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ABSTRACT
Motivation: Tumorigenesis is an evolutionary process by which tumor
cells acquire sequences of mutations leading to increased growth,
invasiveness, and eventually metastasis. It is hoped that by iden-
tifying the common patterns of mutations underlying major cancer
sub-types, we can better understand the molecular basis of tumor
development and identify new diagnostics and therapeutic targets.
This goal has motivated several attempts to apply evolutionary tree
reconstruction methods to assays of tumor state. Inference of tumor
evolution is in principle aided by the fact that tumors are hetero-
geneous, retaining remnant populations of different stages along
their development along with contaminating healthy cell populations.
In practice, though, this heterogeneity complicates interpretation of
tumor data because distinct cell types are conflated by common
methods for assaying tumor state. We previously proposed a method
to computationally infer cell populations from measures of tumor-wide
gene expression through a geometric interpretation of mixture type
separation, but this approach deals poorly with noisy and outlier data.
Results: In the present work, we propose a new method to per-
form tumor mixture separation efficiently and robustly to experimental
error. The method builds on the prior geometric approach but uses a
novel objective function allowing for robust fits that greatly reduces the
sensitivity to noise and outliers. We further develop an efficient gra-
dient optimization method to optimize this “soft geometric unmixing”
objective for measurements of tumor DNA copy numbers assessed
by array comparative genomic hybridization (aCGH) data. We show,
on a combination of semi-synthetic and real data, that the method
yields fast and accurate separation of tumor states.
Conclusions: We have shown a novel objective function and optimi-
zation method for robust separation of tumor sub-types from aCGH
data and have shown that the method provides fast, accurate recon-
struction of tumor states from mixed samples. Better solutions to this
problem can be expected to improve our ability to accurately identify
genetic abnormalities in primary tumor samples and to infer patterns
of tumor evolution.

∗to whom correspondence should be addressed

1 INTRODUCTION
Genomic studies have dramatically improved our understanding of
the biology of tumor formation and treatment. In part this has been
accomplished by harnessing tools that profile the genes and pro-
teins in tumor cells, revealing previously indistinguishable tumor
sub-types that are likely to exhibit distinct sensitivities to treatment
methods (Golub et al., 1999; Perou et al., 2000; Sorlie et al., 2001,
2003). As these tumor sub-types are uncovered, it becomes possible
to develop novel therapeutics more specifically targeted to the par-
ticular genetic defects that cause each cancer (Pegram et al., 2000;
Atkins and Gershell, 2002; Bild et al., 2006). While recent advances
have had a profound impact on our understanding of tumor biology,
the limits of our understanding of the molecular nature of cancer
obstruct the burgeoning efforts in “targeted therapeutics” develop-
ment. These limitations are apparent in the high failure rate of
the discovery pipeline for novel cancer therapeutics (Kamb et al.,
2007) as well as in the continuing difficulty of predicting which
patients will respond to a given therapeutic. A striking example is
the fact that traztuzumab, the targeted therapeutic developed to treat
HER2-amplified breast cancers, is ineffective in many patients who
have HER2-overexpressing tumors and yet effective in some who
do not (Paik et al., 2008). Furthermore, sub-types typically remain
poorly defined — e.g., the “basal-like” breast cancer sub-type, for
which different studies have inferred very distinct genetic signatu-
res (Perou et al., 2000; Sorlie et al., 2001; Sotiriou et al., 2003)
— and yet many patients do not fall into any known sub-type. Our
belief, then, is that clinical treatment of cancer will reap conside-
rable benefit from the identification of new cancer sub-types and
genetic signatures.

One promising approach for better elucidating the common muta-
tional patterns by which tumors develop is to recognize that tumor
development is an evolutionary process and apply phylogenetic
methods to tumor data to reveal these evolutionary relationships.
Much of the work on tumor evolution models flows from the semi-
nal efforts of Desper et al. (1999) on inferring oncogenetic trees
from comparative genomic hybridization (aCGH) profiles of tumor
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cells. A strength of this model stems from the extraction of ance-
stral structure from many probe sites per tumor, potentially utilizing
measurements of the expression or copy number changes across
the entire genome. However, this comes at the cost of overlooking
the diversity of cell populations within tumors, which can provide
important clues to tumor progression but are conflated with one
another in tissue-wide assays like aCGH.

The cell-by-cell approaches, such as Pennington et al. (2007);
Shackney et al. (2004), use this heterogeneity information but at
the cost of allowing only a small number of probes per cell. In
recent work, Schwartz and Shackney (2010) proposed bridging the
gap between these two methodologies by computationally infer-
ring cell populations from tissue-wide gene expression samples.
This inference was accomplished through “geometric unmixing,” a
mathematical formalism of the problem of separating components
of mixed samples in which each observation is presumed to be an
unknown convex combination1 of several hidden fundamental com-
ponents. Other approaches to inferring common pathways include
mixture models of oncogenetic trees (Beerenwinkel et al., 2005),
PCA-based methods (Hglund et al., 2001), conjunctive Bayesian
networks (Gerstung et al., 2009) and clustering (Liu et al., 2006).

Unmixing falls into the class of methods that seek to recover
a set of pure sources from a set of mixed observations. Analo-
gous problems have been coined “the cocktail problem,” “blind
source separation,” and “component analysis” and various commu-
nities have formalized a menagerie of models with distinct statistical
assumptions. In a broad sense, the classical approach of prin-
cipal component analysis (PCA) (Pearson, 1901) seeks to factor
the data under the constraint that, collectively, the fundamental
components form an orthonormal system. Independent component
analysis (ICA) (Comon, 1994) seeks a set of statistically indepen-
dent fundamental components. These methods, and their ilk, have
been extended to represent non-linear data distributions through the
use of kernel methods (see Schölkopf et al. (1998); Schölkopf and
Smola (2002) for details), which often confound modeling with
black-box data transformations. Both PCA and ICA break down as
pure source separators when the sources exhibit a modest degree of
correlation. Collectively, these methods place strong independence
constraints on the fundamental components that are unlikely to hold
for tumor samples, where we expect components to correspond to
closely related cell states.

The structure of our present inference problem, that of extrac-
ting multiple correlated fundamental components, has motivated the
development of new methods for unmixing genetic data. Similar
unmixing methods were first developed for tumor samples by Bill-
heimer and colleagues (Etzioni et al., 2005) to improve the power of
statistical tests on tumor samples in the presence of contaminating
stromal cells. Similarly, a hidden Markov model approach to unmi-
xing was developed by Lamy et al. (2007) to correct for stromal
contamination in DNA copy number data. These recent advances
demonstrate the feasibility of unmixing-based approaches for sepa-
rating cell sub-populations in tumor data. Outside the bioinformatics
community, geometric unmixing has been successfully applied in

1 A point p is a convex combination combination of basis points v0, ..., vk

if and only if the constraints p =
Pk

i=0 αivi,
P

i αi = 1 and ∀i : αi ≥ 0
obtain. The fractions αi determine a mixture over the basis points {vi} that
produce the location p.

Fig. 1. Left: The minimum area fit of a simplex containing the sample points
in the plane (shown in black) using the program in §2.1.1. On noiseless data,
hard geometric unmixing recovers the locations of the fundamental com-
ponents at the vertices. Right: However, the containment simplex is highly
sensitive to noise and outliers in the data. A single outlier, circled above,
radically changes the shape of the containment simplex fit (light gray above).
In turn, this changes the estimates of basis distributions used to unmix the
data. We mitigate this short coming by developing a soft geometric unmixing
model (see §2.1.2) that is comparatively robust to noise. The soft fit (shown
dark gray) is geometrically very close to the generating sources as seen on
the left.

the geo-sciences (Ehrlich and Full, 1987) and in hyper-spectral
image analysis (Chan et al., 2009).

The recent work by Schwartz and Shackney (2010) applied the
hard geometric unmixing model (see §2.1.1) to gene expression data
with the goal of recovering expression signatures of tumor cell sub-
types, with the specific goal of facilitating phylogenetic analysis
of tumors. The results showed promise in identifying meaningful
sub-populations and improving phylogenetic inferences. They were,
however, hampered by limitations of the hard geometric approach,
particularly the sensitivity to experimental error and outlier data
points caused by the simplex fitting approach. An example of sim-
plex fitting in the plane is shown in Figure 1, illustrating why the
strict containment model used in Ehrlich and Full (1987); Chan
et al. (2009); Schwartz and Shackney (2010) is extremely sensi-
tive to noise in the data. In the present work we introduce a soft
geometric unmixing model (see §2.1.2) for tumor mixture separa-
tion, which relaxes the requirement for strict containment using a
fitting criterion that is robust to noisy measurements. We develop a
formalization of the problem and derive an efficient gradient-based
optimization method. We develop this method specifically for ana-
lyzing tissue-wide DNA copy number data as assessed by array
comparative genomic hybridization (aCGH) data. We demonstrate
the value of the soft unmixing model by comparison to a hard unmi-
xing method on synthetic and real aCGH data. We apply our method
to an aCGH data set taken from Navin et al. (2010) and show that
the method identifies state sets corresponding to known sub-types
consistent with much of the analysis performed by the authors.

2 APPROACH
The data are assumed to be given as g genes sampled in s tumors or
tumor sections. The samples are collected in a matrix, M ∈ <g×s,
in which each row corresponds to an estimate of gene copy number
across the sample population obtained with aCGH. The data in M
are processed as raw or baseline normalized raw input, rather than
as log ratios. The “unmixing” model, described below, asserts that
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each sample mi, a column of M , is well approximated by a con-
vex combination of a fixed set C = [c0|...|ck] of k + 1 unobserved
basis distributions over the gene measurements. Further, the obser-
ved measurements are assumed to be perturbed by additive noise in
the log domain, i.e.:

mi = blogb(CFi)+η

where Fi is the vector of coefficients for the convex combination
of the (k + 1) basis distributions and η is additive zero mode i.i.d.
noise.

2.1 Algorithms and Assumptions
Given the data model above, the inference procedure seeks to reco-
ver the k+1 distributions over gene-copy number or expression that
“unmix” the data. The procedure contains three primary stages:

1. Compute a reduced representation xi for each sample mi,

2. Estimate the basis distributions Kmin in the reduced coordina-
tes and the mixture fractions F ,

3. Map the reduced coordinates Kmin back into the “gene space,”
recovering C.

The second step in the method is performed by optimizing the objec-
tive in §2.1.1 or the robust problem formulation in §2.1.2.

Obtaining the reduced representation
We begin our calculations by projecting the data into a k-dimension
vector space (i.e., the intrinsic dimensionality of a (k + 1)−vertex
simplex). We accomplish this using principal components analy-
sis (PCA) (Pearson, 1901), which decomposes the input matrix
M into a set of orthogonal basis vectors of maximum variance
and retain only the k components of highest variance. PCA trans-
forms the g × s measurement matrix M into a linear combination
as MT = XV + A, where V is a matrix of the principal com-
ponents of M , X provides a representation of each input sample
as a linear combination of the components of V , and A is a s × g
matrix in which each row contains g copies of the mean value of the
corresponding row of MT . The matrix X thus provides a reduced-
dimension representation of M , and becomes the input to the sample
mixture identification method in Stage 2. V and A are retained to
allow us to later construct estimated aCGH vectors corresponding to
the inferred mixture components in the original dimension g.

Assuming the generative model of the data above, PCA typi-
cally recovers a sensible reduced representation, as low magnitude
log additive noise induces “shot-noise” behavior in the subspace
containing the simplex with small perturbations in the orthogonal
complement subspace. An illustration of this stage of our algorithm
can be found in Figure 2.

Sample mixture identification
Stage 2 invokes either a hard geometric unmixing method that seeks
the minimum volume simplex enclosing the input point set X (Pro-
gram 1) or a soft geometric unmixing method that fits a simplex to
the points balancing the desire for a compact simplex with that for
containment of the input point set (Program 2). For this purpose,
we place a prior over simplexes, preferring those with small volume
that fit or enclose the point set of X . This prior captures the intuition

PCA

Fig. 2. An illustration of the reduced coordinates under the unmixing hypo-
thesis: points (show in gray) sampled from the 3−simplex embedded are<3

and then perturbed by log-normal noise, producing points shown in black
with sample correspondence given the green arrows. Note that the dominant
subspace remains in the planar variation induced by the simplex, and a 2D
reduced representation for simplex fitting is thus sufficient.

that the most plausible set of components explaining a given data set
are those that can explain as much as possible of the observed data
while leaving in the simplex as little empty volume, corresponding
to mixtures that could be but are not observed, as possible.

Upon completion, Stage 2 obtains estimates of the vertex locati-
ons Kmin, representing the inferred cell types from the aCGH data
in reduced coordinates, and a set of mixture fractions describing
the amount of each observed tumor sample attributed to each mix-
ture component. The mixture fractions are encoded in a (k + 1)× s
matrix F , in which each column corresponds to the inferred mixture
fractions of one observed tumor sample and each row corresponds
to the amount of a single component attributed to all tumor samp-
les. We define Fij to be the fraction of component i assigned to
tumor sample j and Fj to be vector of all mixture fractions assigned
to a given tumor sample j. To ensure that that the observations are
modeled as convex combinations of the basis vertices, we require
that F1 = 1.

Cell type identification
The reduced coordinate components from Stage 2, Kmin, are
projected up to a g × (k + 1) matrix C in which each column
corresponds to one of the k + 1 inferred components and each
row corresponds to the approximate copy number of a single probe
in a component. We perform this transformation using the matri-
ces V and A produced by PCA in Stage 1 with the formula C =
V T Kmin + A, augmenting the average to k + 1 columns.

Finally the complete inference procedure is summarized in the
following pseudocode:

Given tumor sample matrix M , the desired number of mixture
components k, and the strength of the volume prior γ:

1. Factor the sample matrix M such that MT = XV + A

2. Produce the reduced k−dimensional representation by retai-
ning the top k components in X

3. Minimize Program 1, obtaining an estimate of the simplex
K0

min

4. Minimize Program 2 starting at K0
min, obtaining Kmin and F
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5. Obtain the centers C in gene space as C = A + V T Kmin

2.1.1 Hard Geometric Unmixing Hard geometric unmixing is
equivalent to finding a minimum volume (k + 1)−simplex contai-
ning a set of s points {X} in <k. A non-linear program for hard
geometric unmixing can be written as follows:

min
K

: log vol(K) (1)

∀i : xi = KFi

∀Fi : F T
i 1 = 1, Fi � 0

where log vol measures the volume of simplex defined by the ver-
tices K

.
= [v0|...|vk] and F � 0 requires that ∀ij . Fij ≥ 0.

Collectively, the constraints ensure that each point be expressed
exactly as a unique convex combination of the vertices. Exact non-
negative matrix factorization (NNMF), see (Lee and Seung, 1999),
can be seen as a relaxation of hard geometric unmixing. Exact
NNMF retains the constraint Fi � 0 while omitting the constraint
that the columns sum to unity – thus admitting all positive combi-
nations rather than the restriction to convex combinations as is the
case for geometric unmixing.

Approximate and exponential-time exact minimizers are available
for Program 1. In our experiments we use the approach of Chan et al.
(2009), which sacrifices some measure of accuracy for efficiency.

2.1.2 Soft Geometric Unmixing Estimates of the target distribu-
tions, derived from the fundamental components (simplex vertices),
produced by hard geometric unmixing are sensitive to the wide-
spectrum noise and outliers characteristic of log-additive noise (i.e.,
multiplicative noise in the linear domain). The robust formulation
below tolerates noise in the sample measurements mi and subse-
quently in the reduced representations xi, improving the stability
of these estimates. The sensitivity of hard geometric unmixing is
illustrated in Figure 1. The motivation for soft geometric unmixing
is to provide some tolerance to experimental error and outliers by
relaxing the constraints in Program 1, allowing points to lie outside
the boundary of the simplex fit to the data. We extend Program 1 to
provide a robust formulation as follows:

min
K

:

sX
i=1

|xi −KFi|p + γ log vol(K) (2)

∀Fi : F T
i 1 = 1, Fi � 0

where the term |xi −KFi|p penalizes the imprecise fit of the
simplex to the data and γ establishes the strength of the minimum-
volume prior. Optimization of Program 2 is seeded with an estimate
produced from Program 1 and refined using MATLAB’s fminsearch
with analytical derivatives for the log vol term and an LP -step that
determines mixture components Fi and the distance to the boundary
for each point outside the simplex.

We observe that when taken as whole, Program 2 can be inter-
preted as the negative log likelihood of a Bayesian model of signal
formation. In the case of array CGH data, we choose p = 1 (i.e.,
optimizing relative to an `1 norm), as we observe that the errors
may be induced by outliers and the `1 norm would provide a rela-
tively modest penalty for a few points far from the simplex. From the
Bayesian perspective, this is equivalent to relaxing the noise model

to assume i.i.d. heavy-tailed additive noise. To mitigate some of the
more pernicious effects of log-normal noise, we also apply a total
variation-like smoother to aCGH data in our experiments. Additio-
nally, the method can be readily extended to weighted norms if an
explicit outlier model is available.

2.1.3 Analysis & Efficiency The hard geometric unmixing pro-
blem in §2.1.1 is a non-convex objective in the present parame-
terization, and was shown by Packer (2002) to be NP-hard when
k + 1 ≥ log(s). For the special case of minimum volume tetrahe-
dra (k = 3), Zhou and Suri (2000) demonstrated an exact algorithm
with time complexity Θ(s4) and a (1+ε) approximate method with
complexity O(s + 1/ε6). Below, we examine the present definition
and show that Programs 1 and 2 have structural properties that may
exploited to construct efficient gradient based methods that seek
local minima. Such gradient methods can be applied in lieu of or
after heuristic or approximate combinatorial methods for minimi-
zing Program 1, such as Ehrlich and Full (1987); Chan et al. (2009)
or the (1 + ε) method of Zhou and Suri (2000) for simplexes in <3.

We begin by studying the volume penalization term as it appears
in both procedures. The volume of a convex body is well known (see
Boyd and Vandenberghe (2004)) to be a log concave function. In the
case of a simplex, analytic partial derivatives with respect to vertex
position can used to speed the estimation of the minimum volume
configuration Kmin. The volume of a simplex, represented by the
vertex matrix K = [v0|...|vk], can be calculated as:

vol(K) = ck · det
“
ΓT KKT Γ

”1/2

= ck · det Q (3)

where ck is the volume of the unit simplex defined on k + 1 points
and Γ is a fixed vertex-edge incidence matrix such that ΓT K =
[v1 − v0|...|vk − v0]. The matrix Q is an inner product matrix over
the vectors from the special vertex v0 to each of the remaining k
vertices. In the case where the simplex K is non-degenerate, these
vectors form a linearly independent set and Q is positive definite
(PD). While the determinant is log concave over PD matrices, our
parameterization is linear over the matrices K, not Q. Thus it is pos-
sible to generate a degenerate simplex when interpolating between
two non-degenerate simplexes K and K′. For example, let K define
a triangle with two vertices on the y−axis and produce a new sim-
plex K′ by reflecting the triangle K across the y−axis. The curve
K(α) = αK + (1 − α)K′ linearly interpolates between the two.
Clearly, when α = 1/2, all three vertices of K(α) are co-linear
and thus the matrix Q is not full rank and the determinant vanis-
hes. However, in the case of small perturbations, we can expect the
simplexes to remain non-degenerate.

To derive the partial derivative, we begin by substituting the deter-
minant formulation into our volume penalization and arrive at the
following calculation:

log vol(K) = log ck +
1

2
log detQ

∝ log

kY
d=1

λd(Q) =

kX
d=1

log λd(Q)

therefore the gradient of log vol(K) is given by

∂ log vol(K)

∂Kij
=

kX
d=1

∂

∂Kij
log λd =

kX
d=1

`
zT

d (ΓT EijE
T
ijΓ)zd

´
λd
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where the eigenvector zd satisfies the equality Qzd = λdzd and Eij

is the indicator matrix for the entry ij. To minimize the volume,
we move the vertices along the paths specified by the negative log
gradient of the current simplex volume. The Hessian is derived by
an analogous computation, making Newton’s method for Program
1, with log barriers over the equality and inequality constraints, a
possible optimization strategy.

Soft geometric unmixing (Program 2) trades the equality cons-
traints in Program 1 for a convex, but non-differentiable, term in
the objective function

Ps
i=1 |xi −KFi|p for p|1 ≤ p ≤ 2. Intui-

tively, points inside the simplex have no impact on the cost of the
fit. However, over the course of the optimization, as the shape of
the simplex changes points move from the interior to the exterior,
at which time they incur a cost. To determine this cost, we solve
the nonnegative least squares problem for each mixture fraction Fi,
minF : (KFi−xi)

T (KFi−xi). This step simultaneously solves
for the mixture fraction, and for exterior points, the distance to the
simplex is determined. The simplex is then shifted under a standard
shrinkage method based on these distances.

3 EXPERIMENTAL METHODS
We evaluated our methods using synthetic experiments, allowing us to assess
two properties of robust unmixing 1) the fidelity with which endmembers
(sub-types) are identified and 2) the relative effect of noise on hard ver-
sus robust unmixing. We then evaluate the robust method on a real world
aCGH data set published by Navin et al. (2010) in which ground truth is
not available, but for which we uncover much the structure reported by the
authors.

3.1 Methods: Synthetic Experiments
To test the algorithms given in §2, we simulated data using a biologi-
cally plausible model of ad-mixtures. Simulated data provides a quantitative
means of evaluation as ground truth is available for both the components
C and the mixture fractions Fi associated with each measurement in the
synthetic design matrix M . The tests evaluate and compare hard geome-
tric unmixing §2.1.1 and soft geometric unmixing §2.1.2 in the presence of
varying levels of log-additive Gaussian noise and varying k. By applying
additive Gaussian noise in the log domain we simulate the heteroscedasti-
city characteristic of CGH measurements (i.e., higher variance with larger
magnitude measurements). By varying k, the dimensionality of the simplex
used to fit the data, we assess the algorithmic sensitivity to this parameter
as well as that to γ governing the strength of the volume prior in Program
2. The sample generation process consists of three major steps: 1) mixture
fraction generation (determining the ratio of sub-types present in a sample),
2) end-member (i.e., sub-type) generation and 3) the sample perturbation by
additive noise in the log-ratio domain.

3.1.1 Mixture Sampler Samples over mixture fractions were genera-
ted in a manner analogous to Polya’s Urn Process, in which previously
sampled simplicial components (e.g., line segments, triangles, tetrahedra)
are more likely to be sampled again. This sampling mechanism produces
data distributions that are similar to those we see in low dimensional pro-
jections of aCGH data when compared against purely uniform samples over
mixtures. An example of a low dimensional sample set and the simplex that
was used to generate the points is shown in Figure 3.

To generate the mixture fractions Fi for the ith sample, the individual
components in Ctrue are sampled without replacement from a dynamic
tree model. Each node in the tree contains a dynamic distribution over
the remaining components, each of which is initialized to the uniform dis-
tribution. We then sample s mixtures by choosing an initial component
according to the root’s component distribution and proceed down the tree.

Fig. 3. An example sample set generated for §3.1.2 shown in the “intrin-
sic dimensions” of the model. Note that sample points cleave to the lower
dimensional substructure (edges) of the simplex.

As a tree-node is reached, its component distribution is updated to reflect
the frequency with which its children are drawn. To generate the ith sample,
the fractional values Fi are initialized to zero. As sample generation pro-
ceeds, the currently selected component Cj updates the mixture as Fij ∼
uniform[(1/2)fj

p , 1] where fj
p is the frequency of j’s parent node. For the

ith mixture, this process terminates when the condition 1 ≤
Pk+1

j=1 Fij

holds. Therefore, samples generated by long paths in the tree will tend to be
homogenous combinations of the components Ctrue, whereas short paths
will produce lower dimensional substructures. At the end of the process, the
matrix of fractions F is re-normalized so that the mixtures associated with
each sample sum to unity. This defines a mixture F true

i for each sample –
i.e., the convex combination over fundamental components generating the
sample point.

3.1.2 Geometric Sampling of End-members & Noise To determine
the locations of the end-members, we specify an extrinsic dimension (num-
ber of genes) g, and an intrinsic dimension k (requiring k + 1 components).
We then simulate k + 1 components by constructing a g × (k + 1) matrix
Ctrue of fundamental components in which each column is an end-member
(i.e. sub-type) and each row is the copy number of one hypothetical gene,
sampled from the unit Gaussian distribution and rounded to the nearest inte-
ger. Samples mi, corresponding to the columns of the data matrix M , are
then given by:

mi = 2log2(CtrueF true
i )+ 1

2 ση (4)

where η ∼ normal(0, 1) and the mixture fractions F true
i were obtained as

in §3.1.1.

3.1.3 Evaluation We follow Schwartz and Shackney (2010) in asses-
sing the quality of the unmixing methods by independently measuring the
accuracy of inferring the components and the mixture fractions. We first
match inferred mixture components to true mixture components by perfor-
ming a maximum weighted bipartite matching of columns between Ctrue

and the inferred components Ce, weighted by negative Euclidean distance.
We will now assume that the estimates have been permuted according to this
matching and continue. We then assess the quality of the mixture compo-
nent identification by the root mean square distance over all entries of all
components between the matched columns of the two C matrices:

error =
1

g(k + 1)

˛̨
|Ctrue − Ce|

˛̨2
F

(5)

where ||A||F =
qP

ij a2
ij denotes the Frobenius norm of the matrix A.

We similarly assess the quality of the mixture fractions by the root mean
square distance between F true and the inferred fractions F e over all genes
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Fig. 4. Left: mean squared error for the component reconstruction comparing Hard Geometric Unmixing (MVES: Chan et al. (2009)) and Soft Geometric
Unmixing (SGU) introduced in §2.1.2 for the experiment described in §3.1.2 with variable γ. The plot demonstrates that robust unmixing more accurately
reconstructs the ground truth centers relative to hard unmixing in the presence of noise. Right: mean squared error for mixture reconstruction comparing
MVES and SGU.

and samples:

error =
1

g(k + 1)

˛̨
|F true − F e|

˛̨2
F

. (6)

This process was performed for s = 100 and d = 10000 to approximate a
realistic tumor expression data set and evaluated for k = 3 to k = 7 and for
σ = {0, 0.1, 0.2, ..., 1.0}, with ten repetitions per parameter.

4 RESULTS
4.1 Results: Synthetic Data
The results for the synthetic experiment are summarized in Figure
4. The figure shows the trends in MSE for hard geometric unmi-
xing §2.1.1 and soft geometric unmixing §2.1.2 on the synthetic
data described above. As hard geometric unmixing requires that
each sample lie inside the fit simplex, as noise levels increase (lar-
ger σ), the fit becomes increasingly inaccurate. Further, the method
MVES deteriorates to some degree as order k of the simplex incre-
ases. However, soft geometric unmixing degrades more gracefully
in the presence of noise if an estimate of the noise level is available
with ±0.1 in our current model. The trend of soft unmixing exhi-
biting lower error and better scaling in k than hard unmixing holds
for both components and mixture fractions, although components
exhibit a higher average degree of variability due to the scale of the
synthetic measurements when compared to the mixture fractions.

4.2 Array Comparative Gene Hybridization (aCGH)
Data

We further illustrate the performance of our methods on a publicly
available primary Ductal Breast Cancer aCGH Dataset furnished
with Navin et al. (2010). This dataset is of interest in that each
tumor sample has been sectored multiple times during biopsy, which
is ideal for understanding the substructure of the tumor popula-
tion. The data consists of 87 aCGH profiles from 14 tumors run
on a high-density ROMA platform with 83055 probes. Profiles are
derived from 4-6 sectors per tumor, with samples for tumors 5-14
sub-partitioned by cell sorting according to total DNA content, and
with healthy control samples for tumors 6, 9, 12, and 13. For full
details, the reader is referred to Navin et al. (2010). The processed
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Fig. 5. Empirical motivation for the `1 − `1−total variation functional for
smoothing CGH data. The left plot shows the histogram of values found
in the CGH data obtained from the Navin et al. (2010) data set. The dis-
tribution is well fit by the high kurtosis Laplacian distribution in lieu of a
Gaussian. The right plot shows the distribution of differences along the probe
array values. As with the values distribution, these frequencies exhibit high
kurtosis.

Fig. 6. The simplex fit to the CGH data samples from Navin et al. (2010)
ductal data set in <3. The gray tetrahedron was return by the optimization
of Program 1 and the green tetrahedron was returned by the robust unmixing
routine.

data consists of log10 ratios, which were exponentiated prior to the
PCA step (Stage 1) of the method.

4.2.1 Preprocessing To mitigate the effects of sensor noise on
the geometric inference problem, we apply a total variation (TV)
functional to the raw log-domain data. The `1 − `1−TV minimiza-
tion is equivalent to a penalized projection onto the over-complete
Harr basis preserving a larger degree of the signal variation when
compared to discretization methods (e.g., Olshen et al. (2004); Guha
et al. (2006)) that employ aggressive priors over the data distribu-
tion. The procedure seeks a smooth instance x of the observed signal
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s by optimizing the following functional:

min
x

:

gX
i=1

|xi − si|1 + λ

g−1X
i=1

|xi − xi+1|1 (7)

The functional 7 is convex and can be solved readily using New-
ton’s method with log-barrier functions (Boyd and Vandenberghe
(2004)). The solution x can be taken as the maximum likelihood
estimate of a Bayesian model of CGH data formation. That is, the
above is the negative log-likelihood of a simple Bayesian model of
signal formation. The measurements x̂i are assumed to be perturbed
by the i.i.d. Laplacian noise and the changes along the probe array
are assumed to be sparse. Recall that the Laplacian distribution is
defined as Pr(x) = 1

z
exp −|x|

a
. In all experiments, the strength

of the prior λ was set to λ = 10. The data fit this model well, as
illustrated in Figure 5. The dimension of the reduced representation
k, fixing the number of fundamental components, was determined
using the eigengap heuristic during the PCA computation (Stage 1).
This rule ceases computing additional principal components when
the difference in variances jumps above threshold.

4.2.2 Unmixing Analysis and Validation The raw data was pre-
processed as described above and a simplex was fit to the reduced
coordinate representation using the soft geometric unmixing method
(see §2.1.2). A three dimensional visualization of the resulting fit is
shown for the Navin et al. (2010) data set in Figure 6. To assess the
performance with increasing dimensionality, we ran experiments for
polytope dimensionality k ranging from 3 to 9. Following the eigen-
gap heuristic, we chose to analyze the results for k = 6. The γ value
was picked according to the estimated noise level in the aCGH data-
set and scaled relative to the unit simplex volume (here, γ = 100).
The estimated 6 components/simplex vertices/pure cancer types are
labeled C1, C2, ..., C6.

Figure 7 shows mixture fraction assignments for the aCGH data
for k = 6. While there is typically a non-zero amount of each com-
ponent in each sample due to imprecision in assignments, the results
nonetheless show distinct subsets of tumors favoring different mix-
ture compositions and with tumor cells clearly differentiated from
healthy control samples. The relative consistency within versus bet-
ween tumors provides a secondary validation that soft unmixing is
effective at robustly assigning mixture fractions to tumor samples
despite noise inherent to the assay and that produced by subsamp-
ling cell populations. It is also consistent with observations of Navin
et al.

It is not possible to know with certainty the true cell components
or mixture fractions of the real data, but we can validate the biologi-
cal plausibility of our results by examining known sites of amplifi-
cation in the inferred components. We selected fourteen benchmark
loci frequently amplified in breast cancers through manual literature
search. Table 1 lists the chosen benchmarks and the components
exhibiting at least 2-fold amplification of each. Figure 8 visualizes
the results, plotting relative amplification of each component as a
function of genomic coordinate and highlighting the locations of the
benchmark markers. Thirteen of the fourteen benchmark loci exhi-
bit amplification for a subset of the components, although often at
minimal levels. The components also show amplification of many
other sites not in our benchmark set, but we cannot definitively
determine which are true sites of amplification and which are false
positives. We further tested for amplification of seven loci reported

Table 1. Benchmark set of breast cancer markers selected for validation of
real data, annotated by gene name, genomic locus, and the set of components
exhibiting amplification at the given marker.

Marker Locus Component Marker Locus Component

MUC1 1q21 C1,C4 BRCA2 13q12.3 C5
PIK3CA 3q26.3 C3,C6 ESR2 14q23 C1
ESR1 6q25.1 C4 BRCA1, 17q21 C5,C6
EGFR 7p12 C5 ERBB2
c-MYC 8q24 C1,C3,C5 STAT5A, 17q11.2 C5
PTEN 10p23 none STAT5B
PGR 14q23.2 C6 GRB7 17q12 C6
CCND1 11q13 C4 CEA 19q13.2 C6

as amplified by Navin et al. (2010) specifically in the tumors exami-
ned here and found that six of the seven are specifically amplified
in one of our inferred components: PPP1R12A (C2), KRAS (C2),
CDC6 (C2), RARA (C2), EFNA5 (C2), PTPN1 (C3), and LPXN
(not detected). Our method did not infer a component corresponding
to normal diploid cells as one might expect due to stromal contami-
nation. This failure may reflect a bias introduced by the dataset, in
which many samples were cell sorted to specifically select aneuploid
cell fractions, or could reflect an inherent bias of the method towards
more distinct components, which would tend to favor components
with large amplifications.

We repeated these analyses for the hard unmixing with a hig-
her amplification threshold due to the noise levels in the centers. It
detected amplification at 11 of the 14 loci, with spurious inferences
of deletion at four of the 11. For the seven sites reported in Navin
et al., hard unmixing identified five (failing to identify EFNA5 or
LPXN) and again made spurious inferences of deletions for three of
these sites, an artifact the soft unmixing eliminates. The full results
are provided in supplementary section S1. The results suggest that
hard unmixing produces less precise fits of simplexes to the true
data.

We can also provide a secondary analysis based on Navin et al.’s
central result that the tumors can be partitioned into monogeno-
mic (those appearing to show essentially a single genotype) and
polygenomic (those that appear to contain multiple tumor subpo-
pulations). We test for monogeniety in mixture fractions by finding
the minimum correlation coefficient between mixture fractions of
consecutive tumor sectors (ignoring normal controls) maximized
over all permutations of the sectors. Those tumors with corre-
lations above the mean over all tumors (0.69) were considered
monogenomic and the remainder polygenomic. Navin et al. assign
{1, 2, 6, 7, 9, 11} as monogenomic and {3, 4, 5, 8, 10, 12, 13, 14}
as polygenomic. Our tests classify {1, 2, 5, 6, 7, 8, 11} as monoge-
nomic and {3, 4, 10, 12, 13, 14} as polygenomic, disagreeing only
in tumors 5 and 8. Our methods are thus effective at identifying
true intratumor heterogeneity in almost all cases without introdu-
cing spurious heterogeneity. By contrast, hard unmixing identifies
only tumors 7 and 8 as polygenomic, generally obscuring true
heterogeneity in the tumors (see supplementary section S1).

Our long-term goal in this work is not just to identify sub-types,
but to describe the evolutionary relationships among them. We have
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Fig. 7. Inferred mixture fractions for six-component soft geometric unmi-
xing applied to breast cancer aCGH data. Data is grouped by tumor, with
multiple sectors per tumor placed side-by-side. Columns are annotated
below by sector or N for normal control and above by cell sorting fraction
(D for diploid, H for hypodiploid, A for aneuploid, and A1/A2 for subsets of
aneuploid) where cell sorting was used.

Fig. 8. Copy numbers of inferred components versus genomic position.
The average of all input arrays (top) is shown for comparison, with the six
components below. Benchmarks loci are indicated by yellow vertical bars.

no empirical basis for validating any such predictions at the moment
but nonetheless consider the problem informally here for illustrative
purposes. To explore the question of possible ancestral relationships
among components, we manually examined the most pronounced
regions of shared gain across components. Figure 9 shows a con-
densed view of the six components highlighting several regions of
shared amplification between components. The left half of the image
shows components 3, 5, and 1, revealing a region of shared gain
across all three components at 9p21 (labeled B). Components 5 and
1 share an additional amplification at 1q21 (labeled A). Components
1 and 5 have distinct but nearby amplifications on chromosome

17, with component 1 exhibiting amplification at 17q12 (labeled
D) and component 5 at 17q21 (labeled C). We can interpret these
images to suggest a possible evolutionary scenario: component 3
initially acquires an amplification at 9p21 (the locus of the gene
CDKN2B/p15INK4b), an unobserved descendent of component 3
acquires secondary amplification at 1q21 (the locus of MUC1), and
this descendent then diverges into components 1 and 5 through
acquisition of independent abnormalities at 17q12 (site of PGAP3)
or 17q21 (site of HER2). The right side of the figure similarly shows
some sharing of sites of amplification between components 2, 4,
and 6, although the amplified regions do not lead to so simple an
evolutionary interpretation. The figure is consistent with the notion
that component 2 is ancestral to 4, with component 2 acquiring a
mutation at 5q21 (site of APC/MCC) and component 4 inheriting
that mutation but adding an additional one at 17q21. We would then
infer that the amplification at the HER2 locus arose independently
in component 6, as well as in component 5. The figure thus suggests
the possibility that the HER2-amplifying breast cancer sub-type
may arise from multiple distinct ancestral backgrounds in different
tumors. While we cannot evaluate the accuracy of these evolutio-
nary scenarios, they nonetheless provide an illustration of how the
output of this method is intended to be used to make inferences of
evolutionary pathways of tumor states.

5 CONCLUSION
We have developed a novel method for unmixing aCGH data to
infer copy number profiles of distinct cell states from tumor samp-
les. The method uses “soft geometric unmixing” to provide superior
tolerance to experimental noise and outliers compared to the prior
work. We have further developed an efficient gradient-based optimi-
zation algorithm for this objective function. We have shown through
tests on simulated data that the soft unmixing approach dramati-
cally improves accuracy of inference of components and mixture
fractions in the presence of high noise or large component numbers
relative to a hard unmixing method. We have further verified, with
application to a set of real aCGH data from breast cancer patients,
that the method is effective at separating components corresponding
to distinct subsets of known breast cancer markers. The specific pat-
terns of gain and loss in the components are suggestive of patterns
of evolution among the tumor types. The work thus demonstrates
the potential of tumor sample unmixing applied to aCGH data to
infer copy number profiles of cell populations from heterogenous
tumor samples. In addition to facilitating studies of tumor evolution,
the methods may have value to many other applications of mixture
separation from noisy data.
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