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ABSTRACT

Balanced graph partitioning in the streaming setting is a
key problem to enable scalable and efficient computations on
massive graph data such as web graphs, knowledge graphs,
and graphs arising in the context of online social networks.
Two families of heuristics for graph partitioning in the stream-
ing setting are in wide use: place the newly arrived vertex
in the cluster with the largest number of neighbors or in the
cluster with the least number of non-neighbors.

In this work, we introduce a framework which unifies the
two seemingly orthogonal heuristics and allows us to quan-
tify the interpolation between them. More generally, the
framework enables a well principled design of scalable, stream-
ing graph partitioning algorithms that are amenable to dis-
tributed implementations. We derive a novel one-pass, stream-
ing graph partitioning algorithm and show that it yields sig-
nificant performance improvements over previous approaches
using an extensive set of real-world and synthetic graphs.

Surprisingly, despite the fact that our algorithm is a one-
pass streaming algorithm, we found its performance to be
in many cases comparable to the de-facto standard offline
software METIS and in some cases even superiror. For in-
stance, for the Twitter graph with more than 1.4 billion of
edges, our method partitions the graph in about 40 minutes
achieving a balanced partition that cuts as few as 6.8% of
edges, whereas it took more than 8 1

2
hours by METIS to

produce a balanced partition that cuts 11.98% of edges. We
also demonstrate the performance gains by using our graph
partitioner while solving standard PageRank computation
in a graph processing platform with respect to the commu-
nication cost and runtime.

Categories and Subject Descriptors

H.2.4 [Database Systems]: [Distributed databases]; D.2.8
[Software Engineering]: Metrics—complexity measures,

performance measures; G.2.2 [Mathematics of Comput-
ing]: [Graph Algorithms]
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1. INTRODUCTION
The scale of graph data that needs to be processed in the

context of online services is massive. For example, the Web
graph amounts to at least one trillion of links, Facebook re-
cently reported more than 1 billion of users and 140 billion
of friend connections, and, in 2009, Twitter reported more
than 40 million of users and about 1.5 billion of social rela-
tions [21]. A standard approach for scalable computation on
massive scale input graph data is to partition an input graph
into smaller partitions and then use a large distributed sys-
tem to process them. The partition sizes have to be balanced
to exploit the speedup of parallel computing over different
partitions. Furthermore, it is critical that the number of
edges between distinct partitions is small, in order to mini-
mize the communication cost incurred due to messages that
are exchanged between different partitions. Many popular
graph processing platforms such as Pregel [23] that builds
on MapReduce [7], and its open source cousin Apache Gi-
raph, PEGASUS [13] and GraphLab [22] use as a default
partitioner Hash Partition of vertices, which corresponds to
assigning each vertex to one of the k partitions uniformly at
random. This heuristic is efficient for balancing the number
of vertices over different clusters, but ignores entirely the
graph structure. In fact, the expected fraction of edges cut
by a random partition of vertices into k ≥ 1 clusters is equal
to 1 − 1/k. Given the fact that real-world graphs tend to
have sparser cuts [4], it is important to discover methods
that are computationally efficient, practical, and yet yield
high quality graph partitioning.

The problem of finding a balanced graph partition that
minimizes the number of edges cut is known as the balanced

graph partitioning problem, which has a rich history in the
context of theoretical computer science. This problem is
known to be NP-hard [19] and several approximation algo-
rithms have been derived in previous work, which we review
in Section 2. In practice, systems aim at providing good
partitions in order to enhance their performance, e.g., [23,
27]. It is worth emphasizing that the balanced graph parti-
tioning problem appears in various guises in numerous other
domains, e.g., see [16].

Another major challenge in the area of big graph data
is efficient processing of dynamic graphs. For example, new
accounts are created and deleted every day in online services
such as Facebook, Skype and Twitter. Furthermore, graphs



Fennel Best competitor Hash Partition METIS
# Clusters (k) λ ρ λ ρ λ ρ λ ρ

2 6.8% 1.1 34.3% 1.04 50% 1 11.98% 1.02
4 29% 1.1 55.0% 1.07 75% 1 24.39% 1.03
8 48% 1.1 66.4% 1.10 87.5% 1 35.96% 1.03

Table 1: Fraction of edges cut λ and the normalized maximum load ρ for Fennel, the previously best-
known heuristic (linear weighted degrees [29]) and hash partitioning of vertices for the Twitter graph with
approximately 1.5 billion edges. Fennel and best competitor require around 40 minutes, METIS more than
8 1

2
hours.

created upon post-processing datasets such as Twitter posts
are also dynamic, see for instance [2]. It is crucial to have
efficient graph partitioners of dynamic graphs. For exam-
ple, in the Skype service, each time a user logs in, his/her
online contacts get notified. It is expensive when messages
have to be sent across different graph partitions since this
would typically involve using network infrastructure. The
balanced graph partitioning problem in the dynamic setting
is known as streaming graph partitioning [29]. Vertices (or
edges) arrive and the decision of the placement of each ver-
tex (edge) has to be done “on-the-fly” in order to incur as
little computational overhead as possible.

It is worth noting that the state-of-the-art work on graph
partitioning seems to roughly divide in two main lines of re-
search. Rigorous mathematically work and algorithms that
do not scale to massive graphs, e.g., [20], and heuristics that
are used in practice [16, 26, 29]. Our work contributes to-
wards bridging the gap between theory and practice.

Summary of our Contributions. Our contributions
can be summarized in the following points:
• We introduce a general framework for graph partitioning

that relaxes the hard cardinality constraints on the number
of vertices in a cluster [3, 20]. Our formulation provides a
unifying framework that subsumes two of the most popular
heuristics used for streaming balanced graph partitioning:
the folklore heuristic of [26] which places a vertex to the
cluster with the fewest non-neighbors, and the degree-based
heuristic of [29], which serves as the current state-of-the-art
method with respect to performance.
• Our framework allows us to define formally the notion

of interpolation between between the non-neighbors heuris-
tic [26] and the neighbors heuristic [29]. This provides im-
proved performance for the balanced partitioning problem
in the streaming setting. Moreover, for a special case of

our framework, we provide a O( log (k)
k

) approximation algo-
rithm, where k is the number of clusters.
• We evaluate our proposed streaming graph partitioning

method, Fennel, on a wide range of graph datasets, both
real-world and synthetic graphs, and show that it produces
high quality graph partitions. For example, Table 1 shows
the performance of Fennel versus the best previously-known
heuristic, which is the linear weighted degrees [29], and the
baseline Hash Partition of vertices. We observe that Fen-

nel achieves, simultaneously, significantly smaller fraction
of edges cut and balanced cluster sizes.
• We compare Fennel to Hash Partition, the default par-

titioner of various major large-scale graph processing plat-
forms. Specifically, we demonstrate significant performance
gains with respect to the communication cost and the run-
time while running Pagerank over a distributed graph in the
graph processing platform Apache Giraph.

Structure of the Paper. The remainder of the paper is
organized as follows. Section 2 discusses the related work.
Section 3 introduces our graph partitioning framework and
presents our main theoretical result. Section 4 presents
a scalable, streaming algorithm. Section 5 evaluates our
method versus the state-of-the-art work on an extensive set
of real-world and synthetic graphs. Section 6 illustrates that
Fennel is a choice for achieving fast and high-quality par-
titioning in a real system, by performing a baseline compar-
ison to Hash Partition in Apache Giraph. Finally, Section 7
concludes the paper.

2. RELATED WORK
Balanced graph partitioning is an NP-hard problem [10].

It is a fundamental problem in every parallel and distributed
application since data placement typically affects significantly
the execution efficiency of jobs [17]. The goal of balanced
graph partitioning is to minimize an application’s overall
runtime. This is achieved by assigning to each processor/machine
an equal amount of data and concurrently minimizing the
parallel/distributed overhead by minimizing the number of
edges cut by the corresponding partition. Formally, the
(k, ν)-balanced graph partitioning asks to divide the vertices
of a graph in components each of size less than ν n

k
, for some

given positive integer k and ν ≥ 1. The case k = 2, ν = 1 is
equivalent to the minimum bisection problem, an NP-hard
problem [10]. Several approximation algorithms and heuris-
tics exist for this problem, see, e.g., [9] and [18] respectively.
When ν = 1 + ǫ for any desired but fixed ǫ > 0 there ex-
ists a O(ǫ−2 log1.5 n) approximation algorithm [19]. When
ν = 2 there exists an O(

√
log k log n) approximation algo-

rithm based on semidefinite programming (SDP) [20]. Due
to the practical importance of k-paritioning there exist sev-
eral heuristics, among which METIS [15] and its parallel
version [28] stands out for its good performance. For this
reason, METIS is used in many existing systems, e.g. [14].
Recently, it was shown that label propagation [31] is efficient
and effective. An extensive summary of existing heuristics
can be found in [1].

Online graph partitioning was introduced by Stanton and
Kliot [29]. The online setting is also well adapted to dynamic
graphs, where offline methods incur an expensive computa-
tional cost, requiring to repartition the entire graph. More-
over, the newly obtained partitioning can significantly differ
from the old one. This in turn implies a large reshuffle of
the data, which is very expensive in a distributed system.
Currently the most advanced online partitioning algorithm
is by Stanton and Kliot [29], against which we extensively
compare our approach.



3. PROPOSED FRAMEWORK

Notation. Let G(V, E) be a simple undirected graph, where
|V | = n, |E| = m. For a subset of vertices S ⊆ V , let
e(S, S) be the set of edges with both end-vertices in S, and
let e(S, V \ S) be the set of edges across the cut (S, V \ S).
For a given vertex v let tS(v) be the number of triangles
(v, w, z) such that w, z ∈ S. We define a vertex partition

P = (S1, . . . , Sk) to be a family of pairwise disjoint vertex
sets whose union is V . We refer to each Si, i = 1, . . . , k, as
a cluster of vertices. Let ∂e(P) to be the set of edges that
cross partition boundaries, i.e. ∂e(P) = ∪k

i=1e(Si, V \ Si).
Finally, we refer to |∂e(P)| as the edge-cut size.

Graph Partitioning Framework. We formulate a bal-
anced graph partitioning framework that is based on ac-
counting for the cost of internal edges and the cost of edges
cut by the vertex partition in a single global objective func-
tion.
The size of individual clusters. We denote with σ(Si) the
size of the cluster of vertices Si, where σ is a mapping to
the set of positive real numbers. Special instances of inter-
est are (a) edge cardinality where the size of the cluster i is
proportional to the total number of edges with at least one
end-vertex in the set Si, i.e. |e(Si, Si)| + |e(Si, V \ Si)|, (b)
interior-edge cardinality where the size of cluster i is pro-
portional to the number of internal edges |e(Si, Si)|, and (c)
vertex cardinality where the size of partition i is proportional
to the total number of vertices |Si|. The edge cardinality is
a measure of cluster size that is of interest in some appli-
cations, e.g. iterative computations on input graph data
where the computational complexity within a cluster is lin-
ear in the number of edges with at least one vertex in the
given cluster. The vertex cardinality is a standard measure
of the size of a cluster and for some graphs, e.g., of bounded
degree, may serve as a proxy for the edge cardinality.
The global objective function. We define a global objec-
tive function that consists of two elements: (1) the inter-
partition cost cOUT : N

k → R+ and (2) the intra-partition
cost cIN : N

k → R+. These functions are assumed to be
increasing and super-modular (or convex, if extended to the
set of real numbers). For every given partition of vertices
P = (S1, S2, . . . , Sk), we define the global cost function as

f(P) = cOUT(|e(S1, V \ S1)|, . . . , |e(Sk, V \ Sk)|)
+ cIN(σ(S1), . . . , σ(Sk)).

It is worth mentioning some particular cases of interest.
Special instance of interest for the inter-partition cost is the
linear function in the total number of cut edges |∂e(P)|.
This instance is of interest in cases where an identical cost
is incurred per each edge cut, e.g. in cases where messages
are exchanged along cut edges and these messages are trans-
mitted through some common network bottleneck. For the
intra-partition cost, a typical goal is to balance the cost
across different partitions and this case is accommodated
by defining cIN(σ(S1), . . . , σ(Sk)) =

Pk

i=1 c(σ(Si)), where
c(x) is a convex increasing function such that c(0) = 0. In
this case, the intra-partition cost function, being defined as
a sum of convex functions of individual cluster sizes, would
tend to balance the cluster sizes since the minimum is at-
tained when sizes are equal.

We formulate the graph partitioning problem as follows.

Optimal k-Graph Partitioning

Given a graph G = (V, E), find a partition
P∗ = {S∗

1 , . . . , S∗
k} of the vertex set V , such

that f(P∗) ≥ f(P), for all partitions P such
that |P| = k.

We refer to the partition P∗ as the optimal k-
graph partition of the graph G.

Streaming setting. The streaming graph partitioning prob-
lem can be defined as follows. Let G = (V, E) be an input
graph and let us assume that we want to partition the graph
into k disjoint subsets of vertices. The vertices arrive in some
order, each one with the set of its neighbors. We consider
three different stream orders, as in [29].

• Random: Vertices arrive according to a random permu-
tation.

• BFS: This ordering is generated by selecting a vertex
uniformly at random and performing breadth first search
starting from that vertex.

• DFS: This ordering is identical to the BFS ordering,
except that we perform depth first search.

A k-partitioning streaming algorithm has to decide when-
ever a new vertex arrives to which cluster it is going to be
placed. A vertex is never moved after it has been assigned
to a cluster. Finally, it is worth mentioning that even if we
focus on vertex balanced partitions in Section 5, Fennel

also works for edge balanced parititions as well, see [29].

Application to Classical Balanced Partitioning. Clas-
sical balanced graph partitioning problem is the most com-
mon special case of our framework, in which the inter-partition
cost is equal to the total number of edges cut, and the intra-
partition cost is defined in terms of the vertex cardinalities.
We will next explain the intuition behind our framework
in this important case, and how to derive appropriate cost
functions.

The starting point in the literature, e.g., [19, 20], is to
impose hard cardinality constraints, namely |S∗

i | ≤ ν n
k

for
some small constant ν, i = 1, . . . , k. This set of constaints
makes the problem significantly hard. Currently, the state-
of-the-art work depends on the Arora-Rao-Vazirani barrier
[3] which results in a O(

√
log n) approximation factor. The

typical formulation is the following:

minimizeP=(S1,...,Sk) |∂e(P)|
subject to |Si| ≤ ν n

k
, ∀i ∈ {1, . . . , k}

The idea behind our approach is to relax the hard car-
dinality constraints by introducing a term in the objective
cIN(P) whose minimum is achieved when |Si| = n

k
for all

i = 1, 2, . . . , k. Therefore, our framework is based on a well-
defined global graph partitioning objective function, which
allows for a principled design of approximation algorithms
and heuristics as shall be demonstrated. Our graph parti-
tioning method is based on solving the following optimiza-
tion problem:

minimizeP=(S1,...,Sk) |∂e(P)| + cIN(P) (1)



Intra-partition cost. With the goal in mind to favor balanced
partitions, we may define the intra-partition cost function by
cIN(P) =

Pk

i=1 c(|Si|) where c(x) is an increasing function
choosen to be super-modular, so that the following increasing
returns property holds c(x + 1)− c(x) ≥ c(y + 1)− c(y), for
every 0 ≤ y ≤ x.

We focus on the following family of functions c(x) = αxγ ,
for α > 0 and γ ≥ 1. By the choice of the parameter γ,
this family of cost functions allows us to control how much
the imbalance of cluster sizes is accounted for in the objec-
tive function. In one extreme case where γ = 1, we observe
that the objective corresponds to minimizing the number
of cut-edges, thus entirely ignoring any possible imbalance
of the cluster sizes. On the other hand, by taking larger
values for the parameter γ, the more weight is put on the
cost of partition imbalance, and this cost may be seen to
approximate hard constraints on the imbalance in the limit
of large γ. Parameter α is also important. We advocate a
principled choice of α independently of whether it is sub-
optimal compared to other choices. Specifically, we choose

α = m kγ−1

nγ . This provides us a proper scaling, since for
this specific choice of α, our optimization problem is equiv-
alent to minimizing a natural normalization of the objective

function
Pk

i=1
e(Si,V \Si)

m
+ 1

k

Pk

i=1

„

|Si|
n
k

«γ

.

An equivalent maximization problem. We note that the opti-
mal k-graph partitioning problem admits an equivalent for-
mulation as a maximization problem which makes a connec-
tion with the concept of graph modularity [24]. For a graph
G = (V, E) and S ⊆ V , we define the function h : 2V → R

as:

h(S) = |e(S, S)| − c(|S|)

where h(∅) = h({v}) = 0 for every v ∈ V . Given k ≥ 1 and
a partition P = {S1, . . . , Sk} of the vertex set V , we define
the function g as

g(P) =

k
X

i=1

h(Si).

Now, observe that maximizing the function g(P) over all
possible partitions P of the vertex set V such that |P| = k
corresponds to the k-graph partitioning problem. Indeed,
this follows by noting that

g(P) =
k
X

i=1

|e(Si, Si)| − c(|Si|)

= m −
`

k
X

i=1

|e(Si, V \ Si)|) − c(|Si|)
´

= m − f(P).

Thus, maximizing function g(P) corresponds to minimizing
function f(P), which is precisely the objective of our k-graph
partitioning problem.
Modularity. We note that when the function c(x) is taken
from the family c(x) = αxγ , for α > 0 and γ = 2, our objec-
tive has a special combinatorial interpretation. Specifically,
our problem is equivalent to maximizing the function

k
X

i=1

[|e(Si, Si)| − p

 

|Si|
2

!

]

where p = 2α. In this case, each summation element cor-
responds to the difference between the realized and the ex-
pected number of edges within each cluster under the null-
hypothesis that the graph is an Erdös-Rényi random graph
with probability p. This is intimately related to the concepts
of graph modularity [11] and quasi-cliques [30].
Approximation guarantees. For the special case of γ = 2
we can derive an approximation algorithm with provable
guarantees. We design a semi-definite programming algo-
rithm for a shifted version of our objective. Specifically,
the objective is shifted by α

`

n

2

´

to ensure that the optimal
objective value is non-negative, a necessary condition for
designing multiplicative approximation algorithms. Given
that a typical real-world graph is sparse, e.g., m = O(n)
or m = O(npolylog(n)), the objective is dominated by the
main O(n2) term. Therefore, the shifted objective guaran-
tees performance at least as good as Hash Partitioning due
to the main term and then optimizes a second order term
which is O(m) = o(n2). Our approximation guarantee pro-
vides an imrovement of O(log k) over hash partitioning, see
Theorem 1.

Theorem 1. There exists a polynomial time algorithm

which provides an Ω( log k

k
)-approximation guarantee for the

shifted by α
`

n

2

´

Optimal k-Graph Partitioning.

The proof and algorithm along with the discussion about
when the incurred additive error due to shifting does not ren-
der the algorithm useless will appear in an extended version
of this work. An interesting research direction is to pursue
additive rather than multiplicative guarantees for maximiz-
ing g(P).

4. ONE-PASS STREAMING ALGORITHM

General design. We derive a streaming algorithm by us-
ing a greedy assignment of vertices to clusters as follows:
assign each arriving vertex to a partition such that the ob-
jective function of the k graph partitioning problem, defined
as a maximization problem, is increased the most. Formally,
given that current vertex partition is P = (S1, S2, . . . , Sk),
a vertex v is assigned to partition i such that

g(S1, . . . , Si ∪ {v}, . . . , Sj , . . . , Sk)

≥ g(S1, . . . , Si, . . . , Sj ∪ {v}, . . . , Sk), for all j ∈ [k].

Defining δg(v, Si) = g(S1, . . . , Si ∪ {v}, . . . , Sj , . . . , Sk) −
g(S1, . . . , Si, . . . , Sj , . . . , Sk), the above greedy vertex assign-
ment naturally suggests the following streaming algorithm.

Greedy vertex assignment

• Assign vertex v to partition i such that
δg(v, Si) ≥ δg(v, Sj), for all j ∈ [k]

Application to Classical Balanced Partitioning. We
treat the important special case of balancing edge-cuts and
vertex cardinality in more detail, since we evaluate it ex-
perimentally in Section 5. In this case, δg(v, Sl) = |N(v) ∩
Sl| − δc(|Sl|), where δc(x) = c(x + 1) − c(x), for x ∈ R+,
and N(v) denotes the set of neighbors of vertex v. The two
summation terms in the greedy index δg(v, Sl) account for
the two underlying objectives of minimizing the number of



cut edges and balancing of the partition sizes. Notice that
the component |N(v) ∩ Si| corresponds to the number of
neighbours of vertex v that are assigned to partition Si. In
other words, this corresponds to the degree of vertex v in the
subgraph induced by Si. On the other hand, the component
δc(|Si|) can be interpreted as the marginal cost of increasing
the partition i by one additional vertex.

For our special family of cost functions c(x) = αxγ , we
have δc(x) = αγxγ−1. For γ = 1, the greedy index rule
corresponds to assigning a new vertex v to partition i with
the largest number of neighbours in Si, i.e |N(v)∩Si|. This is
one of the greedy rules considered by Stanton and Kliot [29],
and is a greedy rule that may result in highly imbalanced
partition sizes.

On the other hand, in case of quadratic cost c(x) = 1
2
x2,

the greedy index is |N(v)∩Si|− |Si|, and the greedy assign-
ment corresponds to assigning a new vertex v to partition i
that minimizes the number of non-neighbors of v inside Si,
i.e. |Si \ N(v)|. Hence, this yields the following heuristic:
place a vertex to the partition with the least number of non-

neighbors [26]. This assignment accounts for both the cost
of cut edges and the balance of partition sizes.

Finally, we outline that in many applications there exist
very strict constraints on the load balance. Despite the fact
that we investigate the effect of the parameter γ on the
load balance, one may apply the following algorithm, which
enforces to consider only machines whose load is at most
ν×n

k
. This algorithm for 1 ≤ γ ≤ 2 amounts to interpolating

between the basic heuristics of [29] and [26]. The overall
complexity of our algorithm is O(n + m).

Greedy vertex assignment with threshold ν

• Let Iν = {i : µi ≤ ν n
k
}. Assign vertex

v to partition i ∈ Iν such that δg(v, Si) ≥
δg(v, Sj), for all j ∈ Iν

5. EXPERIMENTAL EVALUATION
In this section we present our experimental findings. Specif-

ically, Section 5.1 describes the experimental setup. Sec-
tions 5.2 and 5.3 present our findings for synthetic and
real-world graphs respectively.

5.1 Experimental Setup
The real-world graphs used in our experiments are shown

in Table 2. Multiple edges, self loops, signs and weights were
removed, if any. Furthermore, we considered the largest
connected component from each graph in order to ensure
that there is a non-zero number of edges cut. All graphs
are publicly available on the Web. All algorithms have been
implemented in java, and all experiments were performed
on a single machine, with Intel Xeon cpu at 3.6GHz, and
16GB of main memory. Wall-clock times include only the
algorithm execution time, excluding the required time to
load the graph into memory.

In our synthetic experiments, we use two random graph
models. The first model is the hidden partition model [6].
It is specified by four parameters parameters: the number
of vertices n, the number of clusters k, the intercluster and
intracluster edge probabilities p and q, respectively. First,
each vertex is assigned to one of k clusters uniformly at ran-
dom. We add an edge between two vertices of the same
(different) cluster(s) with probability p (q) independently

Nodes Edges Description
amazon0312 400 727 2 349 869 Co-purchasing
amazon0505 410 236 2 439 437 Co-purchasing
amazon0601 403 364 2 443 311 Co-purchasing

as-735 6 474 12 572 Auton. Sys.
as-Skitter 1 694 616 11 094 209 Auton. Sys.
as-caida 26 475 53 381 Auton. Sys.

ca-AstroPh 17 903 196 972 Collab.
ca-CondMat 21 363 91 286 Collab.

ca-GrQc 4 158 13 422 Collab.
ca-HepPh 11 204 117 619 Collab.
ca-HepTh 8 638 24 806 Collab.
cit-HepPh 34 401 420 784 Citation
cit-HepTh 27 400 352 021 Citation
cit-Patents 3 764 117 16 511 740 Citation

email-Enron 33 696 180 811 Email
email-EuAll 224 832 339 925 Email

epinions 119 070 701 569 Trust
Epinions1 75 877 405 739 Trust

LiveJournal1 4 843 953 42 845 684 Social
p2p-Gnutella04 10 876 39 994 P2P
p2p-Gnutella05 8 842 31 837 P2P
p2p-Gnutella06 8 717 31 525 P2P
p2p-Gnutella08 6 299 20 776 P2P
p2p-Gnutella09 8 104 26 008 P2P
p2p-Gnutella25 22 663 54 693 P2P
p2p-Gnutella31 62 561 147 878 P2P

roadNet-CA 1 957 027 2 760 388 Road
roadNet-PA 1 087 562 1 541 514 Road
roadNet-TX 1 351 137 1 879 201 Road

Slashdot0811 77 360 469 180 Social
Slashdot0902 82 168 504 230 Social

Slashdot081106 77 258 466 661 Social
Slashdot090216 81 776 495 661 Social
Slashdot090221 82 052 498 527 Social

usroads 126 146 161 950 Road
wb-cs-stanford 8 929 2 6320 Web
web-BerkStan 654 782 6 581 871 Web

web-Google 855 802 4 291 352 Web
web-NotreDame 325 729 1 090 108 Web

web-Stanford 255 265 1 941 926 Web
wiki-Talk 2 388 953 4 656 682 Web

Wikipedia-20051105 1 596 970 18 539 720 Web
Wikipedia-20060925 2 935 762 35 046 792 Web

Twitter 41 652 230 1 468 365 182 Social

Table 2: Datasets used in our experiments.

of the other edges. We denote this model as HP(n, k, p, q).
The second model we use is a standard model for generat-
ing random power law graphs. Specifically, we first generate
a power-law degree sequence with a given slope δ and use
the Chung-Lu random graph model to create an instance
of a power law graph [5]. The model CL(n, δ) has two pa-
rameters: the number of vertices n and the slope δ of the
expected power law degree sequence.

We evaluate our algorithms by measuring two quantities
from the resulting partitions. In particular, for a fixed par-
tition P we use the measures of the fraction of edges cut λ
and the normalized maximum load ρ, defined as

λ =
# edges cut by P

# total edges
=

|∂e(P)|
m

, and

ρ =
maximum load

n
k

.

Notice that k ≥ ρ ≥ 1 since the maximum load of a cluster
is at most n and there always exists at least one cluster with
at least n

k
vertices.
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Figure 1: Fraction of edges cut λ and maximum load normalized ρ as a function of γ, ranging from 1 to 4
with a step of 0.25, over five randomly generated power law graphs with slope 2.5. The straight lines show
the performance of METIS.

BFS Random
Method λ ρ λ ρ

H 96.9% 1.01 96.9% 1.01
B [29] 97.3% 1.00 96.8% 1.00

DG [29] 0% 32 43% 1.48
LDG [29] 34% 1.01 40% 1.00
EDG [29] 39% 1.04 48% 1.01
T [29] 61% 2.11 78% 1.01
LT [29] 63% 1.23 78% 1.10
ET [29] 64% 1.05 79% 1.01
NN [26] 69% 1.00 55% 1.03
Fennel 14% 1.10 14% 1.02

METIS [16] 8% 1.00 8% 1.02

Table 3: Performance of various existing methods
on amazon0312 (k = 32).

In Section 5.2, we use the greedy vertex assignment with-
out any threshold. Given that we are able to control the
ground truth, we are mainly interested in understanding
the effect of the parameter γ on the tradeoff between the
fraction of edges cut and the normalized maximum load. In
Section 5.3, the setting of the parameters we use through-
out our experiments is γ = 3

2
, α =

√
k m

n3/2
, and ν = 1.1.

Despite the fact that one can choose γ based on the how
skewed the degree sequence is in order to obtain superior
performance, see Section 5.2, we use the same value γ for
all graphs. This choice of γ is reasonable in the light of
our findings in Section 5.2. The choice of α is based on the
related discussion in Section 3. Finally, ν = 1.1 is a small
enough load balancing factor for any practical purposes.

For competitors, we consider the state-of-the-art heuris-
tics. Specifically, in our evaluation we consider the following
heuristics from [29], which we briefly describe here for com-
pleteness. Let v be the newly arrived vertex, then place v
to a cluster Si with

• Balanced (B): minimum cardinality |Si|.
• Hash partitioning (H): Si choosen uniformly at random.

• Deterministic Greedy (DG): maximum |N(v) ∩ Si|.
• Linear Weighted Deterministic Greedy (LDG): maxi-

mum |N(v) ∩ Si|(1 − |Si|/(n/k)).

Fennel METIS
m k λ ρ λ ρ

7 185 314 4 62.5 % 1.04 65.2% 1.02
6 714 510 8 82.2 % 1.04 81.5% 1.02
6 483 201 16 92.9 % 1.01 92.2% 1.02
6 364 819 32 96.3% 1.00 96.2% 1.02
6 308 013 64 98.2% 1.01 97.9% 1.02
6 279 566 128 98.4 % 1.02 98.8% 1.02

Table 4: Fraction of edges cut λ and normalized
maximum load ρ for Fennel and METIS [16] averaged
over 5 random graphs generated according to the
HP(5 000, k, 0.8, 0.5) model.

• Exponentially Weighted Deterministic Greedy (EDG):
maximum |N(v) ∩ Si|(1 − exp (|Si| − n/k)).

• Triangles (T): maximum tSi(v).

• Linear Weighted Triangles (LT): maximum
tSi(v)(1 − |Si|/(n/k)).

• Exponentially Weighted Triangles (ET): maximum
tSi(v)(1 − exp |Si| − n/k)).

• Non-Neighbors (NN): minumum |Si \ N(v)|.
In accordance with [29], we observed that LDG is the best

performing heuristic. Even if Stanton and Kliot do not com-
pare with NN, LDG outperforms it also. Non-neighbors typ-
ically have very good load balancing properties, as LDG as
well, but cut significantly more edges. Table 3 shows the
typical performance we observe across all datasets. Specif-
ically, it shows λ and ρ for both BFS and random order
for amazon0312. DFS order is omitted since qualitatively it
does not differ from BFS. We observe that LDG is the best
competitor, Fennel outperforms all existing competitors and
is inferior to METIS, but of comparable performance. In
the following, the best competitor is LDG unless otherwise
mentioned.

5.2 Synthetic Datasets
In this section we present result that support the following

main findings: (a) The value γ = 3
2

achieves good perfor-
mance for all graphs considered. (b) The effect of the stream
order is minimal on the results. Specifically, when γ ≥ 3

2
all

orders result in the same qualitative results. When γ < 3
2



Figure 2: Figure plots the average optimal value γ∗ by ranging the power-law exponent in the interval [1.5, 3.2]
using a step of 0.1 over twenty generated graphs (for each exponent) that results in the smallest possible
fraction of edges cut λ conditioning on a maximum normalized load ρ = 1.2 versus the power-law exponent
of the degree sequence. Error bars indicate the variance around the average optimal value γ∗. Strong
concentration around the average is observed. (a) k = 8 (b) k = 16.

BFS and DFS orders result in the same results which are
worse with respect to load balancing –and hence better for
the edge cuts– compared to the random order. (c) Fennel’s
performance is comparable to Metis. (d) It is possible to
compute easy graph statistics such as the power-law expo-
nent of the degree sequence of a power-law graph to fine-tune
the choice of γ.

Hidden Partition: We report averages over five randomly
generated graphs according to the model HP(5000, k, 0.8, 0.5)
for each value of k we use. We study (a) the effect of the
parameter γ, which parameterizes the function c(x) = αxγ ,
and (b) the effect of the number of clusters k.

We range γ from 1 to 4 with a step of 1/4, for six different
values of k shown in the second column of Table 4. For all k,
we observed consistently the following behavior: for γ = 1,
λ = 0 and ρ = k, which means that one cluster receives all
vertices. For any γ greater than 1, we obtain good load bal-
ancing with ρ ranging from 1 to 1.05, and the same fraction
of edges cut with Metis up the the first decimal digit. It
is noteworthy that this behavior was not expected a priori,
since in general we expect the edge-cut λ to increase and ρ
to decrease as γ grows. Given the insensitivity of Fennel to
γ in this setting, we present our findings for γ fixed to 3

2
, in

Table 4. For each k shown in the second column we gener-
ate five random graphs. The first column shows the average
number of edges. Notice that despite the fact that we have
only 5,000 vertices, we obtain graphs with several millions
of edges. The four last columns show the performance of
Fennel and Metis. As we see, their performance is compa-
rable and in one case (k=128) Fennel clearly outperforms
Metis.

Power Law: It is well known that power law graphs have
no good cuts [12], but power-law graphs are commonly ob-
served in practice so we consider them. We examine the
effect of parameter γ for k fixed to 10. In contrast to the
hidden partition experiment, we observe the expected trade-
off between λ and ρ as γ changes. We generate five random
power law graphs CL(20 000,2.5), since this value matches
the typical slope of real-world networks [24]. Figure 1 shows
the tradeoff when γ ranges from 1 to 4 with a step of 0.25
for the random stream order. The straight line shows the

performance of Metis. As we see, when γ < 1.5, ρ assumes
a value that may be considered unacceptably large for real-
world applications. When γ = 1.5 we obtain essentially the
same load balancing performance with Metis. Specifically,
ρFennel = 1.02, ρMETIS = 1.03. The corresponding cut be-
havior for γ = 1.5 is λFennel = 62.58%, λMETIS = 54.46%.
Furthermore, we experimented with the random, BFS and
DFS stream orders. We observe that the only major differ-
ence between the stream orders is obtained for γ = 1.25. For
all other γ values the behavior is identical. For γ = 1.25 we
observe that BFS and DFS stream orders result in signifi-
cantly worse load balancing properties. Specifically, ρBFS =
3.81, ρDFS = 3.73, ρRandom = 1.7130. The corresponding
fractions of edges cut are λBFS = 37.83%, λDFS = 38.85%,
and λRandom = 63.51%.

Finally, we explore the graph-specific parameter selection.
Specifically, we consider the degree sequence as an easy-to-
compute graph statistic and we generate for a realistic range
of power-law exponents [8] twenty random power-law graphs
on 3000 vertices. The number of vertices is chosen to be large
enough in order to ensure that for large power-law exponents
the graphs have sufficiently many edges to guarantee concen-
tration of our findings. For each exponent, we compute the
average optimal value γ∗ in the range [1.5, 3.2] using a step of
0.1 over twenty generated graphs that results in the smallest
possible fraction of edges cut λ conditioning on a maximum
normalized load ν = 1.2. Figure 2 shows the resulting error
bars for 8 and 16 clusters respectively. The variance for each
power-law exponent is very small compared to the square of
the average, indicating a strong concentration around the
mean as the error bars show. We observe that γ∗ tends
to be non-increasing function with the power-law slope α.
Also, by comparing Figures 2(a),(b) we observe that γ∗ is
less sensitive to k, with a general trend of a decreasing γ∗ as
k increases. Understanding these functions and exploiting
them for increasing systems’ performance is an interesting
problem for future work.

5.3 Real-World Datasets
We summarize our main findings as follows: (a) Fen-

nel is superior to existing streaming partitioning algorithms.
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Figure 3: (Left) CDF of the relative difference (λFennel−λc

λc
) × 100% of percentages of edges cut of our method

and the best competitor for all graphs in our dataset. (Right) Same but for the absolute difference (λFennel −
λc) × 100%.

k Relative Gain ρFennel − ρc

2 25.37% 0.47%
4 25.07% 0.36%
8 26.21% 0.18%
16 22.07% -0.43%
32 16.59% -0.34%
64 14.33% -0.67%
128 13.18% -0.17%
256 13.76% -0.20%
512 12.88% -0.17%
1024 11.24% -0.44%

Table 5: The relative gain (1 − λFennel

λc
) × 100% and

load imbalance, where subindex c stands for the best
competitor, averaged over all datasets in Table 1 as
a function of k.

Specifically, over a wide range of k values and over all datasets
Fennel consistently outperforms the current state-of-the-
art. Fennel achieves excellent load balancing with signifi-
cantly smaller edge cuts. (b) For smaller values of k (less or
equal than 64) the observed gain is more pronounced. (c)
Fennel is fast. Our implementation scales well with the
size of the graph. It takes about 40 minutes to partition the
Twitter graph which has more than 1 billion of edges.

Twitter Graph. Twitter graph is the largest graph in
our collection of graphs, with more than 1.4 billion edges.
This feature makes it the most interesting graph from our
collection, even if, admittedly, it is a graph that can be
loaded into the main memory of a state-the-art personal
computer. The performance of Fennel on this graph is
remarkably good. Specifically, Table 1 shows the perfor-
mance of Fennel, the best competitor LDG, the baseline
Hash Partition and Metis for k = 2, 4 and 8. All methods
achieve balanced partitions, with ρ ≤ 1.1. Fennel, is the
only method that always attains this upper bound. How-
ever, this reasonable performance comes with a high gain for
λ. Specifically, we see that Fennel achieves better perfor-
mance of k = 2 than Metis. Furthermore, Fennel requires
42 minutes whereas Metis requires 8 1

2
hours. Most impor-

tantly, Fennel outperforms LDG consistently. Specifically,
for k = 16, 32 and 64, Fennel achieves the following re-

sults (λ, ρ) = (59%, 1.1), (67%, 1.1), and (73%, 1.1), respec-
tively. Linear weighted degrees (LDG) achieves (76%, 1.13),
(80%, 1.15), and (84%, 1.14), respectively. Now we turn our
attention to smaller bur reasonably-sized datasets.

In Figure 3, we summarize the results of comparison re-
sults of Fennel and all other heuristics that we consider on
all graphs from our dataset in Table 2. In that figure, we
show the distribution of the difference of the fraction of edges
cut of our method and that of the best competitor, condi-
tional on that the maximum observed load is at most 1.1.
This distribution is derived from the values observed by par-
titioning each input graph from our set averaged over a range
of values of parameter k that consists of values 2, 4, . . . , 1024.
These results demonstrate that the fraction of edges cut by
our method is smaller than that of the best competitor in
all cases. Moreover, we observe that the median absolute
difference (relative difference) is in the excess of 20% (15%),
thus providing significant performance gain.

Furthermore, in Table 5, we present the average perfor-
mance gains conditional on the number of partitions k. These
numerical results amount to an average relative reduction of
the fraction of edges cut in the excess of 18%. Moreover,
the performance gains observed are consistent across dif-
ferent values of parameter k, and are more pronounced for
smaller values of k.

Bicriteria. In our presentation of experimental results so
far, we focused on the fraction of edges cut by condition-
ing on the cases where the normalized maximum load was
smaller than a fixed threshold. Figures 4(a), (b) provide
a closer look at both criteria and their relation. Specifi-
cally, we consider the difference of the fraction of edges cut
versus the difference of normalized maximum loads of the
best competitor and our method. We observe that in all the
cases, the differences of normalized maximum loads are well
within 10% while the fraction of edges cut by our method
is significantly smaller. These results confirm that the ob-
served reduction of the fraction of edges cut by our method
is not at the expense of an increased maximum load.

Speed of partitioning. We comment on the efficiency of our
method with respect to the run time to partition a graph.
Our graph partitioning algorithm is a one-pass streaming al-
gorithm, which allows for fast graph partitioning. In order
to support this claim, in Figure 5, we show the run time
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Figure 4: Absolute difference δλ and relative gain
versus the maximum load imbalance δρ.

it took to partition each graph from our dataset versus the
graph size m. We observe that few minutes suffice to par-
tition large graphs of tens of millions of edges. As we also
mentioned before, partitioning the largest graph from our
dataset collection took about 40 minutes.

6. SYSTEM EVALUATION
Evaluating a partitioning algorithm is a non-trivial task

from a systems perspective, since it depends on system char-
acteristics. For instance, in a large-scale production data
center, it may be more important to balance the traffic
across clusters than the traffic or the amount of computation
executed within a cluster. However, in a small-scale cluster
consisting of few tens of nodes, rented by a customer from a
large cloud provider such as Amazon’s Elastic MapReduce,
for example, it may be more important to well balance the
computation load on each node. Given this diversity of sce-
naria, a detailed evaluation is out of the scope of this work.
Here, we perform a basic experiment to verify the superi-
ority of our proposed method versus the standard approach
load balancing approach of hash partitioning with respect
to speeding up a large-scale computation.

We consider Pagerank as the computational task. Notice,
that an advantage of Fennel is that it gives a flexibility in
choosing a suitable objective that accomodates the needs of
the specific application. We demonstrate the efficiency and
flexibility of Fennel with the typical Elastic MapReduce sce-
nario in mind. We set up a cluster and we vary the number
of nodes to 4, 8 and 16 nodes. Each node is equipped with
Intel Xeon CPU at 2.27 GHz and 12 GB of main memory.
On the cluster we run Apache Giraph, a graph processing
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Figure 5: Elapsed running time for Fennel versus
number of edges.

platform that runs on top of Hadoop. We implemented a
PageRank algorithm on Giraph and run it on Live Journal
graph data 1.

Since the complexity of PageRank depends on the number
of edges and not vertices, we use a version of Fennel objective
(eq. 1) that balances the number of edges per cluster with
γ = 1.5 We compare with hash partitioning, the default
partitioning scheme used by Giraph, with respect to the fol-
lowing two metrics. The first metric is the average duration
of an iteration of the PageRank algorithm. This metric is
directly proportional to the actual run time and incorpo-
rates both the processing and the communication time. The
second metric is the average number of Megabytes transmit-
ted by a cluster node in each iteration. This metric directly
reflects the quality of the cut and is proportional to the in-
curred network load.

The results are shown in Table 6. We see that Fennel has
the best run time in all cases. This is because it achieves the
best balance between the computation and communication
load. Hash partitioning takes 25% more time than Fennel
and it also has a much higher traffic load.

7. CONCLUSION
In this work we provide a novel perspective on a recent

line of research [25, 29] for the balanced graph partition-
ing problem, which results in state-of-the-art performance
in terms of speed and quality. Despite the fact that Fennel

performs a single pass over the graph, it achieves perfor-
mance comparable to Metis, see also [25]. Furthermore,
our general framework is particularly suitable for dynamic
graph data. Also, it allows us to quantify the notion of in-
terpolation between the two state-of-the-art heuristics [26,
29] for streaming partitioning. Specifically, we evaluate our
proposed framework extensively both on synthetic and real-
world graphs. We verify consistently over a wide range of
number of clusters, the superiority of our method compared
to existing ones. Finally, we demonstrate the benefits of the
method in the graph processing platform Apache Giraph.

An interesting research problem is to derive hard approx-
imation guarantees for the class of algorithms defined by
Fennel. We provide initial results in this direction for

1At the time of the evaluation, the Twitter graph was too
large for a 16-node Giraph cluster.



Run time [s] Communication [MB]

# Clusters (k) Hash Fennel Hash Fennel

4 32.27 25.49 321.41 196.9
8 17.26 15.14 285.35 180.02
16 10.64 9.05 222.28 148.67

Table 6: The average duration of a step and the average amount of MB exchanged per node and per step
during the execution of PageRank on LiveJournal data set.

the special case related to the concept of graph modular-
ity. However, additive error guarantees appear to be more
suitable for our objective. Second, it would be of interest
to understand on a firm mathematical ground, the function
shown in Figure 2. Potentially, this understanding can lead
to choosing optimally the parameter values based on sim-
ple graph characteristics, such as the exponent of the degree
distribution for a power-law graph.
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