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Motivation

e Big data is data that is too large, complex and dynamic
for any conventional data tools to capture, store, manage

and analyze.

e The right use of big data allows analysis to spot trends
and gives niche insights that help create value and
innovation much faster than conventional methods.
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visual.ly

Motivation

e We need to handle datasets with of vertices and
edges

e Facebook: ~ 1 billion users with avg degree 130
e Twitter: > 1.5 billion social relations

e Google: web graph more than a trillion edges (2011)

e We need algorithms for graph datasets

e real-time story identification using twitter posts

e election trends, twitter as election barometer
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Motivation
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Motivation

e Big graph datasets created from social media data.

° photos, tags, users, groups, albums, sets,
collections, geo, query, ...
° upload, belong, tag, create, join, contact, friend,

family, comment, fave, search, click, ...
e also many interesting induced graphs

e What is the underlying graph?

e tag graph: based on photos
tag graph: based on users

e user graph: based on favorites
e user graph: based on groups
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Balanced graph partitioning

e Graph has to be distributed across a cluster of machines

G=(V.E)

graph partitioning is a way to the graph vertices in

graph partitioning objectives guarantee
among different machines

additionally is desirable

each partition contains ~ n/k vertices, where n, k are the
total number of vertices and machines respectively
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Off-line k-way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

e popular family of algorithms and software
e multilevel algorithm

. phase in which the size of the graph is
successively decreased

e followed by (based on spectral or KL method)

e followed by phase in which the bisection is
successively refined and projected to larger graphs

METIS is not well understood, i.e., from a theoretical
perspective.
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Off-line k-way graph partitioning

problem: minimize number of edges cut, subject to cluster
sizes being at most vn/k (bi-criteria approximations)

e v — 2: Krauthgamer, Naor and Schwartz
[Krauthgamer et al., 2009] provide O(+/log k log n)
approximation ratio based on the work of
Arora-Rao-Vazirani for the sparsest-cut problem (k = 2)
[Arora et al., 2009]

e 1/ — 1+ ¢ Andreev and Racke [Andreev and Racke, 2006]
combine recursive partitioning and dynamic programming
to obtain O(¢ 2 log"” n) approximation ratio.

There exists a lot of related work, e.g.,
[Feldmann et al., 2012], [Feige and Krauthgamer, 2002],
[Feige et al., 2000] etc.
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streaming k-way graph partitioning

e input is a
e graph is ordered

o arbitrarily
o breadth-first search
o depth-first search

e generate an balanced graph partitioning

/ each partition
-

holds O(n/k)
graph stream — T 5 vertices
partitioner
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Graph representations

e incidence stream

e at time t, a vertex arrives with its neighbors

e adjacency stream

e at time t, an edge arrives
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Partitioning strategies

e hashing: place a new vertex to a cluster/machine chosen
uniformly at random

e neighbors heuristic: place a new vertex to the
cluster/machine with the maximum number of neighbors

e non-neighbors heuristic: place a new vertex to the

cluster/machine with the minimum number of
non-neighbors
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Partitioning strategies

[Stanton and Kliot, 2012]

e d.(v): neighbors of v in cluster ¢
e t.(v): number of triangles that v participates in cluster ¢

e balanced: vertex v goes to cluster with least number of
vertices

e hashing: random assignment

e weighted degree: v goes to cluster ¢ that maximizes
de(v) - w(c)

e weighted triangles: v goes to cluster j that maximizes

te(v)/(*5") - wc)
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Weight functions

e s.: number of vertices in cluster ¢

unweighted: w(c) =1

linearly weighted: w(c) =1 — s.(k/n)

exponentially weighted: w(c) = 1 — els=/k)
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FENNEL algorithm

The standard formulation hits the ARV barrier

minimize p—s,.....s,) 10 e(P)|

: n :
subject to 1Si] < V;, forall1 <<k
e We relax the hard cardinality constraints

minimize P=(S1,---,5k) |0 E(P)| + CIN(P)

where cin(P) = > s(]S

), so that objective self-balances
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FENNEL algorithm

for S C V, f(S) =e[S] — a|S|7, with v > 1
e given partition P = (5;,...,5;) of V in k parts define

g(P)=1f(S1)+ ...+ f(S)

the goal: maximize g(77) over all possible k-partitions

g(P)= D elS] — a) IS

i
—— ———
m—number of minimized for
edges cut balanced partition!

e notice:
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Connection

notice

F(S) = e[S] - a<|§>

e related to modularity

e related to optimal quasicliques [Tsourakakis et al., 2013]
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FENNEL algorithm

Theorem

e For v = 2 there exists an algorithm that achieves an
approximation factor log(k)/k
for a shifted objective where k is the number of clusters

o semidefinite programming algorithm

e in the shifted objective the main term takes care of the
load balancing and the second order term minimizes the
number of edges cut

e Multiplicative guarantees not the most appropriate

e random partitioning gives approximation factor 1/k
e no dependence on n

mainly because of relaxing the hard cardinality constraints
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FENNEL algorithm — greedy scheme

e v = 2 gives non-neighbors heuristic
e v =1 gives neighbors heuristic

e interpolate between the two heuristics, e.g., v = 1.5
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FENNEL algorithm — greedy scheme

[eP o0t s—0 g0 o2 0 0 %0 o]

/ each partition
-

holds O(n/k)
graph stream —> 1 5 vertices
partitioner

e send v to the partition / machine that maximizes

F(SiU{v}) —f(S)
=e[S;U{v}] — o
— dsi(v) — OLO(‘S,

S|+ 1) = (e[Si] — alS;
7*1)

")

e fast, amenable to streaming and distributed setting
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FENNEL algorithm — ~y

Explore the tradeoff between the number of edges cut and
load balancing.

1 10 —METIS
——FENNEL]

=
=5
=5}

g
=

Max Load

<
i

Fraction of edges cut
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Fraction of edges cut A and maximum load normalized p as a
function of v, ranging from 1 to 4 with a step of 0.25, over
five randomly generated power law graphs with slope 2.5. The
straight lines show the performance of METIS.

e Not the end of the story ... choose v* based on some
“easy-to-compute”’ graph characteristic.
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FENNEL algorithm — ~*

k=8
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y-axis Average optimal value v* for each power law slope in the
range [1.5,3.2] using a step of 0.1 over twenty randomly generated
power law graphs that results in the smallest possible fraction of
edges cut A conditioning on a maximum normalized load p = 1.2,

k = 8. x-axis Power-law exponent of the degree sequence. Error

bars indicate the variance around the average optimal value v*.

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 21 /30



FENNEL algorithm — results
Twitter graph with approximately 1.5 billion edges, v = 1.5

\ - #{edges cut} )~ max |S;|
m 1<i<k n/k
Fennel Best competitor | Hash Partition METIS
A p A p A p A P

6.8% | 1.1 | 34.3% | 1.04 50% 1 11.98% | 1.02
29% | 1.1 | 55.0% | 1.07 75% 1 24.39% | 1.03
8| 48% | 1.1|66.4% | 1.10 | 87.5% 1 35.96% | 1.03

S N x

Table: Fraction of edges cut A and the normalized maximum load
p for Fennel, the best competitor and hash partitioning of vertices
for the Twitter graph. Fennel and best competitor require around
40 minutes, METIS more than 8% hours.
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FENNEL algorithm — results

Extensive experimental evaluation over > 40 large real graphs
[Tsourakakis et al., 2012]

1

0.8

0.61

CDF

0.4

0.2r

2o 40 -30 20 10 0
Relative difference(%)

CDF of the relative difference % x 100% of percentages
of edges cut of FENNEL and the best competitor (pointwise)
for all graphs in our dataset.
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FENNEL algorithm — “zooming in”

Performance of various existing methods on amazon0312 for
k=32

BFS Random
Method A p A p
H 96.9% | 1.01 | 96.9% | 1.01

B [Stanton and Kliot, 2012] 97.3% | 1.00 | 96.8% | 1.00
DG [Stanton and Kliot, 2012] 0% 32 | 43% |1.48
LDG [Stanton and Kliot, 2012] 34% | 1.01 | 40% | 1.00
EDG [Stanton and Kliot, 2012] 39% | 1.04 | 48% | 1.01

T [Stanton and Kliot, 2012] 61% | 2.11| 78% | 1.01
LT [Stanton and Kliot, 2012] | 63% | 1.23 | 78% | 1.10
ET [Stanton and Kliot, 2012] 64% | 1.05 | 79% | 1.01

NN [Prabhakaran and et al., 2012] | 69% | 1.00 | 55% | 1.03

Fennel 14% | 1.10 | 14% | 1.02
METIS 8% 1.00 8% 1.02
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Conclusions

summary and future directions
e cheap and efficient graph partitioning is highly desired

e new area [Stanton and Kliot, 2012],
[Tsourakakis et al., 2012],
[Nishimura and Ugander, 2013]

e average case analysis

e stratified graph partitioning
[Nishimura and Ugander, 2013]
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thank you!
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