a factor of 1
1+ε

in each round, the algorithm terminates in O(log1+ε(n)) =

O
( log(n)

ε

)
rounds.

MapReduce Implementation: Now we are able to describe our algorithm in MapReduce. It uses
any of the efficient algorithms of Suri and Vassilvitski [SV11] as a subroutine to count triangles
per vertex in each round. The removal of the vertices which participate in less triangles than the
threshold, is done in two rounds, as in [BKV12]. For completeness, we describe the procedure
here. The set of vertices S to be peeled off in each round are marked by adding a key-value pair
〈v; $〉 for each v ∈ S. Each edge (u, v) is mapped to 〈u; v〉. The reducer receives all endpoints
of the edges incident with v and the symbol $ in case the vertex is marked for deletion. In case
the vertex is marked, then the reduce task returns nothing, otherwise it copies its input. In the
second round, we perform the same procedure with the only difference being that we map each edge
(u, v) to 〈v;u〉. Therefore, the edges which remain have both endpoints unmarked. The algorithm
runs in O(log(n)/ε), as it takes O(log(n)/ε) peeling off rounds, and in each peeling round, constant
number of rounds is needed to count triangles per vertex, mark vertices for deletion and remove the
corresponding vertex set.

4.4 k-clique Densest Subgraph

We outline that our proposed methods can be adapted to the following generalization of DS-
Problem and TDS-Problem.
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Definition 3 (k-clique-densest subgraph). Let G(V,E) be an undirected graph. For any S ⊆ V we
define its k-clique density hk(S), k ≥ 2 as

hk(S) =
ck(S)

s
,

where ck(S) is the number of k-cliques induced by S and s = |S|.

Problem 2 (k-Clique-DS-Problem). Given G(V,E), find a subset of vertices S∗ such that
hk(S

∗) = h∗k where
h∗k = max

S⊆V
hk(S).

As in the triangle densest subgraph problem, we create a network H parameterized by the value
α on which we perform our binary search. The procedure is described in Algorithm 6 and is invoked
in the place of Algorithm 2. The set C(G) is the set of k-cliques in G. We then invoke Algorithm 1,
with the upper bound u set to nk. Following the analysis of Theorem 1, we see that the k-Clique-
DS-Problem is solvable in polynomial time. For instance, using Gusfield’s algorithm [Gus91] or
[AOST94] in each binary search query we get an overall running time O

(
nk+(n|C(G)|+n3) log(n)

)
=

O(nk+1 log(n)). Using the improved result due to Ahuja, Orlin, Stein and Tarjan for parametric
max flows in unbalanced bipartite graphs [AOST94], we save the logarithmic factor in the running
time.

Algorithm 6 Construct-Network-k (G,α, C(G), k)

1: V (H)← {s} ∪ V (G) ∪ C(G) ∪ {t}.
2: For each vertex v ∈ V (G) add an arc of capacity 1 to each k-clique ci it participates in.
3: For each k-clique (ui1 , . . . , uik) ∈ C(G) add arcs to ui1 , . . . , uik of capacity k − 1.
4: Add directed arc (s, v) ∈ A(H) of capacity cv for each v ∈ V (G).
5: Add weighted directed arc (v, t) ∈ A(H) of capacity kα for each v ∈ V (G).
6: Return network H(V (H), A(H), w), s, t ∈ V (H).

Furthermore, Algorithm 4 can also be modified, by removing in each round the vertex with the
smallest number of k-cliques, to obtain Corollary 2. As the analogy of Theorem 5.

Corollary 1. The algorithm which peels off in each round the vertex with the minimum number of
k-cliques and returns the subgraph that achieves the largest k-clique density, is a 1

k
-approximation

algorithm for the k-Clique-DS-Problem.

Similarly, Algoritm 5 and the MapReduce implementation can be modified to solve the k-
Clique-DS-Problem. We omit the details.

Corollary 2. The algorithm which peels off in each round the set of vertices with less than k(1 +
ε)h(S), where h(S) is the k-clique density in that round, terminates in O(log1+ε(n)) rounds and
provides a 1

k(1+ε)
-approximation guarantee for the k-Clique-DS-Problem. Furthermore, using

[FFF14], we obtain an efficient MapReduce implementation.

We notice that in general there exist benefits from moving to higher order k values. Consider the
following example which can be further formalized (details omitted). Let G ∼ G(n, p) be an Erdös-
Rényi graph, where p = p(n). Assume that we plant a clique K of size nγ for some constant γ > 0.
We wish to show a non-trivial range of p = p(n) values such that the following conditions hold:
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h2(C) =
|E(K)|
|K|

=

(
nγ

2

)
nγ

<
p
(
n
2

)
n

= E [h2(V )]

.
and for k ≥ 3

hk(C) =

(
nγ

k

)
nγ

>
p(

k
2)
(
n
k

)
n

= E [hk(V )]

By simple algebraic manipulation we see that p satisfies both conditions if

O
(
n−(1−γ)

)
< p < O

(
n−

2
k

(1−γ)
)

3.

Clearly, for larger k values, we allow ourselves a larger range of p values for which we can find the
hidden clique in expectation. We have implemented the algorithms for k-Clique-DS-Problem
but we defer the experimental analysis on real graphs for an extended version of this work. Our
main finding from preliminary results with k = 4, is that in few cases there exists a benefit to
maximizing the average K4 density. However, the gain obtained by moving from the DS-Problem
to the TDS-Problem with respect to extracting a near-clique is larger than the gain by moving
the TDS-Problem to the 4-clique-densest subgraph.

Name Nodes Edges Description
Adjnoun 112 425 Generated by processing text data
AS-735 6 475 12 572 Autonomous Systems
AS-caida 26 475 53 381 Autonomous Systems
ca-Astro 17 903 196 972 Person to Person
ca-GrQC 4 158 13 422 Person to Person
Celegans 297 4 296 Neural network of C. Elegans
DBLP 53 442 255 936 Person to Person
Epinions 75 877 405 739 Person to Person
Enron 33 696 180 811 Email
EuAll 224 832 339 925 Email
Football 115 613 NCAA football game network
Karate 34 78 Person to Person
Lesmis 77 254 Generated by processing text data
Political blogs 1 490 16 715 Generated by processing sales data
Political books 105 441 Blog network
soc-Slashdot0811 77 360 469 180 Person to Person
soc-Slashdot0902 82 168 504 230 Person to Person
wb-cs-Stanford 8 929 26 320 Web Graph (page to page)

Table 1: Datasets used in our experiments.

3 Notice that for this range of p, the graph is connected and the clique number is constant with high probability
[Bol01].
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5 Experimental Evaluation

Method Measure Adjnoun Celegans Football Karate Lesmis Polblogs Polbooks
|S|
|V |(%) 42.86 45.8 100 47.1 29.9 19.1 51.4

δ 9.58 17.16 10.66 5.25 10.78 55.82 9.40
DS fe 0.20 0.13 0.094 0.35 0.49 0.196 0.18

τ 14 45.93 21.12 5.64 41.61 768.87 22.68
ft 0.013 0.005 0.003 0.05 0.18 0.019 0.016

|S|
|V |(%) 41.1 42.4 100 52.9 29.9 18.7 57.1

δ 9.57 17.1 10.66 5.2 10.78 55.8 9.3
1
2 -DS fe 0.21 0.14 0.094 0.31 0.49 0.20 0.16

τ 14.16 46.5 21.12 5.16 41.61 774.6 22.68
ft 0.014 0.006 0.003 0.04 0.18 0.02 0.013

|S|
|V |(%) 36.6 10.4 15.7 17.7 16.9 8.1 19.1

δ 9.37 13.81 8.22 4.67 10.62 55.72 9.34
TDS fe 0.23 0.46 0.48 0.93 0.89 0.46 0.50

τ 15 56.82 28 8.01 47.31 972.36 25.95
ft 0.019 0.13 0.21 0.80 0.72 0.136 0.15

|S|
|V |(%) 36.6 9.1 15.7 17.7 16.9 8.1 15.2

δ 9.37 13.56 8.22 4.67 10.62 55.72 9.13
1
3 -TDS fe 0.23 0.52 0.48 0.93 0.89 0.46 0.61

τ 15 56.55 28 8.01 47.31 972.36 25.5
ft 0.019 0.17 0.21 0.80 0.72 0.136 0.24

Table 2: Comparison of the extracted subgraphs by the Goldberg’s exact algorithm for the DS-
Problem (DS), Charikar’s 1

2
-approximation algorithm (1

2
-DS), our exact algorithm for the TDS-

Problem (TDS) and our 1
3
-approximation algorithm (1

2
-TDS). Here, fe(S) = e(S)/

(|S|
2

)
is the edge

density of the extracted subgraph, δ(S) = 2e(S)/|S| is the average degree, ft(S) = t(S)/
(|S|

3

)
is the

triangle density and τ(S) = 3t(S)/|S| is the average number of triangles per vertex.

The main goal of this Section is to show that the TDS-Problem and the proposed algorithms
constitute new graph mining primitives that can be used to find large near-cliques. Additionally to
this goal, we compare the quality of the 1

3
-approximation algorithm (Algorithm 4) to the optimal

algorithm. Finally, we explore the trade-off between the approximation quality and the number of
rounds by ranging the parameter ε in Algorithm 5.

5.1 Experimental Setup

The datasets we use are shown in Table 1. The experiments were performed on a single machine,
with Intel(R) Core(TM) i5 CPU at 2.40 GHz, with 3.86GB of main memory. We have implemented
Algorithm 1 in Matlab R2011a using a maximum flow implementation due to Kolmogorov and
Boykov [BK04] as our subroutine which runs in time O(t(n + t)3). This implementation can be
prohibitively expensive even for small graphs which have a large number of triangles. In the next
section we evaluate the exact algorithm on a subset of graphs.
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The space usage due to the construction of the network Hα -which has O(n+t) vertices and O(n+
t) arcs- can be large as many networks have a large number of triangles. It is worth outlining that
when the space usage is a problem whereas the running time is not, the supermodularity algorithm
can be used instead at the cost of the running time. We have coded an efficient implementation of
our peeling algorithm in Java JDK 1.6 which runs in O(nm) time. Our implementation maintains
an array of size O(n) containing the counts of triangles per vertex and an array of at most O(maxv tv)
entries each one pointing to a hash table (notice there exist at most n entries with non-empty hash
tables). The hash table at position i of the array keeps the set of vertices with exactly i participating
triangles. At any iteration, we maintain the minimum index of the array pointing to a non-empty
hash table. When we remove a vertex, we update the triangle counts of its neighbors, move them
and place them in the appropriate hash table if needed, and if one of the updated counts is less
than the number of triangles that the index points at, then we update the index accordingly. The

total running time is O
((

deg(v)
2

))
= O(nm). We measure the quality of each extracted subgraph by

two measures: the edge density of the extracted subgraph fe = e(S)/
(|S|

2

)
and the triangle density

ft = t(S)/
(|S|

3

)
. Notice that when fe, ft are close to 1, the extracted subgraph is close to being a

clique.

5.2 Experiments

Table 2 shows the results obtained on several popular small- and medium-sized graphs. Each
column corresponds to a dataset. The rows correspond to measurements for each method we use to
extract a subgraph. Specifically, the first (DS), second (1

2
-DS), third (TDS) and fourth (1

3
-TDS) row

corresponds to the subgraph extracted by Goldberg’s exact algorithm [Gol84] for the DS-Problem,
Charikar’s 1

2
-approximation algorithm [Cha00] for the DS-Problem, Algorithm 1 and Algorithm 4

for the TDS-Problem respectively. For each optimal extracted subgraph S, we show its size as a
fraction of the total number of vertices, the edge density fe(S), the average degree δ(S) = 2e(S)/|S|,
the triangle density ft(S) and the average number of triangles per vertex τ(S) = 3t(S)/|S|. We
observe that for all datasets, the optimal triangle-densest subgraph is close to being a near-clique
while the optimal densest subgraph is not always so. A pronounced example is the Football network
where the optimal densest subgraph is the whole network with fe = 0.0094, whereas the optimal
triangle-densest subgraph is a set of 18 vertices with edge density 0.48. Finally, we observe that the
quality of Algorithm’s 4 output is very close to the optimal solution and sometimes even better. It is
worth mentioning that the same phenomenon is observed in the case of Charikar’s 1

2
-approximation

algorithm [Cha00] compared to Goldberg’s exact algorithm [Gol84].
We use the scalable Java implementation of Algorithm 4 and a scalable implementation of

Charikar’s 1
2
-approximation algorithm on the rest of the datasets of Table 1. The results are shown

in Table 3. Again, we verify the fact that the TDS-Problem results in near-cliques, even when
the DS-Problem fails. For instance, for the collaboration network ca-Astro the DS-Problem
results in a subgraph with 1 184 vertices with fe = 0.05, ft = 0.002. The TDS-Problem results
in a clique with 57 vertices. The experimental results in Tables 2 and 3 strongly indicate that the
algorithms developed in this work consitute graph mining primitives that can be used to extract
near-cliques when the DS-Problem problem fails to do so.
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1
2 -DS 1

3 -TDS
|S| fe ft |S| fe ft

AS-735 59 0.28 0.08 13 0.8 0.66
AS-caida 143 0.14 0.02 27 0.52 0.25
ca-Astro 1 184 0.05 0.002 57 1 1
ca-GrQC 42 0.79 0.68 14 0.89 0.84
Epinions 718 0.27 0.10 135 0.60 0.33

Enron 192 0.30 0.07 139 0.40 0.12
EuAll 248 0.20 0.01 108 0.40 0.18

soc-Slashdot0811 1 637 0.29 0.08 253 0.52 0.29
soc-Slashdot0902 1 787 0.28 0.07 247 0.49 0.23
wb-cs-Stanford 84 0.64 0.48 26 0.80 0.67

Table 3: Comparison of the extracted subgraphs by the 1
2
-approximation algorithm of Charikar and

the 1
3
-approximation algorithm, Algorithm 4.

5.3 Exploring parameter ε in Algorithm 5

In this Section we present the results of Algorithm 5 on the DBLP graph. This is particularly
interesting instance as it indicates that instead of trying to select a good ε value, it is worth trying
out at least few values, assuming computational resources are available. We range ε from 0.1 to
1.8 with a step of 0.1. Figure 2(a) plots the number of rounds Algorithm 5 takes to terminate as a
function of ε. We observe that even for small ε values the number of rounds is 6. The reader should
compare this to the upper bound predicted by Lemma 4 which exceeds 100. Figure 2(b) plots

the relative ratio Rel. τ = τ(S)
τ∗

where S is the output of Algorithm 5. For convenience, the lower

bound 1
3+3ε

is plotted with red color. Similarly, Figure 2(c) plots the relative ratios fe(S)
fe(S∗)

, ft(S)
ft(S∗)

as
a function of ε. As we observe, the quality of Algorithm 5 is close to the optimal solution except for
ε = 0.7 and ε = 0.8. By inspecting why this happens we observe that the optimal triangle-densest
subgraph is a clique of 44 vertices. It turns out that for ε = 0.7, 0.8 the optimal subgraph which
is found in the last round of the execution of the algorithm (the latter happens for all ε values)
consists of 98 and 74 vertices which contain as a subgraph the optimal K44. For other values of ε,
the subgraph in the last round is either the optimal K44 or close to it, with few more extra vertices.
This example shows the potential danger of using a single value for ε, suggesting that trying out a
small number of ε values can be significantly beneficial in terms of the approximation quality.

6 Application: Organizing Cocktail Parties

A graph mining problem that comes up in various applications is the following: given a set of
vertices Q ⊆ V , find a dense subgraph containing Q We refer to this type of graph mining problems
as cocktail problems, due to the following motivation, c.f. [SG10]. Suppose that a set of people Q
wants to organize a cocktail party. How do they invite other people to the party so that the set
of all the participants, including Q, are as similar as possible? A variation of the TDS-Problem
which addresses this graph mining problem follows.

Problem 3 (Constrainted-TDS-Problem). Given G(V,E) and Q ⊆ V , find the subset of
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Figure 2: Exploring the trade-off between the number of rounds and accuracy as a function of
the parameter ε for Algorithm 5. Let S, S∗ be the extracted subgraphs by Algorithms 5 and 1
respectively. (a) Number of rounds, (b) relative average triangle density ratio τ(S)

τ∗
(blue ∗) and the

approximation guarantee 1/(3 + 3ε) (red �), and (c) relative ratios fe(S)
fe(S∗)

, ft(S)
ft(S∗)

as functions of ε.

vertices S∗ that maximizes the triangle density such that Q ⊆ S∗ ,

S∗ = arg max
Q⊆S⊆V

τ(S).

The Constrainted-TDS-Problem can be solved by modifying our proposed algorithms ac-
cordingly. A useful corollary follows.

Corollary 3. The Constrainted-TDS-Problem is solvable in polynomial time by adding arcs
from s to v ∈ A of large enough capacities, e.g., capacities equal to n3 + 1 are sufficiently large.
Furthermore, the peeling algorithm which avoids removing vertices from Q is a 1

3
-approximation

algorithm for the Constrainted-TDS-Problem.

In the following we evaluate the 1
3
-approximation algorithm on two datasets. The two experi-

ments indicate two different types of performances that should be expected in real-world applica-
tions. The first is a positive whereas the second is negative case. Both experiments here serve as
sanity checks4

Political vote data. We obtain Senate data for the first session (2006) of the 109th congress
which spanned the period from January 3, 2005 to January 3, 2007, during the fifth and sixth
years of George W. Bush’s presidency [wik]. In this Congress, there were 55, 45 and 1 Republican,
Democratic and independent senators respectively. The dataset can be downloaded from the US
Senate web page http://www.senate.gov. We preprocess the dataset in the following way: we
add an edge between two senators if amonge the bills for which they both casted a vote, they voted
at least 80% of the times in the same way. The resulting graph has 100 vertices and 2034 edges.
We run the 1

3
-approximation algorithm on this graph using as our set Q the first three republicans

according to lexicographic order: Alexander (R-TN), Allard (R-CO) and Allen (R-VA). We obtain
at our output a subgraph consisting of 47 vertices. By inspecting their party, we find that 100%

4 For instance, by preprocessing the political vote data from a matrix form to a graph using a threshold for edge
additions, results in information loss.
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of them are Republicans. This shows that our algorithm in this case succeeds in finding the large
majority of the cluster of republicans. It is interesting that the 8 remaining Republicans do not
enter the triangle-densest subgraph . A careful inspection of the data, c.f. [pre], indicates that 6
republicans agree with the party vote on at most 79% of the bills, and 8 of them on at most 85%
of the bills.

DBLP graph. We input as a query set Q a set of scientists who have established themselves
in theory and algorithm design: Richard Karp, Christos Papadimitriou, Mihalis Yannakakis and
Santosh Vempala. The algorithm returns at its output the query set and a set S of 44 vertices
corresponding to a clique of (mostly) Italian computer scientists. We list a subset of the 44 vertices
here: M. Bencivenni, M. Canaparo, F. Capannini, L. Carota, M. Carpene, R. Veraldi, P. Veronesi,
M. Vistoli, R. Zappi. The output graph induced by S ∪ Q is disconnected. Therefore, this can be
easily explained because of the following (folklore) inequality, given that |Q| < |S| in our example.

Claim 1. Let a, b, c, d be non-negative. Then,

max
(a
c
,
b

d

)
≥ a+ b

c+ d
≥ min

(a
c
,
b

d

)
(4)

In our example, we get a = t(S), c = |S|, b = t(Q), d = |Q|. In such a scenario, where the output
consists of the union of a dense subgraph and the query set Q, an algorithm which builds itself
up from Q -assuming Q is not an independent set- to V by adding vertices which create as many
triangles as possible and returning the maximum density subgraph, rather than peeling vertices
from V downto Q should be preferred in practice, see also [TBG+13].

7 Conclusion

In this work we introduce the average triangle density as a novel objective for attacking the im-
portant problem of finding near-cliques. We propose exact and approximation algorithms and an
efficient MapReduce implementation. Furthermore, we show how to generalize our results to max-
imizing the average k-clique density. Experimentally we verify the value of the TDS-Problem as
a novel addition to the graph mining toolbox. Also, we show how to solve a constrained version of
the TDS-Problem which has various graph mining applications.

Our work leaves numerous problems open, including the following: (a) Can we obtain a faster
exact algorithm? (b) Is there an output-sensitive algorithm which extracts all subgraphs with
average k-clique density greater than a prespecified threshold?
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