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Abstract. The number of triangles is a computationally expensive graph statistic which is frequently
used in complex network analysis (e.g., transitivity ratio), in various random graph models (e.g., expo-
nential random graph model) and in important real world applications such as spam detection, uncov-
ering the hidden thematic structures in the Web and link recommendation. Counting triangles in graphs
with millions and billions of edges requires algorithms which run fast, use small amount of space,
provide accurate estimates of the number of triangles and preferably are parallelizable.
In this paper we present an efficient triangle counting approximation algorithm which can be adapted to
the semistreaming model [23]. The key idea of our algorithm is to combine the sampling algorithm of
[51,52] and the partitioning of the set of vertices into a high degree and a low degree subset respectively
as in [5], treating each set appropriately. From a mathematical perspective, we show a simplified proof
of [52] which uses the powerful Kim-Vu concentration inequality [31] based on the Hajnal-Szemerédi
theorem [25]. Furthermore, we improve bounds of existing triple sampling techniques based on a the-
orem of Ahlswede and Katona [3]. We obtain a running time O

(
m+ m3/2 logn

tε2

)
and an (1 ± ε)

approximation, where n is the number of vertices, m is the number of edges and ∆ is the maximum
number of triangles in which any single edge is contained. Furthermore, we show how this algorithm can
be adapted to the semistreaming model with space usage O

(
m1/2 logn+ m3/2 logn

tε2

)
and a constant

number of passes (three) over the graph stream. We apply our methods in various networks with several
millions of edges and we obtain excellent results, outperforming existing triangle counting methods.
Finally, we propose a random projection based method for triangle counting and provide a sufficient
condition to obtain an estimate with low variance.
Note: This is the extended version of our proceedings paper [32].

1 Introduction

Graphs are ubiquitous: the Internet, the World Wide Web (WWW), social networks, protein interaction
networks and many other complicated structures are modeled as graphs [16]. The problem of counting
subgraphs is one of the typical graph mining tasks that has attracted a lot of attention. The most basic, non-
trivial subgraph, is the triangle. Many social networks are abundant in triangles, since typically friends of
friends tend to become friends themselves [56]. This phenomenon is observed in other types of networks as
well (biological, online networks etc.) and is one of the main reasons which gave rise to the definitions of the
transitivity ratio and the clustering coefficients of a graph in complex network analysis [40]. In Section 2.2
we provide an extensive list of applications in which triangles are involved. Given the importance of triangle
counting and the scale of several real world networks which reach the planetary scale (e.g., Facebook,
LinkedIn) fast and practical algorithms with strong theoretical guarantees are desired.

In this paper, we propose a new triangle counting method which provides a (1 ± ε) approximation
to the number of triangles in the graph and runs in O

(
m+ m3/2 logn

tε2

)
time, where n is the number of

vertices, m is the number of edges and ∆ is the maximum number of triangles in which any single edge
is contained. The key idea of the method is to combine the sampling scheme introduced by Tsourakakis et
al. in [51,52] with the partitioning idea of Alon, Yuster and Zwick [5] in order to obtain a more efficient
sampling scheme. Furthermore, we show that this method can be adapted to the semistreaming model with
a constant number of passes and O

(
m1/2 log n+ m3/2 logn

tε2

)
space. We apply our methods in various



networks with several millions of edges and we obtain excellent results both with respect to the accuracy and
the running time. Furthermore, we optimize the cache properties of the code in order to obtain a significant
additional speedup. Finally, we propose a random projection based method for triangle counting and provide
a sufficient condition to obtain an estimate with low variance. Even if such a method is unlikely to be
practical it raises some interesting theoretical issues.

The paper is organized as follows: Section 2 presents briefly the existing work and the theoretical back-
ground, Section 3 presents our proposed method and Section 4 presents the experimental results on several
large graphs. In Section 5 we provide a sufficient condition for obtaining a concentrated estimate of the num-
ber of triangles using random projections. Finally, in Section 6 we conclude and provide possible research
directions.

2 Preliminaries

In this section, we first introduce in Section 2.1 the notation used in the paper and then in Section 2.2 we
present an extensive list of applications involving triangles. In Section 2.3 we present the existing work on
the triangle counting problem. Finally, in Section 2.4 we briefly present theorems and lemmas necessary for
our methods.

2.1 Notation

For the rest of the paper we use the following notation: G([n], E) stands for an undirected simple graph
with n vertices labeled as 1, 2, .., n and edge set E. Let m, t be the number of edges and triangles in G
respectively. deg(u) stands for the the degree of vertex u. For an edge e ∈ E(G), we define ∆(e) to be the
number of triangles containing edge e and ∆ to be the maximum number of triangles an edge is contained
in, i.e., ∆ = maxe∈E(G)∆(e). Finally, let p ∈ (0, 1) be the sparsification parameter.

2.2 Applications

There are two main processes that generate triangles in a social network: homophily and transitivity. Ac-
cording to the former, people tend to choose friends with similar characteristics to themselves (e.g., race,
education) [56,60] and according to the latter friends of friends tend to become friends themselves [56].
These facts have several implications which we present in the following together with other applications of
triangle counting. For example, recently Bonato, Hadi, Horn, Prałat and Wang [11] proposed the iterated lo-
cal transitivity model which has several properties matching empirical properties of “real-world” networks
such as skewed degree distribution, communities etc.. In the following, we provide an extensive list of ap-
plications involving triangles and ranging from social networks which are of main interest to our work to
computer aided design applications.

Clustering Coefficients and Transitivity of a Graph Watts and Strogatz [58] in their influential paper
proposed a simple model which explains several contradicting properties in social networks such as the
abundance of triangles and the short paths among any pair of nodes. Their model combines the idea of
homophily which leads to the wealth of triangles in the network and the idea of weak ties which create short
paths. In order to quantify the homophily, they introduce the definitions of the clustering coefficient of a
vertex and of the graph, see Equation 1. The definition of the transitivity T (G) of a graph G, introduced
by Newman et al. [41], is closely related to the clustering coefficient and quantifies the probability that two
neighbors of any vertex are connected. It is worth pointing out that the authors of [41] erroneously claim
that C(G) is the same as T (G), see also [47]. The exact definitions of the aforementioned quantities follow.

Definition 1 (Clustering Coefficient). A vertex v ∈ V (G) with degree deg(v) has clustering coefficient
C(v) equal to the fraction of edges among its neighbors to the maximum number of triangles it could
participate:

C(v) =
∆(v)(
deg(v)

2

) (1)

The clustering coefficient C(G) is the average of C(v) over all v ∈ V (G).

Definition 2 (Transitivity). The transitivity ratio T (G) of a graphG is defined as T (G) = 3×t∑
v∈V (G) (

deg(v)
2 )

.

2



Uncovering Hidden Thematic Structures Eckmann and Moses [21] propose the use of the clustering
coefficient for detecting subsets of web pages with a common topic. The key idea is that reciprocal links
between pages indicate a mutual recognition/respect and then triangles due to their transitivity properties
can be used to extend “seeds” to larger subsets of vertices with similar thematic structure in the Web graph.
In other words, regions of the World Wide Web with high curvature indicate a common topic, allowing the
authors to extract useful meta-information. This idea has found more applications, e.g., in bioinformatics
[45].

Exponential Random Graph Model Frank and Strauss [22] proved under the assumption that two edges
are dependent only if they share a common vertex that the sufficient statistics for Markov graphs are the
counts of triangles and stars. Wasserman and Pattison [57] proposed the exponential random graph (ERG)
model which generalized the Markov graphs [44]. Triangles are frequently used as one of the sufficient
statistics of the ERG model and counting them is necessary for parameter estimation, e.g., using MCMC
procedures [10].

Spam Detection Becchetti et al. [8] show that the distribution of triangles among spam hosts and non-spam
hosts can be used as a feature for classifying a given host as spam or non-spam. The same result holds also
for web pages, i.e., the spam and non-spam triangle distributions differ at a detectable level using standard
statistical tests from each other.

Content Quality and Role Behavior Identification Nowadays, there exist many online forums where
acknowledged scientists participate, e.g., MathOverflow, CStheory stack exchange and discuss problems of
their fields. This yields significant information for researchers. Several interesting questions arise such as
which participants comment on each other. This question including several others was studied in [59]. The
number of triangles that a user participates was shown to play a critical role in answering these questions.
For further applications in assesing the role behavior of users see [8].

Structural Balance and Status Theory Balance theory appeared first in Heider’s seminal work [26] and
is based on the concept “the friend of my friend is my friend”, “the enemy of my friend is my enemy”
etc. [56]. To quantify this concept edges become signed, i.e., there is a function c : E(G) → {+,−}. If
all triangles are positive, i.e., the product of the signs of the edges is +, then the graph is balanced. Status
theory is based on interpreting a positive edge (u, v) as u having lower status than v, while the negative
edge (u, v) means that u regards v as having a lower status than himself/herself. Recently, Leskovec et al.
[35] have performed experiments to study which of the two aforementioned theories applies better to online
social networks and predict signs of incoming links. Their algorithms require counts of signed triangles in
the graph.

Microscopic Evolution of networks Leskovec et al. [36] present an extensive experimental study of net-
work evolution using detailed temporal information. One of their findings is that as edges arrive in the
network, they tend to close triangles, i.e., connect people with common friends.

Community Detection Counting triangles is also used in community detection algorithms. Specifically
Berry et al. use triangle counting to deduce the edge support measure in their community detection algorithm
[9].

Motif Detection Triangles are abundant not only in social networks but in biological networks [37,61].
This fact can be used to correlate the topological and functional properties of protein interaction networks
[61].

CAD applications Fudos and Hoffman [24] introduced a graph-constructive approach to solving systems
of geometric constraints, a problem which arises frequently in Computer-Aided Design (CAD) applications.
One of the steps of their algorithm computes the number of triangles in an appropriately defined graph.
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2.3 Existing work

There exist two categories of triangle counting algorithms, the exact and the approximate. It is worth noting
that for most of the applications described in Section 2.2 the exact number of triangles is not crucial. Hence,
approximate counting algorithms which are faster and output a high quality estimate are desirable for the
practical applications in which we are interested in this work.

Exact Counting Naive triangle counting by checking all triples of vertices takes O(n3) units of time.
The state of the art algorithm is due to Alon, Yuster and Zwick [5] and runs in O(m

2ω
ω+1 ), where currently

the fast matrix multiplication exponent ω is 2.371 [18]. Thus, the Alon, Yuster, Zwick (AYZ) algorithm
currently runs in O(m1.41) time. It’s worth mentioning that from a practical point of view algorithms based
on matrix multiplication are not used due to the restrictive memory requirements. Even for medium sized
networks, matrix-multiplication based algorithms are not applicable. The AYZ algorithm introduces the
concept of partitioning the vertices into high and low degree vertices using as threshold the valuem

ω−1
ω+1 and

treating them appropriately by matrix multiplication and exact combinatorial counting respectively. We use
this partitioning idea with an appropriately defined threshold for our purpose in Section 3 to obtain state of
the art results on approximate triangle counting. Itai and Rodeh in 1978 showed an algorithm which finds
a triangle in any graph in O(m

3
2 ) [27]. This algorithm can be extended to list the triangles in the graph

with the same time complexity. Chiba and Nishizeki showed that triangles can be found in time O(mα(G))
where α(G) is the arboricity of the graph. Since α(G) is at most O(

√
m) their algorithm runs in O(m3/2)

in the worst case [15]. For special types of graphs more efficient triangle counting algorithms exist. For
instance in planar graphs, triangles can be found in O(n) time [15,27,43].

Even if listing algorithms solve a more general problem than the counting one, they are preferred in
practice for large graphs, due to the smaller memory requirements compared to the matrix multiplication
based algorithms. Simple representative algorithms are the node- and the edge-iterator algorithms. The
former counts for each node the number of triangles it’s involved in, which is equivalent to the number
of edges among its neighbors, whereas in the latter, the algorithm counts for each edge (i, j) the common
neighbors of nodes i, j. Both of these algorithms have the same asymptotic complexity O(mn), which in
dense graphs results inO(n3) time, the complexity of the naive counting algorithm. Practical improvements
over this family of algorithms have been achieved using various techniques, such as hashing and sorting by
the degree [34,46].

Approximate Counting On the approximate counting side, most of the triangle counting algorithms have
been developed in the streaming setting. In this scenario, the graph is represented as a stream [7]. Two main
representations of a graph as a stream are the edge stream and the incidence/adjacency stream. In the former,
edges arrive one at a time. In the latter scenario, all edges incident to the same vertex appear successively in
the stream. The ordering of the vertices is assumed to be arbitrary. A streaming algorithm produces a relative
ε approximation of the number of triangles with high probability, making a constant number of passes over
the stream. However, sampling algorithms developed in the streaming literature can be applied in the setting
where the graph fits in the memory as well. Monte Carlo sampling techniques have been proposed to give
a fast estimate of the number of triangles. According to such an approach, a.k.a. naive sampling [47], we
choose three nodes at random repeatedly and check if they form a triangle or not. If one makes

r = log(
1

δ
)
1

ε2
(1 +

T0 + T1 + T2
T3

)

independent trials where Ti is the number of triples with i edges and outputs as the estimate of triangles the
random variable T ′3 which is equal to the fraction of selected triples that form triangles times

(
n
3

)
, then

(1− ε)T3 < T ′3 < (1 + ε)T3

with probability at least 1− δ. This is not suitable when T3 = o(n2).
In [7] the authors reduce the problem of triangle counting efficiently to estimating moments for a

stream of node triples. Then, they use the Alon-Matias-Szegedy algorithms [4] (a.k.a. AMS algorithms)
to proceed. The key is that the triangle computation reduces to estimating the zero-th, first and second
frequency moments, which can be done efficiently. It is worth noting that of independent interest is their
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space lower bound of Ω(n2) for approximating the number of triangles in a graph given in the adjacency
stream representation. Furthermore, as the authors suggest their algorithm is efficient only on graphs with
Ω(n2/ log log n) triangles, i.e., triangle dense graphs as in the naive sampling. The AMS algorithms are
also used by [29], where simple sampling techniques are used, such as choosing an edge from the stream
at random and checking how many common neighbors its two endpoints share considering the subsequent
edges in the stream. Along the same lines, [13] proposed two space-bounded sampling algorithms to es-
timate the number of triangles. Again, the underlying sampling procedures are simple. E.g., for the case
of the edge stream representation, they sample randomly an edge and a node in the stream and check if
they form a triangle. Their algorithms are the state-of-the-art algorithms to the best of our knowledge. The
three-pass algorithm presented therein, counts in the first pass the number of edges, in the second pass it
samples uniformly at random an edge (i, j) and a node k ∈ V − {i, j} and in the third pass it tests whether
the edges (i, k), (k, j) are present in the stream. The number of draws that have to be done in order to get
concentration (these draws are done in parallel), is of the order

r = log(
1

δ
)
2

ε2
(3 +

T1 + 2T2
T3

)

Even if the term T0 is missing compared to the naive sampling, the graph has still to be fairly dense with
respect to the number of triangles in order to get an ε approximation with high probability. In [51] the
DOULION algorithm tosses a coin independently for each edge with probability p to keep the edge and
probability q = 1 − p to discard it. Then it counts the number of triangles t′ in the sparsified graph and
outputs as an estimate for the true number of triangles the value t′/p3. Interestingly, the same sampling
scheme works for randomized matrix and tensor decompositions [2,49]. It was shown later by Tsourakakis,
Kolountzakis and Miller [52] using a powerful theorem due to Kim and Vu [31] that under mild conditions
on the triangle density the method results in a strongly concentrated estimate around the number of triangles
t. Recently, Pagh and Tsourakakis proposed a more efficient sampling scheme which colors the vertices of
G using N colors uniformly at random and counts monochromatic triangles, see [42].

Another line of work is based on linear algebraic arguments. Specifically, in the case of “power-law”
networks Tsourakakis showed in [48] that the spectral counting of triangles can be efficient due to their spe-
cial spectral properties [17] and [50] extended this idea using the randomized algorithm of [20] by proposing
a simple biased node sampling. In [8] the semi-streaming model for counting triangles is introduced, which
allows log n passes over the edges. The key observation is that since counting triangles reduces to computing
the intersection of two sets, namely the induced neighborhoods of two adjacent nodes, ideas from locality
sensitivity hashing [12] are applicable to the problem. More recently, Avron proposed a new approximate
triangle counting method based on a randomized algorithm for trace estimation [6].

2.4 Theoretical Preliminaries

Concentration of Measure In Section 3 we make extensive use of the following version of the Chernoff
bound [14].

Theorem 1. Let X1, X2, . . . , Xk be independently distributed {0, 1} variables with E[Xi] = p. Then for
any ε > 0, we have

Pr

[
|1
k

k∑
i=1

Xi − p| > εp

]
≤ 2e−ε

2pk/2

Random Projections A random projection x→ Rx from Rd → Rk approximately preserves all Euclidean
distances. One version of the Johnson-Lindenstrauss lemma [28] is the following:

Lemma 1 (Johnson Lindenstrauss). Suppose x1, . . . , xn ∈ Rd and ε > 0 and take k = Cε−2 log n.
Define the random matrix R ∈ Rk×d by taking all Ri,j ∼ N(0, 1) (standard gaussian) and independent.
Then, with probability bounded below by a constant the points yj = Rxj ∈ Rk satisfy

(1− ε)|xi − xj | ≤ |yi − yj | ≤ (1 + ε)|xi − xj |

for i, j = 1, 2, . . . , n where | · | represents the Euclidean norm.
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Extremal Graph Theory Hajnal and Szemerédi [25] proved in 1970 the following conjecture of Paul
Erdös:

Theorem 2 (Hajnal-Szemerédi Theorem). Every graph with n vertices and maximum vertex degree at
most k is k + 1 colorable with all color classes of size b n

k+1c or d n
k+1e.

Ahlswede and Katona consider the following problem: which graph with a given number of vertices n
and a given number of edges m maximizes the number of edges in its line graph L(G)? The problem is
equivalent to maximizing the sum of squares of the degrees of the vertices under the constraint that their sum
equals twice the number of the edges. The following theorem was given in [3] and answers this question.

Lemma 2 (Ahlswede-Katona theorem). The maximum value of the sum of the squares of all vertex de-
grees

∑
v∈V (G) deg(v)

2 over the set of all graphs with n vertices and m edges occurs at one or both of two
special types of graphs, the quasi-star graph or the quasi-complete graph.

For further progress on other questions related to the above optimization problem such as when does the
optimum occur at both graphs, see the work of Abrego, Fernández-Merchant, Neubauer and Watkins [1].

3 Proposed Method

Our algorithm combines two approaches that have been taken on triangle counting: sparsify the graph
by keeping a random subset of the edges [51,52] followed by a triple sampling using the idea of vertex
partitioning due to Alon, Yuster and Zwick [5]. In the following, we shall assume that the input is in the
form of an edge file, i.e., a file whose each line contains an edge. Notice that given this representation,
computing the degrees takes linear time.

3.1 Edge Sparsification

The following method was introduced in [51] and was shown to perform very well in practice: keep each
edge with probability p independently. Then for each triangle, the probability of it being kept is p3. So the
expected number of triangles left is p3t. This is an inexpensive way to reduce the size of the graph as it can
be done in one pass over the edge list using O(mp) random variables (more details can be found in section
4.2 and [33]).

In a later analysis [52], it was shown that from the number of triangles in the sampled graph we can
obtain a concentrated estimate around the actual triangle count as long as p3 ≥ Ω̃(∆t )

1. Here, we show a
similar bound using more elementary techniques. Suppose we have a set of k triangles such that no two
share an edge. For each such triangle we define a random variableXi which is 1 if the triangle is kept by the
sampling and 0 otherwise. Then as the triangles do not have any edges in common, the Xis are independent
and take value 0 with probability 1− p3 and 1 with probability p3. So by Chernoff bound

Pr

[
|1
k

k∑
i=1

Xi − p3| > εp3

]
≤ 2e−ε

2p3k/2.

So when p3kε2 ≥ 4d log n where d is a positive constant, the probability of sparsification returning an
ε-approximation is at least 1 − n−d. This is equivalent to p3k ≥ (4d log n)/(ε2) which suggests that in
order to sample with small p and hence discard many edges we need like k to be large. To show that such a
large set of independent triangles exist, we invoke the Hajnal-Szemerédi Theorem 2 on an auxiliary graph
H which we construct as follows. For each triangle i (i = 1, . . . , t) in G we create a vertex vi in H . We
connect two vertices vi, vj in H if and only if they represent triangles i, j respectively which share an edge
in G. Notice that the maximum degree in the auxiliary graph H is O(∆). Hence, we obtain the following
Corollary.

Corollary 1. Given t triangles such that no edge belongs to more than ∆ triangles, we can partition the
triangles into sets S1 . . . Sl such that |Si| > Ω(t/∆) and l is bounded by O(∆).

Combining Corollary 1 and the Chernoff bound allows us to prove the next theorem.
1 We use the tilde notation to hide polylogarithmic factors polylog(n).
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Theorem 3. If p3 ∈ Ω(∆ logn
ε2t ), then with probability 1−n−2, the sampled graph has a triangle count that

ε-approximates t.

Proof. Consider the partition of triangles given by corollary 1 and let d = 5. By choice of p we get that the
probability that the triangle count in each set is preserved within a factor of ε/2 is at least 1 − n−d. Since
there are at most n3 such sets, an application of the union bounds gives that their total is approximated
within a factor of ε/2 with probability at least 1− n3−d. This gives that the triangle count is approximated
within a factor of ε with probability at least 1− n3−d. Substituting d = 5 completes the proof.

3.2 Triple Sampling

Since each triangle corresponds to a triple of vertices, we can construct a set of triples U that include all
triangles. From this list, we can then sample triples uniformly at random. Let these samples be numbered
from 1 to s. Also, for the ith triple sampled, let Xi be 1 if it is a triangle and 0 otherwise. Since we pick
triples randomly from U and t of them are triangles, we have E(Xi) =

t
|U | and Xis are independent. So by

Chernoff bound we obtain:

Pr

[
|1
s

s∑
i=1

Xi −
t

|U |
| > ε

t

|U |

]
≤ 2e−ε

2ts/(2|U |)

If s = Ω( |U | logntε2 ), then we have that |U |
∑s
i=1

Xi

s approximates t within a factor of ε with probability
at least 1 − n−d for any d of our choice. As |U | ≤ n3, this immediately gives an algorithm with runtime
O(n3 log n/(tε2)) that approximates t within a factor of ε. Slightly more careful bookkeeping can also give
tighter bounds on |U | in sparse graphs.

A simple but crucial observation which allows us to decide whether we will sample a triple of vertices or
an edge and a vertex is the following. Consider any triple containing vertex u, (u, v, w). Since uv, uw ∈ E,
we have the number of such triples involving u is at most deg(u)2. From an edge-vertex sampling point of
view, as vw ∈ E, another bound on the number of such triples is m. When deg(u) > m1/2 , the second
bound is tighter, and the first is in the other case.

These two cases naturally suggest that low degree vertices with degree at most m1/2 be treated sep-
arately from high degree vertices with degree greater than m1/2. For the number of triangles around low
degree vertices, the value of

∑
u deg(u)2 is maximized when all edges are concentrated in as few vertices

as possible [3]. Since the maximum degree of such a vertex is m1/2, the number of such triangles is upper
bounded by m1/2 · (m1/2)2 = m3/2. Also, as the sum of all degrees is 2m, there can be at most 2m1/2 high
degree vertices, which means the total number of triangles incident to these high degree vertices is at most
2m1/2 ·m = 2m3/2. Combining these bounds give that |U | can be upper bounded by 3m3/2. Note that this
bound is asymptotically tight when G is a complete graph (n = m1/2). However, in practice the second
bound can be further reduced by summing over the degree of all v adjacent to u, becoming

∑
uv∈E deg(v).

As a result, an algorithm that implicitly constructs U by picking the better one among these two cases by
examining the degrees of all neighbors will achieve |U | ≤ O(m3/2).
This improved bound on U gives an algorithm that ε approximates the number of triangles in time:

O

(
m+

m3/2 log n

tε2

)
As our experimental data in Section 4.1 indicate, the value of t is usually Ω(m) in practice. In such

cases, the second term in the above calculation becomes negligible compared to the first one. In fact, in
most of our data, just sampling the first type of triples (aka. pretending all vertices are of low degree) brings
the second term below the first.

3.3 Hybrid algorithm

Edge sparsification with a probability of p allows us to only work on O(mp) edges, therefore the total
runtime of the triple sampling algorithm after sparsification with probability p becomes:

O

(
mp+

log n(mp)3/2

ε2tp3

)
= O

(
mp+

log nm3/2

ε2tp3/2

)
.
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As stated above, since the first term in most practical cases are much larger, we can set the value of p to
balance these two terms out:

pm =
m3/2 log n

p3/2tε2
⇒ p5/2tε2 = m1/2 log n⇒ p =

(
m1/2 log n

tε2

)2/5

The actual value of p picked would also depend heavily on constants in front of both terms, as sampling
is likely much less expensive due to factors such as cache effect and memory efficiency. Nevertheless, our
experimental results in section 4 does seem to indicate that this type of hybrid algorithms can perform better
in certain situations.

3.4 Sampling in the Semi-Streaming Model

The previous analysis of triangle counting by Alon, Yuster and Zwick was done in the streaming model [5],
where the assumption was constant available space. We show that our sampling algorithm can be done in a
slightly weaker model with space usage equaling:

O

(
m1/2 log n+

m3/2 log n

tε2

)
We assume the edges adjacent to each vertex are given in order [23]. We first need to identify high degree

vertices, specifically the ones with degree higher than m1/2. This can be done by sampling O(m1/2 log n)
edges and recording the vertices that are endpoints of one of those edges.

Lemma 3. Suppose dm1/2 log n samples were taken, then the probability of all vertices with degree at least
m1/2 being chosen is at least 1− n−d+1.

Proof. Consider some vertex v with degree at leastm1/2. The probability of it being picked in each iteration
is at least m1/2/m = m−1/2. As a result, the probability of it not picked in dm1/2 log n iterations is:

(1−m−1/2)dm
1/2 logn =

[
(1−m1/2)m

1/2
]d logn

≤
(
1

e

)d logn
= n−d

As there are at most n vertices, applying union bound gives that all vertices with degree at least m1/2 are
sampled with probability at least 1− n−d+1. ut

Our proposed method is comprised of the following three steps/passes over the stream.

1. Identifying high degree vertices requires one pass of the graph. Also, note that the number of potential
candidates can be reduced to m1/2 using another pass over the edge list.

2. For all the low degree vertices, we can read their O(m1/2) neighbors and sample from them. For the
high degree vertices, we do the following: for each edge, obtain a random variable y from a binomial
distribution equal to the number of edge/vertices pairs that this edge is involved in. Then pick y vertices
from the list of high degree vertices randomly. These two sampling procedures can be done together in
another pass over the data.

3. Finally, we need to check whether each edge in the sampled triples belong to the edge list. We can store
all such queries into a hash table as there are at most O(m

3/2 logn
tε2 ) edges sampled w.h.p. Then going

through the graph edges in a single pass and looking them up in table yields the desired answer.

4 Experiments

4.1 Data

The graphs used in our experiments are shown in Table 2. Multiple edges and self loops were removed
(if any). All graphs with the exceptions of Livejournal-links and Flickr are available on the Web. Table 1
summarizes the resources.
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Description Availability
� Stanford Large Network Dataset collection http://snap.stanford.edu/
� UF Sparse Matrix Collection http://www.cise.ufl.edu/research/sparse
? Max Planck http://socialnetworks.mpi-sws.org/

Table 1. Dataset sources.

Name Nodes Edges Triangle Count Description
AS-Skitter 1,696,415 11,095,298 28,769,868 Autonomous Systems
Flickr 1,861,232 15,555,040 548,658,705 Person to Person
Livejournal-links 5,284,457 48,709,772 310,876,909 Person to Person
Orkut-links[39] 3,072,626 116,586,585 621,963,073 Person to Person
Soc-LiveJournal 4,847,571 42,851,237 285,730,264 Person to Person
Web-EDU 9,845,725 46,236,104 254,718,147 Web Graph (page to page)
Web-Google 875,713 3,852,985 11,385,529 Web Graph
Wikipedia 2005/11 1,634,989 18,540,589 44,667,095 Web Graph (page to page)
Wikipedia 2006/9 2,983,494 35,048,115 84,018,183 Web Graph (page to page)
Wikipedia 2006/11 3,148,440 37,043,456 88,823,817 Web Graph (page to page)
Wikipedia 2007/2 3,566,907 42,375,911 102,434,918 Web Graph (page to page)
Youtube[39] 1,157,822 2,990,442 4,945,382 Person to Person

Table 2. Datasets used in our experiments.

4.2 Experimental Setup and Implementation Details

The experiments were performed on a single machine, with Intel Xeon CPU at 2.83 GHz, 6144KB cache
size and and 50GB of main memory. The graphs are from real world web-graphs, some details regarding
them are in Table 1 and in Table 2. The algorithm was implemented in C++, and compiled using gcc version
4.1.2 and the -O3 optimization flag. Time was measured by taking the user time given by the linux time
command. IO times are included in that time since the amount of memory operations performed in setting
up the graph is non-negligible. However, we use a modified IO routine that’s much faster than the standard
C/C++ scanf.

A major optimization that we used was to sort the edges in the graph and store the input file in the format
as a sequence of neighbor lists per vertex. Each neighbor list begins with the size of the list, followed by
the neighbors. This is similar to how software like Matlab stores sparse matrices. The preprocessing time to
change the data into this format is not included. It can significantly improve the cache property of the graph
stored, and hence the overall performance.

Some implementation details are based on this graph storage format. Specifically, since each triple that
we check by definition has 2 edges already in the graph, it suffices to check/query whether the 3rd edge
is present in the graph. In order to do this efficiently, rather than querying the existence of an edge upon
sampling each triple, we store the entire set of the queries and answer them in one pass through the graph..
Finally, in the next section we discuss the details behind efficient binomial sampling. Specifically picking a
random subset of expected size p|S| from a set S can be done in expected sublinear time [33].

Binomial Sampling in Expected Sublinear time Most of our algorithms have the following routine in
their core: given a list of values, keep each of them with probability p and discard with probability 1 − p.
If the list has length n, this can clearly be done using n random variables. As generating random variables
can be expensive, it’s preferrable to use O(np) random variables in expectation if possible. One possibility
is to pick O(np) random elements, but this would likely involve random accesses in the list, or maintaining
a list of the indices picked in sorted order. A simple way that we use in our code to perform this sampling
is to generate the differences between indices of entries retained [33]. This variable clearly belongs to an
exponential distribution, and if x is a uniform random number in (0, 1), taking dlog(1−p) xe as the value
of the random variable, see [33]. The primary advantage of doing so is that sampling can be done while
accessing the data in a sequential fashion, which results in much better cache performances.
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4.3 Results

The six variants of the code involved in the experiment are first separated by whether the graph was first
sparsified by keeping each edge with probability p = 0.1. In either case, an exact algorithm based on hybrid
sampling with performance bounded by O(m3/2) was run. Then two triple based sampling algorithms are
also considered. They differ in whether an attempt to distinguish between low and high degree vertices, so
the simple version is essentially sampling all ’V’ shaped triples off each vertex. Note that no sparsification
and exact also generates the exact number of triangles. Errors are measured by the absolute value of the
difference between the value produced and the exact number of triangles divided by the exact number. The
results on error and running time are averaged over five runs. The results are shown in Tables 3, 4.

No Sparsification
Graph Exact Simple Hybrid

err(%) time err(%) time err(%) time
AS-Skitter 0.000 4.452 1.308 0.746 0.128 1.204
Flickr 0.000 41.981 0.166 1.049 0.128 2.016
Livejournal-links 0.000 50.828 0.309 2.998 0.116 9.375
Orkut-links 0.000 202.012 0.564 6.208 0.286 21.328
Soc-LiveJournal 0.000 38.271 0.285 2.619 0.108 7.451
Web-EDU 0.000 8.502 0.157 2.631 0.047 3.300
Web-Google 0.000 1.599 0.286 0.379 0.045 0.740
Wiki-2005 0.000 32.472 0.976 1.197 0.318 3.613
Wiki-2006/9 0.000 86.623 0.886 2.250 0.361 7.483
Wiki-2006/11 0.000 96.114 1.915 2.362 0.530 7.972
Wiki-2007 0.000 122.395 0.943 2.728 0.178 9.268
Youtube 0.000 1.347 1.114 0.333 0.127 0.500

Table 3. Results of experiments averaged over 5 Trials using only triple sampling.

4.4 Remarks

From Table 2 it is evident that social networks are abundant in triangles. For example, the Flickr graph with
only ∼1.9M vertices has ∼550M triangles and the Orkut graph with ∼3M vertices has ∼620M triangles.
Furthermore, from Table 3 and Table 4 it is clear that none of the variants clearly outperforms the others on
all the data. The gain/loss from sparsification is likely due to the fixed sampling rate. Adapting a doubling
procedure for the sampling rate as in [52] is likely to mitigate this discrepancy. The difference between
simple and hybrid sampling are due to the fact that handling the second case of triples has a much worse
cache access pattern as it examines vertices that are two hops away. There are alternative implementations of
how to handle this situation, which would be interesting for future implementations. A fixed sparsification
rate of p = 10% was used mostly to simplify the setups of the experiments. In practice varying p to look for
a rate where the result stabilize is the preferred option [52].

When compared with previous results on this problem, the error rates and running times of our results are
all significantly lower. In fact, on the wiki graphs our exact counting algorithms have about the same order
of speed with other appoximate triangle counting implementations. This is also why we did not include
any competitors in the exposition of the results since our implementation is a highly optimized C/C++
implementation with an emphasis on performance for huge graphs.

As we mentioned earlier in Section 2.2 there exists a lot of interest in the sociology as already mentioned
in Section 2 in signed networks. It is clear that our method applies to this setting as well, by considering
individually each possible configuration of a signed triangle. However, we do not include any of our exper-
imental findings here due to the small size of the signed networks available to us via the Stanford Network
Analysis library (SNAP).
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Sparsified (p = 0.1)
Graph Exact Simple Hybrid

err(%) time err(%) time err(%) time
AS-Skitter 2.188 0.641 3.208 0.651 1.388 0.877
Flickr 0.530 1.389 0.746 0.860 0.818 1.033
Livejournal-links 0.242 3.900 0.628 2.518 1.011 3.475
Orkut-links 0.172 9.881 1.980 5.322 0.761 7.227
Soc-LiveJournal 0.681 3.493 0.830 2.222 0.462 2.962
Web-EDU 0.571 2.864 0.771 2.354 0.383 2.732
Web-Google 1.112 0.251 1.262 0.371 0.264 0.265
Wiki-2005 1.249 1.529 7.498 1.025 0.695 1.313
Wiki-2006/9 0.402 3.431 6.209 1.843 2.091 2.598
Wiki-2006/11 0.634 3.578 4.050 1.947 0.950 2.778
Wiki-2007 0.819 4.407 3.099 2.224 1.448 3.196
Youtube 1.358 0.210 5.511 0.302 1.836 0.268

Table 4. Results of experiments averaged over 5 trials using sparsification and triple sampling.

5 Theoretical Ramifications

In Section 5.1 we discuss random projections and triangles, motivated by the simple observation that the
inner product of two rows of the adjacency matrix corresponding to two connected vertices forming edge e
gives the count of triangles ∆(e).

5.1 Random Projections and Triangles

Consider any two vertices i, j ∈ V which are connected, i.e., (i, j) ∈ E. Observe that the inner product
of the i-th and j-th column of the adjacency matrix of graph G gives the number of triangles that edge
(i, j) participates in. Viewing the adjacency matrix as a collection of n points in Rn, a natural question to
ask is whether we can use results from the theory of random projections [28] to reduce the dimensionality
of the points while preserving the inner products which contribute to the count of triangles. Magen and
Zouzias [38] have considered a similar problem, namely random projections which preserve approximately
the volume for all subsets of at most k points.

According to Lemma 1 projecton x → Rx from Rd → Rk approximately preserves all Euclidean
distances. However it does not preserve all pairwise inner products. This can easily be seen by considering
the set of points e1, . . . , en ∈ Rn = Rd where e1 = (1, 0, . . . , 0) etc. Indeed, all inner products of the
above set are zero, which cannot happen for the points Rej as they belong to a lower dimensional space
and they cannot all be orthogonal. For the triangle counting problem we do not need to approximate all
inner products. Suppose A ∈ {0, 1}n is the adjacency matrix of a simple undirected graph G with vertex
set V (G) = {1, 2, . . . , n} and write Ai for the i-the column of A. The quantity we are interested in is the
number of triangles in G (actually six times the number of triangles)

t =
∑

u,v,w∈V (G)

AuvAvwAwu.

If we apply a random projection of the above kind to the columns of A

Ai → RAi

and write
X =

∑
u,v,w∈V (G)

(RA)uv(RA)vw(RA)wu

it is easy to see that E [X] = 0 since X is a linear combination of triple products RijRklRrs of entries of
the random matrix R and that all such products have expected value 0, no matter what the indices. So we
cannot expect this kind of random projection to work.

11



Therefore we consider the following approach which still has limitations as we will show in the follow-
ing. Let

t =
∑
u∼v

A>uAv, where u ∼ v means Auv = 1,

and look at the quantity

Y =
∑
u∼v

(RAu)
>(RAv)

=

k∑
l=1

n∑
i,j=1

(∑
u∼v

AiuAjv

)
RliRlj

=

k∑
l=1

n∑
i,j=1

#{i− ∗ − ∗ − j}RliRlj .

This is a quadratic form in the gaussian N(0, 1) variables Rij . By simple calculation for the mean value
and diagonalization for the variance we see that if the Xj are independent N(0, 1) variables and

Z = X>BX,

where X = (X1, . . . , Xn)
> and B ∈ Rn×n is symmetric, that

E [Z] = TrB

Var [Z] = TrB2 =

n∑
i,j=1

(Bij)
2.

Hence E [Y ] =
∑k
l=1

∑n
i=1 #{i− ∗ − ∗ − i} = k · t so the mean value is the quantity we want (multiplied

by k). For this to be useful we should have some concentration for Y near E [Y ]. We do not need exponential
tails because we have only one quantity to control. In particular, a statement of the following type

Pr [|Y − E [Y ]| > εE [Y ]] < 1− cε,

where cε > 0 would be enough. The simplest way to check this is by computing the standard deviation of
Y . By Chebyshev’s inequality it suffices that the standard deviation be much smaller than E [Y ]. According
to the formula above for the variance of a quadratic form we get

Var [Y ] =

k∑
l=1

n∑
i,j=1

#{i− ∗ − ∗ − i}2

= C · k ·#{x− ∗ − ∗ − ∗ − ∗ − ∗ − x}
= C · k · (number of circuits of length 6 in G).

Therefore, to have concentration it is sufficient that

Var [Y ] = o(k · (E [Y ])2). (2)

Observe that (2) is a sufficient -and not necessary- condition. Furthermore,(2) is certainly not always
true as there are graphs with many 6-circuits and no triangles at all (the circuits may repeat vertices or
edges).

6 Conclusions & Future Work

In this work, we extend previous work [51,52] by introducing the powerful idea of Alon, Yuster and Zwick
[5]. Specifically, we propose a Monte Carlo algorithm which approximates the true number of triangles
within ε and runs in O

(
m+ m3/2 logn

tε2

)
time. Our method can be extended to the semi-streaming model

using three passes and a memory overhead of O
(
m1/2 log n+ m3/2 logn

tε2

)
.
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In practice our methods obtain excellent running times. The accuracy is also satisfactory, especially for
the type of applications we are concerned with. Finally, we propose a random projection based method
for triangle counting and provide a sufficient condition to obtain an estimate with low variance. A natu-
ral question is the following: can we provide some reasonable condition on G that would guarantee (2)?
Furthermore, our proposed methods are easily parallelizable and developing such an implementation in the
MAPREDUCE framework, see [19] and [?,54], is a natural practical direction. Finally, coming up with an
easy-to-compute quantity which would allow us to sparsify more efficiently is an interesting question.
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