
39

Approximation Algorithms for Speeding up Dynamic Programming
and Denoising aCGH data

CHARALAMPOS E. TSOURAKAKIS, Carnegie Mellon University
RICHARD PENG, Carnegie Mellon University
MARIA A. TSIARLI, University of Pittsburgh
GARY L. MILLER, Carnegie Mellon University
RUSSELL SCHWARTZ, Carnegie Mellon University

The development of cancer is largely driven by the gain or loss of subsets of the genome, promoting uncon-
trolled growth or disabling defenses against it. Denoising array-based Comparative Genome Hybridization
(aCGH) data is an important computational problem central to understanding cancer evolution. In this
work we propose a new formulation of the denoising problem which we solve with a “vanilla” dynamic pro-
gramming algorithm which runs in O(n2) units of time. Then, we propose two approximation techniques.
Our first algorithm reduces the problem into a well-studied geometric problem, namely halfspace emptiness

queries, and provides an ε additive approximation to the optimal objective value in Õ(n
4
3
+δ log (U

ε
)) time,

where δ is an arbitrarily small positive constant and U = max{
√
C, (|Pi|)i=1,...,n} (P = (P1, P2, . . . , Pn),

Pi ∈ R, is the vector of the noisy aCGH measurements, C a normalization constant). The second algorithm
provides a (1±ε) approximation (multiplicative error) and runs in O(n logn/ε) time. The algorithm decom-
poses the initial problem into a small (logarithmic) number of Monge optimization subproblems which we
can solve in linear time using existing techniques.

Finally, we validate our model on synthetic and real cancer datasets. Our method consistently achieves
superior precision and recall to leading competitors on the data with ground truth. In addition, it finds
several novel markers not recorded in the benchmarks but supported in the oncology literature.

Availability: Code, datasets and results available from the first author’s web page http://www.math.

cmu.edu/~ctsourak/DPaCGHsupp.html.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]: Numer-
ical Algorithms and Problems; G.2.1 [Combinatorics]: Combinatorial Algorithms; J.3 [Life and Medical
Sciences]: Biology and genetics

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Approximation algorithms, dynamic programming, halfspace range
queries, computational biology, denoising aCGH data, time series segmentation

C.E.T was supported in this work by NSF grant ccf1013110 and by U.S. National Institute of Health award
1R01CA140214. R.P. was supported in this work by Natural Sciences and Engineering Research Council of
Canada (NSERC), under Grant PGS M-377343-2009. G.L.M. was supported in this work by the National Sci-
ence Foundation under Grant No. CCF-0635257. R.S. was supported in this work by U.S. National Institute
of Health award 1R01CA140214. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National Institute of
Health and National Science Foundation, or other funding parties.
Author’s addresses: C.E. Tsourakakis, Department of Mathematical Sciences, Carnegie Mellon University;
R. Peng, School of Computer Science, Carnegie Mellon University; M. Tsiarli, Center for Neuroscience, Uni-
versity of Pittsburgh; G.L. Miller, School of Computer Science, Carnegie Mellon University; R. Schwartz,
Department of Biological Sciences and School of Computer Science, Carnegie Mellon University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1084-6654/2011/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:2 C.E. Tsourakakis et. al.

ACM Reference Format:
Tsourakakis C.E., Peng R., Tsiarli M.A., Miller G.L., Schwartz R. 2011. Approximation Algorithms for Speed-
ing up Dynamic Programming and Denoising aCGH data. ACM J. Exp. Algor. 9, 4, Article 39 (March 2011),
27 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Tumorigenesis is a complex phenomenon often characterized by the successive acqui-
sition of combinations of genetic aberrations that result in malfunction or disregula-
tion of genes. There are many forms of chromosome aberration that can contribute to
cancer development, including polyploidy, aneuploidy, interstitial deletion, reciprocal
translocation, non-reciprocal translocation, as well as amplification, again with several
different types of the latter (e.g., double minutes, HSR and distributed insertions [Al-
bertson and Pinkel 2003]). Identifying the specific recurring aberrations, or sequences
of aberrations, that characterize particular cancers provides important clues about
the genetic basis of tumor development and possible targets for diagnostics or thera-
peutics. Many other genetic diseases are also characterized by gain or loss of genetic
regions, such as Down Syndrome (trisomy 21) [Lejeune et al. 1959], Cri du Chat (5p
deletion) [Lejeune et al. 1963], and Prader-Willi syndrome (deletion of 15q11-13) [But-
ler et al. 1986] and recent evidence has begun to suggest that inherited copy number
variations are far more common and more important to human health than had been
suspected just a few years ago [Zhang et al. 2009]. These facts have created a need for
methods for assessing DNA copy number variations in individual organisms or tissues.

In this work, we focus specifically on array-based comparative genomic hybridization
(aCGH) [Bignell et al. 2004; Pollack et al. 1999; Kallioniemi et al. 1992; Pinkel et al.
1998], a method for copy number assessment using DNA microarrays that remains,
for the moment, the leading approach for high-throughput typing of copy number ab-
normalities. The technique of aCGH is schematically represented in Figure 1. A test
and a reference DNA sample are differentially labeled and hybridized to a microarray
and the ratios of their fluorescence intensities is measured for each spot. A typical out-
put of this process is shown in Figure 1 (3), where the genomic profile of the cell line
GM05296 [Snijders et al. 2001] is shown for each chromosome. The x-axis corresponds
to the genomic position and the y-axis corresponds to a noisy measurement of the ra-
tio log2

T
R for each genomic position, typically referred to as “probe” by biologists. For

healthy diploid organisms, R=2 and T is the DNA copy number we want to infer from
the noisy measurements. For more details on the use of aCGH to detect different types
of chromosomal aberrations, see [Albertson and Pinkel 2003].

Converting raw aCGH log fluorescence ratios into discrete DNA copy numbers is
an important but non-trivial problem. Finding DNA regions that consistently exhibit
chromosomal losses or gains in cancers provides a crucial means for locating the spe-
cific genes involved in development of different cancer types. It is therefore important
to distinguish, when a probe shows unusually high or low fluorescence, whether that
aberrant signal reflects experimental noise or a probe that is truly found in a segment
of DNA that is gained or lost. Furthermore, successful discretization of array CGH
data is crucial for understanding the process of cancer evolution, since discrete inputs
are required for a large family of successful evolution algorithms, e.g., [Desper et al.
1999; 2000]. It is worth noting that manual annotation of such regions, even if possible
[Snijders et al. 2001], is tedious and prone to mistakes due to several sources of noise
(impurity of test sample, noise from array CGH method, etc.).

Based on the well-established observation that near-by probes tend to have the same
DNA copy number, we formulate the problem of denoising aCGH data as the problem of
approximating a signal P with another signal F consisting of a few piecewise constant

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:3

Fig. 1. Schematic representation of array CGH. Genomic DNA from two cell populations (1) is differentially
labeled and hybridized in a microarray (2). Typically the reference DNA comes from a normal subject. For
humans this means that the reference DNA comes from a normal diploid genome. The ratios on each spot
are measured and normalised so that the median log2 ratio is zero. The final result is an ordered tuple
containing values of the fluorescent ratios in each genomic position per each chromosome. This is shown
in (3) where we see the genomic profile of the cell line GM05296 [Snijders et al. 2001]. The problem of
denoising array CGH data is to infer the true DNA copy number T per genomic position from a set of noisy
measurements of the quantity log2

T
R

, where R=2 for normal diploid humans.

segments. Specifically, let P = (P1, P2, . . . , Pn) ∈ Rn be the input signal -in our setting
the sequence of the noisy aCGH measurements- and let C be a constant. Our goal is to
find a function F : [n]→ R which optimizes the following objective function:

min
F

n∑
i=1

(Pi − Fi)2 + C × (|{i : Fi 6= Fi+1}|+ 1). (1)

The best known exact algorithm for solving the optimization problem defined by
Equation 1 runs in O(n2) time but as our results suggest this running time is likely
not to be tight. It is worth noting that existing techniques for speeding up dynamic
programming [Yao 1982; Eppstein et al. 1988; Eppstein et al. 1992a] do not apply to
our problem. In this work, we provide two approximation algorithms for solving this
recurrence. The first algorithm approximates the objective within an additive error ε
which we can make as small as we wish and its key idea is the reduction of the problem
to halfspace range queries, a well studied computational geometric problem [Agarwal
and Erickson 1999]. The second algorithm carefully decomposes the problem into a
“small” (logarithmic) number of subproblems which satisfy the quadrangle inequality
(Monge property). The main contributions of this work can be summarized as follows.

— We propose a new formulation of the aCGH denoising problem which we solve using
a dynamic programming algorithm in O(n2) time.

— We provide a technique which approximates the optimal value of our objective func-
tion within additive ε error and runs in Õ(n

4
3 +δ log (Uε)) time, where δ is an arbitrarily

small positive constant and U = max{
√
C, (|Pi|)i=1,...,n}.

— We provide a technique for approximate dynamic programming which solves the cor-
responding recurrence within a multiplicative factor of (1+ε) and runs in O(n log n/ε).

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:4 C.E. Tsourakakis et. al.

— We validate our proposed model on both synthetic and real data. Specifically, our seg-
mentations result in superior precision and recall compared to leading competitors
on benchmarks of synthetic data and real data from the Coriell cell lines. In addi-
tion, we are able to find several novel markers not recorded in the benchmarks but
supported in the oncology literature.

The remainder of this paper is organized as follows: Section 2 briefly presents the
related work. Section 3 presents the vanilla dynamic programming algorithm which
runs in O(n2). Section 4 analyzes properties of the recurrence which will be exploited
in Sections 5 and 6 where we describe the additive and multiplicative approximation
algorithms respectively. In Section 7 we validate our model by performing an exten-
sive biological analysis of the findings of our segmentation. Finally, in Section 8 we
conclude.

2. RELATED WORK
In Section 2.1, we provide a brief overview of the existing work on the problem of
denoising aCGH data. In Section 2.2, we present existing techniques for speeding up
dynamic programming and in Section 2.3 we discuss the problem of reporting points
in halfspaces.

2.1. Denoising aCGH data
Many algorithms and objective functions have been proposed for the problem of dis-
cretizing and segmenting aCGH data. Many methods, starting with [Fridlyand et al.
2004], treat aCGH segmentation as a hidden Markov model (HMM) inference prob-
lem. The HMM approach has since been extended in various ways, e.g., through the
use of Bayesian HMMs [Guha et al. 2006], incorporation of prior knowledge of loca-
tions of DNA copy number polymorphisms [Shah et al. 2006], and the use of Kalman
filters [Shi et al. 2007]. Other approaches include wavelet decompositions [Hsu et al.
2005], quantile regression [Eilers and de Menezes 2005], expectation-maximization in
combination with edge-filtering [Myers et al. 2004], genetic algorithms [Jong et al.
2004], clustering-based methods [Xing et al. 2007; Wang et al. 2005], variants on
Lasso regression [Tibshirani and Wang 2008; Huang et al. 2005], and various problem-
specific Bayesian [Barry and Hartigan 1993], likelihood [Hupé et al. 2004], and other
statisical models [Lipson et al. 2005]. A dynamic programming approach, in combina-
tion with expectation maximimization, has been previously used by Picard et al. [Pi-
card et al. 2007]. In [Lai et al. 2005] and [Willenbrock and Fridlyand 2005] an ex-
tensive experimental analysis of available methods has been conducted. Two methods
stand out as the leading approaches in practice. One of these top methods is CGHSEG
[Picard et al. 2005], which assumes that a given CGH profile is a Gaussian process
whose distribution parameters are affected by abrupt changes at unknown coordi-
nates/breakpoints. The other method which stands out for its performance is Circular
Binary Segmentation [Olshen et al. 2004] (CBS), a modification of binary segmenta-
tion, originally proposed by Sen and Srivastava [Sen and Srivastava 1975], which uses
a statistical comparison of mean expressions of adjacent windows of nearby probes to
identify possible breakpoints between segments combined with a greedy algorithm to
locally optimize breakpoint positions.

2.2. Speeding up Dynamic Programming
Dynamic programming is a powerful problem solving technique introduced by Bell-
man [Bellman 2003] with numerous applications in biology, e.g., [Picard et al. 2005;
Hirschberg 1975; Waterman and Smith 1986], in control theory, e.g., [Bertsekas 2000],
in operations research and many other fields. Due to its importance, a lot of re-

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:5

search has focused on speeding up basic dynamic programming implementations. A
successful example of speeding up a naive dynamic programming implementation is
the computation of optimal binary search trees. Gilbert and Moore solved the prob-
lem efficiently using dynamic programming [Gilbert and Moore 1959]. Their algo-
rithm runs in O(n3) time and for several years this running time was considered to
be tight. In 1971 Knuth [Knuth 1971] showed that the same computation can be car-
ried out in O(n2) time. This remarkable result was generalized by Frances Yao in [Yao
1982; 1980]. Specifically, Yao showed that this dynamic programming speedup tech-
nique works for a large class of recurrences. She considered the recurrence c(i, i) = 0,
c(i, j) = mini<k≤j (c(i, k − 1) + c(k, j))+w(i, j) for i < j where the weight function w sat-
isfies the quadrangle inequality (see Section 2.4) and proved that the solution of this
recurrence can be found in O(n2) time. Eppstein, Galil and Giancarlo have considered
similar recurrences where they showed that naive O(n2) implementations of dynamic
programming can run in O(n log n) time [Eppstein et al. 1988]. Larmore and Schieber
[Larmore and Schieber 1991] further improved the running time, giving a linear time
algorithm when the weight function is concave. Klawe and Kleitman give in [Klawe
and Kleitman 1990] an algorithm which runs in O(nα(n)) time when the weight func-
tion is convex, where α(·) is the inverse Ackermann function. Furthermore, Eppstein,
Galil, Giancarlo and Italiano have also explored the effect of sparsity [Eppstein et al.
1992a; 1992b], another key concept in speeding up dynamic programming. Aggarwal,
Klawe, Moran, Shor, Wilber developed an algorithm, widely known as the SMAWK
algorithm, [Aggarwal et al. 1986] which can compute in O(n) time the row maxima
of a totally monotone n × n matrix. The connection between the Knuth-Yao technique
and the SMAWK algorithm was made clear in [Bein et al. 2009], by showing that the
Knuth-Yao technique is a special case of the use of totally monotone matrices. The ba-
sic properties which allow these speedups are the convexity or concavity of the weight
function. Such properties date back to Monge [Monge 1781] and are well studied in the
literature, see for example [Burkard et al. 1996].

Close to our work lies the work on histogram construction, an important problem
for database applications. Jagadish et al. [Jagadish et al. 1998] originally provided a
simple dynamic programming algorithm which runs in O(kn2) time, where k is the
number of buckets and n the input size and outputs the best V-optimal histogram.
Guha, Koudas and Shim [Guha et al. 2006] propose a (1 + ε) approximation algorithm
which runs in linear time. Their algorithms exploits monotonicity properties of the key
quantities involved in the problem. Our (1 + ε) approximation algorithm in Section 2.4
uses a decomposition technique similar to theirs.

2.3. Reporting Points in a Halfspace
Let S be a set of points in Rd and let k denote the size of the output, i.e., the num-
ber of points to be reported. Consider the problem of preprocessing S such that for
any halfspace query γ we can report efficiently whether the set S ∩ γ is empty or not.
This problem is a well studied special case of the more general range searching prob-
lem. For an extensive survey see the work by Agarwal and Erickson [Agarwal and
Erickson 1999]. For d = 2, the problem has been solved optimally by Chazelle, Guibas
and Lee [Chazelle et al. 1985]. For d = 3, Chazelle and Preparata in [Chazelle and
Preparata 1985] gave a solution with nearly linear space and O(log n+ k) query time,
while Aggarwal, Hansen and Leighton [Aggarwal et al. 1990] gave a solution with a
more expensive preprocessing but O(n log n) space. When the number of dimensions
is greater than 4, i.e., d ≥ 4, Clarkson and Shor [Clarkson and Shor. 1989] gave an
algorithm that requires O(nbd/2c+ε) preprocessing time and space, where ε is an arbi-
trarily small positive constant, but can subsequently answer queries in O(log n + k)
time. Matoušek in [Matousek 1991] provides improved results on the problem, which

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:6 C.E. Tsourakakis et. al.

are used by Agarwal, Eppstein, Matoušek [Agarwal et al. 1992] in order to create dy-
namic data structures that trade off insertion and query times. We refer to Theorem
2.1(iii) of their paper [Agarwal et al. 1992]:

THEOREM 2.1 (AGARWAL, EPPSTEIN, MATOUŠEK [AGARWAL ET AL. 1992]).
Given a set S of n points in Rd where d ≥ 3 and a parameter m between n and
nb

d
2 c the halfspace range reporting problem can be solved with the following perfor-

mance: O(n
m1/bd/2c log n) query time, O(m1+ε) space and preprocessing time, O(m1+ε/n)

amortized update time.

Substituting for d = 4, m = n
4
3 we obtain the following corollary, which will be used

as a subroutine in our proposed method:

COROLLARY 2.2. Given a set S of n points in R4 the halfspace range reporting prob-
lem can be solved with O(n

1
3 log n) query time, O(n

4
3 +δ) space and preprocessing time,

and O(n
1
3 +δ) update time, where δ is an arbitrarily small positive constant.

2.4. Monge Functions and Dynamic Programming
Here, we refer to one of the results in [Larmore and Schieber 1991] which we use in
Section 2.4 as a subroutine for our proposed method. A function w defined on pairs
of integer indices is Monge (concave) if for any 4-tuple of indices i1 < i2 < i3 < i4,
w(i1, i4) + w(i2, i3) ≥ w(i1, i3) + w(i2, i4). Furthermore, we assume that f is a function
such that the values f(aj) for all j are easily evaluated. The following results holds:

THEOREM 2.3 ([LARMORE AND SCHIEBER 1991]). Consider the one dimensional
recurrence ai = minj<i{f(aj) + w(j, i)} for i = 1, . . . , n, where the basis a0 is given.
There exists an algorithm which solves the recurrence online in O(n) time1.

3. O(N2) DYNAMIC PROGRAMMING ALGORITHM
In order to solve the optimization problem defined by Equation 1, we define the key
quantity OPTi given by the following recurrence:

OPT0 = 0
OPTi = min

0≤j≤i−1
[OPTj + w(i, j)] + C, for i > 0

where w(i, j) =
i∑

k=j+1

(
Pk −

∑i
m=j+1 Pm

i− j

)2

.

The above recurrence has a straightforward interpretation: OPTi is equal to the
minimum cost of fitting a set of piecewise constant segments from point P1 to Pi given
that index j is a breakpoint. The cost of fitting the segment from j + 1 to i is C. The
weight function w() is the minimum squared error for fitting a constant segment on

points {Pj+1, . . . , Pi}, which is obtained for the constant segment with value
Pi

m=j+1 Pm

i−j ,
i.e., the average of the points in the segment. This recursion directly implies a simple
dynamic programming algorithm. We call this algorithm CGHTRIMMER and the pseu-
docode is shown in Algorithm 1. The main computational bottleneck of CGHTRIMMER
is the computation of the auxiliary matrix M , an upper diagonal matrix for which mij

1Thus, obtaining O(n) speedup compared to the straight-forward dynamic programming algorithm which
runs in O(n2) units of time.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:7

is the minimum squared error of fitting a segment from points {Pi, . . . , Pj}. To avoid a
naı̈ve algorithm that would simply find the average of those points and then compute
the squared error, resulting in O(n3) time, we use Claim 1.

ALGORITHM 1: CGHTRIMMER algorithm
Input: Signal P = (P1, . . . , Pn), Regularization parameter C
Output: Optimal Segmentation with respect to our objective (see Equation 1)

/* Compute an n× n matrix M, where Mji =
Pi
k=j

„
Pk −

Pi
m=j Pm

i−j+1

«2

. */

/* A is an auxiliary matrix of averages, i.e., Aji =
Pi

k=j Pk

i−j+1
. */

Initialize matrix A ∈ Rn×n, Aij = 0, i 6= j and Aii = Pi.
for i = 1 to n do

for j = i+ 1 to n do
Ai,j ← j−i

j−i+1
Ai,j−1 + 1

j−i+1
Pj

end
end
for i = 1 to n do

for j = i+ 1 to n do
Mi,j ←Mi,j−1 + j−i

j−i+1
(Pj −Ai,j−1)

2

end
end
/* Solve the Recurrence. */
for i = 1 to n do

OPTi ← min0≤j≤i−1OPTj +Mj+1,i + C
BREAKi ← arg min1≤j≤iOPTj−1 +Mj,i + C

end

CLAIM 1. Let α(j) andm(j) be the average and the minimum squared error of fitting
a constant segment to points {P1, . . . , Pj} respectively. Then,

α(j) =
j − 1
j

α(j−1) +
1
j
Pj , (2)

m(j) = m(j−1) +
j − 1
j

(Pj − α(j−1))2. (3)

The interested reader can find a proof of Claim 1 in [Knuth 1981]. Equations 2 and 3
provide us a way to compute means and least squared errors online. Algorithm 1 first
computes matrices A and M using Equations 2, 3 and then iterates (last for loop) to
solve the recurrence by finding the optimal breakpoint for each index i. The total run-
ning time is O(n2) (matrices A and M matrices have O(n2) entries and each requires
O(1) time to compute). Obviously, Algorithm 1 uses O(n2) units of space.

4. ANALYSIS OF THE TRANSITION FUNCTION
In the following, let Si =

∑i
j=1 Pj . The transition function for the dynamic program-

ming for i > 0 can be rewritten as:

OPTi = min
j<i

OPTj +
i∑

m=j+1

P 2
m −

(Si − Sj)2

i− j
+ C. (4)

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:8 C.E. Tsourakakis et. al.

The transition can be viewed as a weight function w(j, i) that takes the two indices
j and i as parameters such that:

w(j, i) =
i∑

m=j+1

P 2
m −

(Si − Sj)2

i− j
+ C (5)

Note that the weight function does not have the Monge property, as demonstrated
by the vector P = (P1, . . . , P2k+1) = (1, 2, 0, 2, 0, 2, 0, . . . 2, 0, 1). When C = 1, the optimal
choices of j for i = 1, . . . , 2k are j = i − 1, i.e., we fit one segment per point. However,
once we add in P2k+1 = 1 the optimal solution changes to fitting all points on a single
segment. Therefore, preferring a transition to j1 over one to j2 at some index i does not
allow us to discard j2 from future considerations. This is one of the main difficulties
in applying techniques based on the increasing order of optimal choices of j, such as
the method of Eppstein, Galil and Giancarlo [Eppstein et al. 1988] or the method of
Larmore and Schieber [Larmore and Schieber 1991], to reduce the complexity of the
O(n2) algorithm we described in Section 3.

We start by defining DPi for i = 0, 1, .., n, the solution to a simpler optimization
problem.

Definition 4.1. Let DPi, i = 0, 1, .., n, satisfy the following recurrence

DPi =

{
minj<iDPj − (Si−Sj)2

i−j + C if i > 0
0 if i = 0

(6)

The following observation stated as Lemma 4.2 plays a key role in Section 5.

LEMMA 4.2. For all i, OPTi can be written in terms of DPi as

OPTi = DPi +
i∑

m=1

P 2
m.

PROOF. We use strong induction on i. For i = 0 the result trivially holds. Let the
result hold for all j < i. Then,

DPi = min
j<i

DPj −
(Si − Sj)2

i− j
+ C

= min
j<i

OPTj −
(Si − Sj)2

i− j
+

i∑
m=j+1

P 2
m −

i∑
m=1

P 2
m + C

= OPTi −
i∑

m=1

P 2
m

Hence, OPTi = DPi +
∑i
m=1 P

2
m for all i.

Observe that the second order moments involved in the expression of OPTi are ab-
sent from DPi. Let w̃(j, i) be the shifted weight function, i.e., w̃(j, i) = − (Si−Sj)2

i−j + C.
Clearly, w(j, i) = w̃(j, i) +

∑j
m=i P

2
m.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:9

Fig. 2. Answering whether or not D̄P i ≤ x + C reduces to answering whether the point set
{(j, ˜DPj , 2Sj , S

2
j + ˜DPjj) ∈ R4, j < i} has a non-empty intersection with the halfspace γ = {y ∈ R4 :

aiy ≤ bi} where ai and bi are a 4-dimensional constant vector and a constant which depend on i respec-
tively. This type of queries can be solved efficiently, see [Agarwal et al. 1992].

5. ADDITIVE APPROXIMATION USING HALFSPACE QUERIES

In this Section, we present a novel algorithm which runs in Õ(n
4
3 +δ log (Uε)) time and

approximates the optimal objective value within additive ε error. We derive the algo-
rithm gradually in the following and upon presenting the necessary theory we provide
the pseudocode (see Algorithm 2) at the end of this Section. Our proposed method
uses the results of [Agarwal et al. 1992] as stated in Corollary 2.2 to obtain a fast
algorithm for the additive approximation variant of the problem. Specifically, the algo-
rithm initializes a 4-dimensional halfspace query data structure. The algorithm then
uses binary searches to compute an accurate estimate of the value DPi for i = 1, . . . , n.
As errors are introduced at each term, we use D̃Pi to denote the approximate value of
DPi calculated by the binary search, and D̄Pi to be the optimum value of the transition
function computed by examining the approximate values ˜DPj for all j < i. Formally,

D̄P i = minj<i

D̃P j − (Si − Sj)2

i− j︸ ︷︷ ︸
w̃(j,i)

+ C.

Since the binary search incurs a small additive error at each step, it remains to show
that these errors accumulate in a controlled way. Theorem 5.1 states that a small error
at each step suffices to give an overall good approximation. We show inductively that
if D̃P i approximates D̄P i within ε/n, then D̃P i is within iε/n additive error from the
optimal value DPi for all i.

THEOREM 5.1. Let D̃P i be the approximation of our algorithm to DPi. Then, the
following inequality holds:

|DPi − D̃P i| ≤
εi

n
(7)

PROOF.
We use induction on the number of points. Using the same notation as above, let

D̄P i = minj<i D̃P j − w(j, i) + C. By construction the following inequality holds:

|D̄P i − D̃P i| ≤
ε

n
∀i = 1, . . . , n (8)

When i = 1 it is clear that |DP1 − D̃P 1| ≤ ε
n . Our inductive hypothesis is the follow-

ing:

|DPj − D̃P j | ≤
jε

n
∀j < i (9)

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:10 C.E. Tsourakakis et. al.

It suffices to show that the following inequality holds:

|DPi − D̄P i| ≤
(i− 1)ε

n
(10)

since then by the triangular inequality we obtain:
iε

n
≥ |DPi − D̄P i|+ |D̄P i − D̃P i| ≥ |DPi − D̃P i|.

Let j∗, j̄ be the optimum breakpoints for DPi and D̄P i respectively, j∗, j̄ ≤ i− 1.

DPi = DPj∗ + w̃(j∗, i) + C

≤ DPj̄ + w̃(j̄, i) + C

≤ D̃P j̄ + w̃(j̄, i) + C +
j̄ε

n
(by 9)

= D̄P i +
j̄ε

n

≤ D̄P i +
(i− 1)ε

n

Similarly we obtain:

D̄P i = D̃P j̄ + w̃(j̄, i) + C

≤ D̃P j∗ + w̃(j∗, i) + C

≤ DPj∗ + w̃(j∗, i) + C +
j∗ε

n
(by 9)

= DPi +
j∗ε

n

≤ DPi +
(i− 1)ε

n

Combining the above two inequalities, we obtain 10.

By substituting i = n in Theorem 5.1 we obtain the following corollary which proves
that D̃Pn is within ε of DPn.

COROLLARY 5.2. Let D̃Pn be the approximation of our algorithm to DPn. Then,

|DPn − D̃Pn| ≤ ε. (11)

To use the analysis above in order to come up with an efficient algorithm we need
to answer two questions: (a) How many binary search queries do we need in order to
obtain the desired approximation? (b) How can we answer each such query efficiently?
The answer to (a) is simple: as it can easily be seen, the value of the objective function
is upper bounded by U2n, where U = max {

√
C, |P1|, . . . , |Pn|}. Therefore, O(log(U

2n
ε/n)) =

Õ(log (Uε)) iterations of binary search at each index i are sufficient to obtain the desired
approximation. We reduce the answer to (b) to a well studied computational geometric
problem. Specifically, fix an index i, where 1 ≤ i ≤ n, and consider the general form
of the binary search query D̄P i ≤ x + C, where x + C is the value on which we query.
Note that we use the expression x+C for convenience, i.e., so that the constant C will
be simplified from both sides of the query. This query translates itself to the following

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:11

decision problem, see also Figure 2. Does there exist an index j, such that j < i and
the following inequality holds:

x ≥ ˜DPj −
(Si − Sj)2

i− j
⇒ xi+ S2

i ≥ (x, i, Si,−1)(j, ˜DPj , 2Sj , S2
j + j ˜DPj)T ?

Hence, the binary search query has been reduced to answering a halfspace query.
Specifically, the decision problem for any index i becomes whether the intersection of
the point set POINTSi = {(j, ˜DPj , 2Sj , S2

j + ˜DPjj) ∈ R4, j < i} with a hyperplane is
empty. By Corollary 2.2 [Agarwal et al. 1992], for a point set of size n, this can be done
in Õ(n

1
3 +δ) per query and O(n

1
3 log n) amortized time per insertion of a point. Hence,

the optimal value of DPi can be found within an additive constant of ε/n using the

binary search in Õ(n
1
3 log (Uε)) time.

Therefore, we can proceed from index 1 to n, find the approximately optimal value
of OPTi and insert a point corresponding to it into the query structure. We obtain an
algorithm which runs in Õ(n

4
3 +δ log (Uε)) time, where δ is an arbitrarily small positive

constant. The pseudocode is given in Algorithm 2.

ALGORITHM 2: Approximation within additive ε using 4D halfspace queries
Initialize 4D halfspace query structure Q
for i = 1 to n do

low ← 0
high← nU2

while high− low > ε/n do
m← (low + high)/2
/* This halfspace emptiness query is efficiently supported by Q */

flag ← (∃j such that xi+ S2
i ≥ (x, i, Si,−1)(j, ˜DPj , 2Sj , S

2
j + j ˜DPj)

T) if flag then
high← m

else
low ← m

end
end
D̃P i ← (low + high)/2
/* Point insertions are efficiently supported by Q */

Insert point (i, D̃P i, 2Si, S
2
i + D̃P ii) in Q

end

6. MULTISCALE MONGE DECOMPOSITION
In this Section we present an algorithm which runs in O(n log n/ε) time to approxi-
mate the optimal shifted objective value within a multiplicative factor of (1 + ε). Our
algorithm is based on a new technique, which we consider of indepenent interest. Let
w′(j, i) =

∑i
m=j+1(i − j)P 2

m − (Si − Sj)2. We can rewrite the weight function w as a
function of w′, namely as w(j, i) = w′(j, i)/(i− j) + C. The interested reader can easily
check that we can express w′(j, i) as a sum of non-negative terms, i.e.,

w′(j, i) =
∑

j+1≤m1<m2≤i

(Pm1 − Pm2)2.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:12 C.E. Tsourakakis et. al.

Table I. Summary of proof of Lemma 6.1.

w′(i1, i4) + w′(i2, i3) w′(i1, i3) + w′(i2, i4)
(S1, S1) 1 1
(S2, S2) 2 2
(S3, S3) 1 1
(S1, S2) 1 1
(S1, S3) 1 0
(S2, S3) 1 1

Recall from Section 3 that the weight function w is not Monge. The next lemma
shows that the weight function w′ is a Monge function.

LEMMA 6.1. The weight function w′(j, i) is Monge (concave), i.e., for any i1 < i2 <
i3 < i4, the following holds:

w′(i1, i4) + w′(i2, i3) ≥ w′(i1, i3) + w′(i2, i4).

PROOF. Since each term in the summation is non-negative, it suffices to show that
any pair of indices, (m1,m2) is summed as many times on the left hand side as on the
right hand side. If i2 + 1 ≤ m1 < m2 ≤ i3, each term is counted twice on each side.
Otherwise, each term is counted once on the left hand side since i1 + 1 ≤ m1 < m2 ≤ i4
and at most once on the right hand side since [i1 + 1, i3] ∩ [i2 + 1, i4] = [i2 + 1, i3].

The proof of Lemma 6.1 is summarized in Table I. Specifically, let Sj be the set of
indices {ij + 1, . . . , ij+1}, j = 1, 2, 3. Also, let (Sj , Sk) denote the set of indices (m1,m2)
which appear in the summation such that m1 ∈ Sj ,m2 ∈ Sk. The two last columns
of Table I correspond to the left- and right-hand side of the Monge inequality (as in
Lemma 6.1) and contain the counts of appearances of each term.

Our approach is based on the following observations:

(1) Consider the weighted directed acyclic graph (DAG) on the vertex set V =
{0, . . . , n} with edge set E = {(j, i) : j < i} and weight function w : E → R, i.e.,
edge (j, i) has weight w(j, i). Solving the aCGH denoising problem reduces to find-
ing a shortest path from vertex 0 to vertex n. If we perturb the edge weights within
a factor of (1 + ε), as long as the weight of each edge is positive, then the optimal
shortest path distance is also perturbed within a factor of at most (1 + ε).

(2) By Lemma 6.1 we obtain that the weight function is not Monge essentially because
of the i− j term in the denominator.

(3) Our goal is to approximate w by a Monge function w′ such that c1w′ ≤ w ≤ c2w
′

where c1, c2 should be known constants.

In the following we elaborate on the latter goal. Fix an index i and note that the
optimal breakpoint for that index is some index j ∈ {1, . . . , i − 1}. We will “bucketize”
the range of index j into m = O(log1+ε (i)) = O(log n/ε) buckets such that the k-th
bucket, k = 1, . . . ,m, is defined by the set of indices j which satisfy

lk = i− (1 + ε)k ≤ j ≤ i− (1 + ε)k−1 = rk.

This choice of bucketization is based on the first two observations which guide our
approach. Specifically, it is easy to check that (1 + ε)k−1 ≤ i− j ≤ (1 + ε)k. This results,
for any given i, to approximating i−j by a constant for each possible bucket, leading to
O(log n/ε) different Monge functions (one per bucket) while incurring a multiplicative
error of at most (1 + ε). However, there exists a subtle point, as also Figure 3 indicates.
We need to make sure that each of the Monge functions is appropriatelly defined so
that when we consider the k-th Monge subproblem, the optimal breakpoint jk should

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:13

satisfy jk ∈ [lk, rk]. Having achieved that (see Lemma 6.2) we can solve efficiently the
recurrence. Specifically, OPTi is computed as follows:

OPTi = min
j<i

[
OPTj +

w′(i, j)
i− j

]
+ C

= min
k

[
min

j∈[lk,rk]
OPTj +

w′(i, j)
i− j

]
+ C

≈ min
k

[
min

j∈[lk,rk]
OPTj +

w′(i, j)
(1 + ε)k−1

]
+ C

= min
k

[
min

j∈[lk,rk]
OPTj +

w′(i, j)
ck

]
+ C.

The following is one of the possible ways to define the m Monge weight functions. In
what follows, λ is a sufficiently large positive constant.

wk(j, i) =

 2n−i+jλ i− j < ck = (1 + ε)k−1

2i−jλ i− j > (1 + ε)ck = (1 + ε)k
w′(j, i)/ck otherwise

(12)

LEMMA 6.2. Given any vector P , it is possible to pick λ such that wk is Monge for
all k ≥ 1. That is, for any 4-tuple i1 < i2 < i3 < i4, wk(i1, i4) + wk(i2, i3) ≥ wk(i1, i3) +
wk(i2, i4).

PROOF. Since w′(j, i) =
∑
j+1≤m1<m2≤i(Pm1 − Pm2)2 ≤ (2K)2n2 where K =

max1≤i≤n |Pi|, we can pick λ such that wk(j, i) ≥ w′(j, i). The rest of the proof is case-
work based on the lengths of the intervals i3− i1, i4− i2, and how they compare with ck
and (1 + ε)ck. There are 12 such cases in total. We may assume i3− i1 ≤ i4− i2 without
loss of generality, leaving thus 6 cases to be considered.
If ck ≤ i3 − i1, i4 − i2 ≤ (1 + ε)ck, then:

wk(i1, i3) + wk(i2, i4) = (1/ck)(w′(i1, i3) + w′(i2, i4))

≤ (1/ck)(w′(i1, i4) + w′(i2, i3)) (by Lemma 6.1)
≤ wk(i1, i4) + wk(i2, i3).

If i3 − i1 < ck and i4 − i2 ≤ (1 + ε)ck. Then as i2 > i1, i3 − i2 ≤ i3 − i1 − 1 and we have:

wk(i2, i3) = 2n−i3+i2λ

≥ 2 · 2n−i3−i1λ
≥ wk(i1, i3) + wk(i2, i4)

The cases of ck ≤ i3 − i1 and ck(1 + ε) < i4 − i2 can be done similarly. Note that the
cases of i3 − i1, i4 − i2 < ck and (1 + ε)ck < i3 − i1, i4 − i2 are also covered by these.

The only case that remain is i3− i1 < ck and (1+ε)ck < i4− i2. Since i3− i2 < i3− i1 <
ck, we have:

wk(i2, i3) = 2n−i3+i2λ

> 2n−i4+i2λ

= wk(i2, i4)

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:14 C.E. Tsourakakis et. al.

Fig. 3. Solving the k-th Monge problem, k = 1, . . . ,m = O(log1+ε (i)), for a fixed index i. The k-th interval
is the set of indices {j : lk ≤ j ≤ rk, lk = i− (1+ ε)k, rk = i− (1+ ε)k−1}. Ideally, we wish to define a Monge
function w′k whose maximum inside the k-th interval (red color) is smaller than the minimum outside that
interval (green color). This ensures that the optimal breakpoint for the k-th Monge subproblem lies inside
the red interval.

Similarly wk(i1, i4) = 2i4−i1λ > 2i3−i1λ = wk(i1, i3). Adding them gives the desired
result.

The pseudocode is shown in Algorithm 3. The algorithm computes the OPT values
online time based on the above analysis. In order to solve each Monge sub-problem our
method calls the routine of Theorem 2.3. For each index i, we compute OPTi by taking
the best value over queries to all k of the Monge query structures, then we update all
the structures with this value. Note that storing values of the form 2kλ using only their
exponent k suffices for comparison, so introducing wk(j, i) doesn’t result in any change
in runtime. By Theorem 2.3, for each Qk, finding minj<iQk.aj +wk(j, i) over all i takes
O(n) time. Hence, the total runtime is O(n log n/ε).

ALGORITHM 3: Approximation within a factor of ε using Monge function search
/* The weight function wk(j, i) is Monge. Specifically,

wk(j, i) = C +
“Pi

m=j+1(i− j)P
2
m −

(Si−Sj)2

(1+ε)k

”
for all j which satisfy

(1 + ε)k−1 ≤ i− j ≤ (1 + ε)k. */
Maintain m = log n/ log (1 + ε) Monge function search data structures Q1, . . . , Qm where Qk
corresponds to the Monge function wk(j, i).
OPT0 ← 0
/* Recursion basis */
for k = 1 to m do

Qk.a0 ← 0
end
for i = 1 to n do

OPTi ←∞
for k = 1 to m do

/* Let a
(k)
j denote Qk.aj, i.e., the value aj of the k-th data structure Qk

*/
localmink ← minj<i a

(k)
j + wk(j, i)

OPTi ← min{OPTi, localmink + C}
end

end
for k = 1 to m do

Qk.ai ← OPTi
end

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:15

Table II. Datasets, papers and the URLs where the datasets can be downloaded. �
and � denote which datasets are synthetic and real respectively.

Dataset Availability
� Lai et al. [Lai et al. 2005]

http://compbio.med.harvard.edu/
� Willenbrock et al. [Willenbrock and Fridlyand 2005]

http://www.cbs.dtu.dk/~hanni/aCGH/
� Coriell Cell lines [Snijders et al. 2001]

http://www.nature.com/ng/journal/v29/n3/
� Berkeley Breast Cancer [Neve et al. 2006]

http://icbp.lbl.gov/breastcancer/

7. VALIDATION OF OUR MODEL
In this Section we validate our model using the exact algorithm, see Section 3. In
Section 7.1 we describe the datasets and the experimental setup. In Section 7.2 we
show the findings of our method together with a detailed biological analysis.

7.1. Experimental Setup and Datasets
Our code is implemented in MATLAB2. The experiments run in a 4GB RAM, 2.4GHz
Intel(R) Core(TM)2 Duo CPU, Windows Vista machine. Our methods were compared
to existing MATLAB implementations of the CBS algorithm, available via the Bioin-
formatics toolbox, and the CGHSEG algorithm [Picard et al. 2005], courteously pro-
vided to us by Franc Picard. CGHSEG was run using heteroscedastic model un-
der the Lavielle criterion [Lavielle 2005]. Additional tests using the homoscedastic
model showed substantially worse performance and are omitted here. All methods
were compared using previously developed benchmark datasets, shown in Table II.
Follow-up analysis of detected regions was conducted by manually searching for signif-
icant genes in the Genes-to-Systems Breast Cancer Database http://www.itb.cnr.it/
breastcancer [Viti et al. 2009] and validating their positions with the UCSC Genome
Browser http://genome.ucsc.edu/. The Atlas of Genetics and Cytogenetics in Oncol-
ogy and Haematology http://atlasgeneticsoncology.org/ was also used to validate
the significance of reported cancer-associated genes. It is worth pointing out that since
aCGH data are typically given in the log scale, we first exponentiate the points, then
fit the constant segment by taking the average of the exponentiated values from the
hypothesized segment, and then return to the log domain by taking the logarithm of
that constant value. Observe that one can fit a constant segment by averaging the
log values using Jensen’s inequality, but we favor an approach more consistent with
the prior work, which typically models the data assuming i.i.d. Gaussian noise in the
linear domain.

How to pick C?. The performance of our algorithm depends on the value of the pa-
rameter C, which determines how much each segment “costs.” Clearly, there is a trade-
off between larger and smaller values: excessively large C will lead the algorithm to
output a single segment while excessively small C will result in each point being fit as
its own segment. We pick our parameter C using data published in [Willenbrock and
Fridlyand 2005]. The data was generated by modeling real aCGH data, thus capturing
their nature better than other simplified synthetic data and also making them a good
training dataset for our model. We used this dataset to generate a Receiver Operating
Characteristic (ROC) curve using values for C ranging from 0 to 4 with increment 0.01
using one of the four datasets in [Willenbrock and Fridlyand 2005] (“above 20”). The

2Code available at URL http://www.math.cmu.edu/~ctsourak/CGHTRIMMER.zip. Faster C code is also avail-
able, but since the competitors were implemented in MATLAB, all the results in this Section refer to our
MATLAB implementation.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:16 C.E. Tsourakakis et. al.

Fig. 4. ROC curve of CGHTRIMMER as a function of C on data from [Willenbrock and Fridlyand 2005]. The
red arrow indicates the point (0.91 and 0.98 recall and precision respectively) corresponding to C=0.2, the
value used in all subsequent results.

resulting curve is shown in Figure 4. Then, we selected C = 0.2, which achieves high
precision/specificity (0.98) and high recall/sensitivity (0.91). All subsequent results re-
ported were obtained by setting C equal to 0.2.

7.2. Experimental Results and Biological Analysis
We show the results on synthetic data in Section 7.2.1, on real data where the ground
truth is available to us in Section 7.2.2 and on breast cancer cell lines with no ground
truth in Section 7.2.3.

7.2.1. Synthetic Data. We use the synthetic data published in [Lai et al. 2005]. The data
consist of five aberrations of increasing widths of 2, 5, 10, 20 and 40 probes, respec-
tively, with Gaussian noise N(0,0.252). Figure 5 shows the performance of CGHTRIM-
MER, CBS, and CGHSEG. Both CGHTRIMMER and CGHSEG correctly detect all aber-
rations, while CBS misses the first, smallest region. The running time for CGHTRIM-
MER is 0.007 sec, compared to 1.23 sec for CGHSEG and 60 sec for CBS.

7.2.2. Coriell Cell Lines. The first real dataset we use to evaluate our method is the
Coriell cell line BAC array CGH data [Snijders et al. 2001], which is widely considered
a “gold standard” dataset. The dataset is derived from 15 fibroblast cell lines using the
normalized average of log2 fluorescence relative to a diploid reference. To call gains or
losses of inferred segments, we assign to each segment the mean intensity of its probes
and then apply a simple threshold test to determine if the mean is abnormal. We follow
[Bejjani et al. 2005] in favoring ±0.3 out of the wide variety of thresholds that have
been used [Ng et al. 2006].

Table III summarizes the performance of CGHTRIMMER, CBS and CGHSEG rela-
tive to previously annotated gains and losses in the Corielle dataset. The table shows
notably better performance for CGHTRIMMER compared to either alternative method.
CGHTRIMMER finds 22 of 23 expected segments with one false positive. CBS finds
20 of 23 expected segments with one false positive. CGHSEG finds 22 of 23 expected
segments with seven false positives. CGHTRIMMER thus achieves the same recall as

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:17

(a) CGHTRIMMER (b) CBS

(c) CGHSEG

Fig. 5. Performance of CGHTRIMMER, CBS, and CGHSEG on denoising synthetic aCGH data from [Lai
et al. 2005]. CGHTRIMMER and CGHSEG exhibit excellent precision and recall whereas CBS misses two
consecutive genomic positions with DNA copy number equal to 3.

CGHSEG while outperforming it in precision and the same precision as CBS while out-
performing it in recall. In cell line GM03563, CBS fails to detect a region of two points
which have undergone a loss along chromosome 9, in accordance with the results ob-
tained using the Lai et al. [Lai et al. 2005] synthetic data. In cell line GM03134, CGH-
SEG makes a false positive along chromosome 1 which both CGHTRIMMER and CBS
avoid. In cell line GM01535, CGHSEG makes a false positive along chromosome 8 and
CBS misses the aberration along chromosome 12. CGHTRIMMER, however, performs
ideally on this cell line. In cell line GM02948, CGHTRIMMER makes a false positive
along chromosome 7, finding a one-point segment in 7q21.3d at genomic position 97000
whose value is equal to 0.732726. All other methods also make false positive errors on
this cell line. In GM7081, all three methods fail to find an annotated aberration on
chromosome 15. In addition, CGHSEG finds a false positive on chrosome 11.

CGHTRIMMER also substantially outperforms the comparative methods in run time,
requiring 5.78 sec for the full data set versus 8.15 min for CGHSEG (an 84.6-fold
speedup) and 47.7 min for CBS (a 495-fold speedup).

7.2.3. Breast Cancer Cell Lines. To illustrate further the performance of CGHTRIMMER
and compare it to CBS and CGHSEG, we applied it to the Berkeley Breast Cancer
cell line database [Neve et al. 2006]. The dataset consists of 53 breast cancer cell lines
that capture most of the recurrent genomic and transcriptional characteristics of 145
primary breast cancer cases. We do not have an accepted “answer key” for this data

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:18 C.E. Tsourakakis et. al.

Table III. Results from applying CGHTRIMMER, CBS, and CGH-
SEG to 15 cell lines. Rows with listed chromosome numbers (e.g.,
GM03563/3) corresponded to known gains or losses and are anno-
tated with a check mark if the expected gain or loss was detected or
a “No” if it was not. Additional rows list chromosomes on which seg-
ments not annotated in the benchmark were detected; we presume
these to be false positives.

Cell Line/Chromosome CGHTRIMMER CBS CGHSEG
GM03563/3 X X X
GM03563/9 X No X

GM03563/False - - -
GM00143/18 X X X

GM00143/False - - -
GM05296/10 X X X
GM05296/11 X X X

GM05296/False - - 4,8
GM07408/20 X X X

GM07408/False - - -
GM01750/9 X X X

GM01750/14 X X X
GM01750/False - - -

GM03134/8 X X X
GM03134/False - - 1

GM13330/1 X X X
GM13330/4 X X X

GM13330/False - - -
GM03576/2 X X X

GM03576/21 X X X
GM03576/False - - -

GM01535/5 X X X
GM01535/12 X No X

GM01535/False - - 8
GM07081/7 X X X

GM07081/15 No No No
GM07081/False - - 11

GM02948/13 X X X
GM02948/False 7 1 2

GM04435/16 X X X
GM04435/21 X X X

GM04435/False - - 8,17
GM10315/22 X X X

GM10315/False - - -
GM13031/17 X X X

GM13031/False - - -
GM01524/6 X X X

GM01524/False - - -

set, but it provides a more extensive basis for detailed comparison of differences in
performance of the methods on common data sets, as well as an opportunity for novel
discovery. While we have applied the methods to all chromosomes in all cell lines, space
limitations prevent us from presenting the full results here. The interested reader can
reproduce all the results including the ones not presented here3. We therefore arbi-
trarily selected three of the 53 cell lines and selected three chromosomes per cell line
that we believed would best illustrate the comparative performance of the methods.
The Genes-to-Systems Breast Cancer Database 4 [Viti et al. 2009] was used to identify

3http://www.math.cmu.edu/~ctsourak/DPaCGHsupp.html
4http://www.itb.cnr.it/breastcancer

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

CGHTRIMMER CBS CGHSEG

Fig. 6. Visualization of the segmentation output of CGHTRIMMER, CBS, and CGHSEG for the cell line
BT474 on chromosomes 1 (a,b,c), 5 (d,e,f), and 17 (g,h,i). (a,d,g) CGHTRIMMER output. (b,e,h) CBS output.
(c,f,i) CGHSEG output. Segments exceeding the ± 0.3 threshold [Bejjani et al. 2005] are highlighted.

known breast cancer markers in regions predicted to be gained or lost by at least one
of the methods. We used the UCSC Genome Browser 5 to verify the placement of genes.

We note that CGHTRIMMER again had a substantial advantage in run time. For the
full data set, CGHTRIMMER required 22.76 sec, compared to 23.3 min for CGHSEG (a
61.5-fold increase), and 4.95 hrs for CBS (a 783-fold increase).

Cell Line BT474:. Figure 6 shows the performance of each method on the BT474
cell line. The three methods report different results for chromosome 1, as shown in Fig-
ures 6(a,b,c), with all three detecting amplification in the q-arm but differing in the de-
tail of resolution. CGHTRIMMER is the only method that detects region 1q31.2-1q31.3
as aberrant. This region hosts gene NEK7, a candidate oncogene [Kimura and Okano
2001] and gene KIF14, a predictor of grade and outcome in breast cancer [Corson et al.
2005]. CGHTRIMMER and CBS annotate the region 1q23.3-1q24.3 as amplified. This
region hosts several genes previously implicated in breast cancer [Viti et al. 2009],
such as CREG1 (1q24), POU2F1 (1q22-23), RCSD1 (1q22-q24), and BLZF1 (1q24). Fi-
nally, CGHTRIMMER alone reports independent amplification of the gene CHRM3, a
marker of metastasis in breast cancer patients [Viti et al. 2009].

For chromosome 5 (Figures 6(d,e,f)), the behavior of the three methods is al-
most identical. All methods report amplification of a region known to contain many

5http://genome.ucsc.edu/

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:20 C.E. Tsourakakis et. al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

CGHTRIMMER CBS CGHSEG

Fig. 7. Visualization of the segmentation output of CGHTRIMMER, CBS, and CGHSEG for the cell line
HS578T on chromosomes 3 (a,b,c), 11 (d,e,f), and 17 (g,h,i). (a,d,g) CGHTRIMMER output. (b,e,h) CBS output.
(c,f,i) CGHSEG output. Segments exceeding the ± 0.3 threshold [Bejjani et al. 2005] are highlighted.

breast cancer markers, including MRPL36 (5p33), ADAMTS16 (5p15.32), POLS
(5p15.31), ADCY2 (5p15.31), CCT5 (5p15.2), TAS2R1 (5p15.31), ROPN1L (5p15.2),
DAP (5p15.2), ANKH (5p15.2), FBXL7 (5p15.1), BASP1 (5p15.1), CDH18 (5p14.3),
CDH12 (5p14.3), CDH10 (5p14.2 - 5p14.1), CDH9 (5p14.1) PDZD2 (5p13.3), GOLPH3
(5p13.3), MTMR12 (5p13.3), ADAMTS12 (5p13.3 - 5p13.2), SLC45A2 (5p13.2), TARS
(5p13.3), RAD1 (5p13.2), AGXT2 (5p13.2), SKP2 (5p13.2), NIPBL (5p13.2), NUP155
(5p13.2), KRT18P31 (5p13.2), LIFR (5p13.1) and GDNF (5p13.2) [Viti et al. 2009]. The
only difference in the assignments is that CBS fits one more probe to this amplified
segment.

Finally, for chromosome 17 (Figures 6(g,h,i)), like chromosome 1, all methods detect
amplification but CGHTRIMMER predicts a finer breakdown of the amplified region
into independently amplified segments. All three methods detect amplification of a
region which includes the major breast cancer biomarkers HER2 (17q21.1) and BRCA1
(17q21) as also the additional markers MSI2 (17q23.2) and TRIM37 (17q23.2) [Viti
et al. 2009]. While the more discontiguous picture produced by CGHTRIMMER may
appear to be a less parsimonious explanation of the data, a complex combination of
fine-scale gains and losses in 17q is in fact well supported by the literature [Orsetti
et al. 2004].

Cell Line HS578T:. Figure 7 compares the methods on cell line HS578T for chro-
mosomes 3, 11 and 17. Chromosome 3 (Figures 7(a,b,c)) shows identical prediction

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:21

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

CGHTRIMMER CBS CGHSEG

Fig. 8. Visualization of the segmentation output of CGHTRIMMER, CBS, and CGHSEG for the cell line
T47D on chromosomes 1 (a,b,c), 11 (d,e,f), and 20 (g,h,i). (a,d,g) CGHTRIMMER output. (b,e,h) CBS output.
(c,f,i) CGHSEG output. Segments exceeding the ± 0.3 threshold [Bejjani et al. 2005] are highlighted.

of an amplification of 3q24-3qter for all three methods. This region includes the key
breast cancer markers PIK3CA (3q26.32) [Lee et al. 2005], and additional breast-
cancer-associated genes TIG1 (3q25.32), MME (3q25.2), TNFSF10 (3q26), MUC4
(3q29), TFRC (3q29), DLG1 (3q29) [Viti et al. 2009]. CGHTRIMMER and CGHSEG also
make identical predictions of normal copy number in the p-arm, while CBS reports an
additional loss between 3p21 and 3p14.3. We are unaware of any known gain or loss
in this region associated with breast cancer.

For chromosome 11 (Figures 7(d,e,f)), the methods again present an identical picture
of loss at the q-terminus (11q24.2-11qter) but detect amplifications of the p-arm at dif-
ferent levels of resolution. CGHTRIMMER and CBS detect gain in the region 11p15.5,
which is the site of the HRAS breast cancer metastasis marker [Viti et al. 2009]. In
contrast to CBS, CGHTRIMMER detects an adjacent loss region. While we have no di-
rect evidence this loss is a true finding, the region of predicted loss does contain EIF3F
(11p15.4), identified as a possible tumor suppressor whose expression is decreased in
most pancreatic cancers and melanomas [Viti et al. 2009]. Thus, we conjecture that
EIF3F is a tumor suppressor in breast cancer.

On chromosome 17 (Figures 7(g,h,i)), the three methods behave similarly, with all
three predicting amplification of the p-arm. CBS places one more marker in the am-
plified region causing it to cross the centromere while CGHSEG breaks the amplified
region into three segments by predicting additional amplification at a single marker.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:22 C.E. Tsourakakis et. al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

CGHTRIMMER CBS CGHSEG

Fig. 9. Visualization of the segmentation output of CGHTRIMMER, CBS, and CGHSEGfor the cell line
MCF10A on chromosomes 1 (a,b,c), 8 (d,e,f), and 20 (g,h,i). (a,d,g) CGHTRIMMER output. (b,e,h) CBS output.
(c,f,i) CGHSEG output. Segments exceeding the ± 0.3 threshold [Bejjani et al. 2005] are highlighted.

Cell Line T47D:. Figure 8 compares the methods on chromosomes 1, 8, and 20 of
the cell line T47D. On chromosome 1 (Figure 8(a,b,c)), all three methods detect loss
of the p-arm and a predominant amplification of the q-arm. CBS infers a presumably
spurious extension of the p-arm loss across the centromere into the q-arm, while the
other methods do not. The main differences between the three methods appear on
the q-arm of chromosome 1. CGHTRIMMER and CGHSEG detect a small region of
gain proximal to the centromere at 1q21.1-1q21.2, followed by a short region of loss
spanning 1q21.3-1q22. CBS merges these into a single longer region of normal copy
number. The existence of a small region of loss at this location in breast cancers is
supported by prior literature [Chunder et al. 2003].

The three methods provide comparable segmentations of chromosome 11 (Fig-
ure 8(d,e,f)). All predict loss near the p-terminus, a long segment of amplification
stretching across much of the p- and q-arms, and additional amplification near the
q-terminus. CGHTRIMMER, however, breaks this q-terminal amplification into several
sub-segments at different levels of amplification while CBS and CGHSEG both fit a
single segment to that region. We have no empirical basis to determine which segmen-
tation is correct here. CGHTRIMMER does appear to provide a spurious break in the
long amplified segment that is not predicted by the others.

Finally, along chromosome 20 (Figure 8(g,h,i)), the output of the methods is similar,
with all three methods suggesting that the q-arm has an aberrant copy number, an
observation consistent with prior studies [Hodgson et al. 2003]. The only exception is

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:23

again that CBS fits one point more than the other two methods along the first segment,
causing a likely spurious extension of the p-arm’s normal copy number into the q-arm.

Cell Line MCF10A. Figure 9 shows the output of each of the three methods on chro-
mosomes 1, 8, and 20 of the cell line MCF10A. On this cell line, the methods all yield
similar predictions although from slightly different segmentations. All three show
nearly identical behavior on chromosome 1 (Figure 9(a,b,c)), with normal copy num-
ber on the p-arm and at least two regions of independent amplification of the q-arm.
Specifically, the regions noted as gain regions host significant genes such as PDE4DIP
a gene associated with breast metastatic to bone (1q22), ECM1 (1q21.2), ARNT (1q21),
MLLT11 (1q21), S100A10 (1q21.3), S100A13 (1q21.3), TPM3 (1q25) which also plays a
role in breast cancer metastasis, SHC1 (1q21.3) and CKS1B (1q21.3). CBS provides a
slightly different segmentation of the q-arm near the centromere, suggesting that the
non-amplified region spans the centromere and that a region of lower amplification
exists near the centromere. On chromosome 8 (Figure 9(d,e,f)) the three algorithms
lead to identical copy number predictions after thresholding, although CBS inserts an
additional breakpoint at 8q21.3 and a short additional segment at 8q22.2 that do not
correspond to copy number changes. All three show significant amplification across
chromosome 20 (Figure 9(g,h,i)), although in this case CGHSEG distinguishes an ad-
ditional segment from 20q11.22-20q11.23 that is near the amplification threshold. It
is worth mentioning that chromosome 20 hosts significant breast cancer related genes
such as CYP24 and ZNF217.

8. CONCLUSIONS
In this paper, we present a new formulation for the problem of denoising aCGH data.
Our formulation has already proved to be valuable in numerous settings [Ding and
Shah 2010]. We show a basic exact dynamic programming algorithm which runs in
O(n2) time and performs excellently on both synthetic and real data. More interest-
ingly from a theoretical perspective, we develop two techniques for performing approx-
imate dynamic programming in both the additive and the multiplicative norm. Our
first algorithm reduces the optimization problem into a well studied geometric prob-
lem, namely halfspace emptiness queries. The second technique carefully breaks the
problem into a small number of Monge subproblems, which are solved efficiently using
existing techniques. Our results strongly indicate that the O(n2) algorithm, which is
— to the best of our knowledge — the fastest exact algorithm, is not tight. There is
inherent structure in the optimization problem. Lemma 8.1 is such an example.

(a) One fitted segment

(b) Five fitted segments

Fig. 10. Lemma 8.1: if |Pi1 − Pi2 | > 2
√

2C then Segmentation (b) which consists of five segments (two of
which are single points) is superior to Segmentation (a) which consists of a single segment.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:24 C.E. Tsourakakis et. al.

LEMMA 8.1. If |Pi1 − Pi2 | > 2
√

2C, then in the optimal solution of the dynamic pro-
gramming using L2 norm, i1 and i2 are in different segments.

PROOF. The proof is by contradiction, see also Figure 10. Suppose the optimal so-
lution has a segment [i, j] where i ≤ i1 < i2 ≤ j, and its optimal x value is x∗. Then
consider splitting it into 5 intervals [i, i1 − 1], [i1, i1], [i1 + 1, i2 − 1], [i2, i2], [i2 + 1, r].
We let x = x∗ be the fitted value to the three intervals not containing i1 and i2. Also,
as |Pi1 − Pi2 | > 2

√
2C, (Pi1 − x)2 + (Pi2 − x)2 > 2

√
2C

2
= 4C. So by letting x = Pi1 in

[i1, i1] and x = Pi2 in [i2, i2], the total decreases by more than 4C. This is more than the
added penalty of having 4 more segments, a contradiction with the optimality of the
segmentation.

Uncovering and taking advantage of the inherent structure in a principled way
should result in a faster exact algorithm. This is an interesting research direction
which we leave as future work. Another research direction is to find more applications
(e.g., histogram construction [Guha et al. 2006]) to which our methods are applicable.

ACKNOWLEDGMENTS

The authors would like to thank Frank Picard for making his MATLAB code available to us. We would like
to thank Pawel Gawrychowski for pointing us reference [Agarwal et al. 1992] and Dimitris Achlioptas and
Yuan Zhou for helpful discussions on optimization techniques. We would also like to thank the reviewers for
their valuable comments.

REFERENCES
AGARWAL, P. K., EPPSTEIN, D., AND MATOUSEK, J. 1992. Dynamic half-space reporting, geometric opti-

mization, and minimum spanning trees. In Proceedings of the 33rd Annual Symposium on Foundations
of Computer Science. IEEE Computer Society, Washington, DC, USA, 80–89.

AGARWAL, P. K. AND ERICKSON, J. 1999. Geometric Range Searching and Its Relatives.
AGGARWAL, A., HANSEN, M., AND LEIGHTON, T. 1990. Solving query-retrieval problems by compacting

voronoi diagrams. In Proceedings of the twenty-second annual ACM symposium on Theory of computing.
STOC ’90. ACM, New York, NY, USA, 331–340.

AGGARWAL, A., KLAWE, M., MORAN, S., SHOR, P., AND WILBER, R. 1986. Geometric applications of a ma-
trix searching algorithm. In Proceedings of the second annual symposium on Computational geometry.
SCG ’86. ACM, New York, NY, USA, 285–292.

ALBERTSON, D. AND PINKEL, D. 2003. Genomic microarrays in human genetic disease and cancer. Human
Molecular Genetics 12, 145–152.

BARRY, D. AND HARTIGAN, J. 1993. A bayesian analysis for change point problems. Journal of the American
Statistical Association 88, 421, 309–319.

BEIN, W., GOLIN, M., LARMORE, L., AND ZHANG, Y. 2009. The knuth-yao quadrangle-inequality speedup
is a consequence of total monotonicity. ACM Trans. Algorithms 6, 1–22.

BEJJANI, B., SALEKI, R., BALLIF, B., ROREM, E., SUNDIN, K., THEISEN, A., KASHORK, C., AND SHAFFER,
L. 2005. Use of targeted array-based cgh for the clinical diagnosis of chromosomal imbalance: is less
more? American Journal of Medical Genetics A, 259–67.

BELLMAN, R. 2003. Dynamic Programming. Dover Publications.
BERTSEKAS, D. 2000. Dynamic Programming and Optimal Control. Athena Scientific.
BIGNELL, G., HUANG, J., GRESHOCK, J., WATT, S., BUTLER, A., WEST, S., GRIGOROVA, M., JONES, K.,

WEI, W., STRATTON, M., FUTREAL, A., WEBER, B., SHAPERO, M., AND WOOSTER, R. 2004. High-
resolution analysis of dna copy number using oligonucleotide microarrays. Genome Research, 287–295.

BURKARD, R. E., KLINZ, B., AND RÜDIGER, R. 1996. Perspectives of monge properties in optimization.
Discrete Appl. Math. 70, 95–161.

BUTLER, M., MEANEY, F., AND PALMER, C. 1986. Clinical and cytogenetic survey of 39 individuals with
prader-labhart-willi syndrome. American Journal of Medical Genetics 23, 793–809.

CHAZELLE, B., GUIBAS, L., AND LEE, D. T. 1985. The power of geometric duality. BIT 25, 76–90.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:25

CHAZELLE, B. AND PREPARATA, F. 1985. Halfspace range search: an algorithmic application of k-sets. In
Proceedings of the first annual symposium on Computational geometry. SCG ’85. ACM, New York, NY,
USA, 107–115.

CHUNDER, N., MANDAL, S., BASU, D., ROY, A., ROYCHOUDHURY, S., AND PANDA, C. K. 2003. Deletion
mapping of chromosome 1 in early onset and late onset breast tumors–a comparative study in eastern
india. Pathol Res Pract 199, 313–321.

CLARKSON, K. L. AND SHOR., P. W. 1989. Applications of random sampling in computational geometry, ii.
Discrete Comput. Geom. 4, 387–421.

CORSON, T., HUANG, A., TSAO, M., AND GALLIE, B. 2005. Kif14 is a candidate oncogene in the 1q minimal
region of genomic gain in multiple cancers. Oncogene 24, 47414753.

DESPER, R., JIANG, F., KALLIONIEMI, O.-P., MOCH, H., PAPADIMITRIOU, C. H., AND SCHÄFFER, A. A.
1999. Inferring tree models for oncogenesis from comparative genome hybridization data. Journal of
Computational Biology 6, 1, 37–52.

DESPER, R., JIANG, F., KALLIONIEMI, O.-P., MOCH, H., PAPADIMITRIOU, C. H., AND SCHÄFFER, A. A.
2000. Distance-based reconstruction of tree models for oncogenesis. Journal of Computational Biol-
ogy 7, 6, 789–803.

DING, J. AND SHAH, S. P. 2010. Robust hidden semi-markov modeling of array cgh data. In IEEE Interna-
tional Conference on Bioinformatics & Biomedicine. 603–608.

EILERS, P. H. AND DE MENEZES, R. X. 2005. Quantile smoothing of array cgh data. Bioinformatics 21, 7,
1146–1153.

EPPSTEIN, D., GALIL, Z., AND GIANCARLO, R. 1988. Speeding up dynamic programming. In Proceedings of
the 29th Annual Symposium on Foundations of Computer Science. IEEE Computer Society, Washington,
DC, USA, 488–496.

EPPSTEIN, D., GALIL, Z., GIANCARLO, R., AND ITALIANO, G. 1992a. Sparse dynamic programming i: linear
cost functions. J. ACM 39, 519–545.

EPPSTEIN, D., GALIL, Z., GIANCARLO, R., AND ITALIANO, G. 1992b. Sparse dynamic programming ii:
convex and concave cost functions. J. ACM 39, 546–567.

FRIDLYAND, J., SNIJDERS, A. M., PINKEL, D., ALBERTSON, D. G., AND JAIN, A. N. 2004. Hidden markov
models approach to the analysis of array cgh data. J. Multivar. Anal. 90, 1, 132–153.

GILBERT, E. AND MOORE, E. 1959. Variable-length binary encodings. Bell System Tech. 38, 933–966.
GUHA, S., KOUDAS, N., AND SHIM, K. 2006. Approximation and streaming algorithms for histogram con-

struction problems. ACM Trans. Database Syst. 31, 396–438.
GUHA, S., LI, Y., AND NEUBERG, D. 2006. Bayesian hidden markov modeling of array cgh data. Harvard

University, Paper 24.
HIRSCHBERG, D. 1975. A linear space algorithm for computing maximal common subsequences. Commun.

ACM 18, 341–343.
HODGSON, J., CHIN, K., COLLINS, C., AND GRAY, J. 2003. Genome amplification of chromosome 20 in breast

cancer. Breast Cancer Res Treat..
HSU, L., SELF, S., GROVE, D., WANG, K., DELROW, J., LOO, L., AND PORTER, P. 2005. Denoising array

based comparative genomic hybridization data using wavelets. Biostatistics 6, 211–226.
HUANG, T., WU, B., LIZARDI, P., AND ZHAO, H. 2005. Detection of DNA copy number alterations using

penalized least squares regression. Bioinformatics 21, 20, 3811–3817.
HUPÉ, P., STRANSKY, N., THIERY, J.-P., RADVANYI, F., AND BARILLOT, E. 2004. Analysis of array cgh data:

from signal ratio to gain and loss of dna regions. Bioinformatics 20, 18, 3413–3422.
JAGADISH, H. V., KOUDAS, N., MUTHUKRISHNAN, S., POOSALA, V., SEVCIK, K. C., AND TORSTEN, S.

1998. Optimal histograms with quality guarantees. In Proceedings of the 24rd International Conference
on Very Large Data Bases. VLDB ’98. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
275–286.

JONG, K., MARCHIORI, E., MEIJER, G., VAN DER VAART, A., AND YLSTRA, B. 2004. Breakpoint identifica-
tion and smoothing of array comparative genomic hybridization data. Bioinformatics 20, 18, 3636–3637.

KALLIONIEMI, A., KALLIONIEMI, O., SUDAR, D., RUTOVITZ, D., GRAY, J., WALDMAN, F., AND PINKEL,
D. 1992. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Sci-
ence 258, 5083, 818–821.

KIMURA, M. AND OKANO, Y. 2001. Identification and assignment of the human nima-related protein kinase
7 gene (nek7) to human chromosome 1q31.3. Cytogenet. Cell Genet..

KLAWE, M. AND KLEITMAN, D. 1990. An almost linear time algorithm for generalized matrix searching.
SIAM J. Discret. Math. 3, 81–97.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:26 C.E. Tsourakakis et. al.

KNUTH, D. E. 1971. Optimum binary search trees. Acta Inf. 1, 14–25.
KNUTH, D. E. 1981. Seminumerical Algorithms. Addison-Wesley.
LAI, W. R., JOHNSON, M. D., KUCHERLAPATI, R., AND PARK, P. J. 2005. Comparative analysis of algo-

rithms for identifying amplifications and deletions in array cgh data. Bioinformatics 21, 19, 3763–3770.
LARMORE, L. L. AND SCHIEBER, B. 1991. On-line dynamic programming with applications to the prediction

of rna secondary structure. J. Algorithms 12, 3, 490–515.
LAVIELLE, M. 2005. Using penalized contrasts for the change-point problem. Signal Processing 85, 8, 1501–

1510.
LEE, J. W., SOUNG, Y. H., KIM, S. Y., LEE, H. W., PARK, W. S., NAM, S. W., KIM, S. H., LEE, J. Y., YOO,

N. J., , AND LEE, S. H. 2005. Pik3ca gene is frequently mutated in breast carcinomas and hepatocellular
carcinomas. Oncogene.

LEJEUNE, J., GAUTIER, M., AND TURPIN, R. 1959. Etude des chromosomes somatiques de neuf enfants
mongoliens. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences (Paris) 248(11),
17211722.

LEJEUNE, J., LAFOURCADE, J., BERGER, R., VIALATTA, J., BOESWILLWALD, M., SERINGE, P., AND
TURPIN, R. 1963. Trois ca de deletion partielle du bras court d’un chromosome 5. Compte Rendus de
l’Academie des Sciences (Paris) 257, 3098.

LIPSON, D., AUMANN, Y., BEN-DOR, A., LINIAL, N., AND YAKHINI, Z. 2005. Efficient calculation of interval
scores for dna copy number data analysis. In RECOMB. 83–100.

MATOUSEK, J. 1991. Reporting points in halfspaces. In FOCS. 207–215.
MONGE, G. 1781. Memoire sue la theorie des deblais et de remblais. Histoire de lAcademie Royale des

Sciences de Paris, 666–704.
MYERS, C. L., DUNHAM, M. J., KUNG, S. Y., AND TROYANSKAYA, O. G. 2004. Accurate detection of aneu-

ploidies in array cgh and gene expression microarray data. Bioinformatics 20, 18, 3533–3543.
NEVE, R., CHIN, K., FRIDLYAND, J., YEH, J., BAEHNER, F., FEVR, T., CLARK, N., BAYANI, N., COPPE, J.,

AND TONG, F. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer
subtypes. Cancer Cell 10, 515–527.

NG, G., HUANG, J., ROBERTS, I., AND COLEMAN, N. 2006. Defining ploidy-specific thresholds in array
comparative genomic hybridization to improve the sensitivity of detection of single copy alterations in
cell lines. Journal of Molecular Diagnostics.

OLSHEN, A. B., VENKATRAMAN, E., LUCITO, R., AND M.WIGLER. 2004. Circular binary segmentation for
the analysis of array-based dna copy number data. Biostatistics 5, 4, 557–572.

ORSETTI, B., NUGOLI, M., CERVERA, N., LASORSA, L., CHUCHANA, P., URSULE, L., NGUYEN, C., REDON,
R., DU MANOIR, S., RODRIGUEZ, C., AND THEILLET, C. 2004. Genomic and expression profiling of
chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes.
Cancer Research.

PICARD, F., ROBIN, S., LAVIELLE, M., VAISSE, C., AND DAUDIN, J. J. 2005. A statistical approach for array
cgh data analysis. BMC Bioinformatics 6.

PICARD, F., ROBIN, S., LEBARBIER, E., AND DAUDIN, J. 2007. A segmentation/clustering model for the
analysis of array cgh data. Biometrics 63.

PINKEL, D., SEGRAVES, R., SUDAR, D., CLARK, S., POOLE, I., KOWBEL, D., COLLINS, C., KUO, W.-L.,
CHEN, C., AND ZHA, Y. 1998. High resolution analysis of DNA copy number variation using comparative
genomic hybridization to microarrays. Nature Genetics 25, 207 – 211.

POLLACK, J. R., PEROU, C. M., ALIZADEH, A. A., EISEN, M. B., PERGAMENSCHIKOV, A., WILLIAMS, C. F.,
JEFFREY, S. S., BOTSTEIN, D., AND BROWN, P. O. 1999. Genome-wide analysis of dna copy-number
changes using cdna microarrays. Nature Genetics 23, 41–46.

SEN, A. AND SRIVASTAVA, M. 1975. On tests for detecting change in mean. Annals of Statistics 3, 98–108.
SHAH, S. P., XUAN, X., DELEEUW, R. J., KHOJASTEH, M., LAM, W. L., NG, R., AND MURPHY, K. P. 2006.

Integrating copy number polymorphisms into array cgh analysis using a robust hmm. Bioinformat-
ics 22, 14.

SHI, Y., GUO, F., WU, W., AND XING, E. P. 2007. Gimscan: A new statistical method for analyzing whole-
genome array cgh data. In RECOMB. 151–165.

SNIJDERS, A., NOWAK, N., SEGRAVES, R., BLACKWOOD, S., BROWN, N., CONROY, J., HAMILTON, G., HIN-
DLE, A., HUEY, B., KIMURA, K., LAW, S., MYAMBO, K., PALMER, J., YLSTRA, B., YUE, J., GRAY, J.,
JAIN, A., PINKEL, D., AND ALBERTSON, D. 2001. Assembly of microarrays for genome-wide measure-
ment of DNA copy number. Nature Genetics 29, 263–264.

TIBSHIRANI, R. AND WANG, P. 2008. Spatial smoothing and hot spot detection for cgh data using the fused
lasso. Biostatistics (Oxford, England) 9, 1, 18–29.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Approximation Algorithms for Speeding up Dynamic Programming and denoising aCGH data 39:27

VITI, F., MOSCA, E., MERELLI, I., CALABRIA, A., ALFIERI, R., AND MILANESI, L. 2009. Ontological enrich-
ment of the Genes-to-Systems Breast Cancer Database. Communications in Computer and Information
Science 46, 178–182.

WANG, P., KIM, Y., POLLACK, J., NARASIMHAN, B., AND TIBSHIRANI, R. 2005. A method for calling gains
and losses in array cgh data. Biostatistics 6, 1, 45–58.

WATERMAN, M. S. AND SMITH, T. 1986. Rapid dynamic programming algorithms for rna secondary struc-
ture. Adv. Appl. Math. 7, 455–464.

WILLENBROCK, H. AND FRIDLYAND, J. 2005. A comparison study: applying segmentation to array cgh data
for downstream analyses. Bioinformatics 21, 22, 4084–4091.

XING, B., GREENWOOD, C., AND BULL, S. 2007. A hierarchical clustering method for estimating copy num-
ber variation. Biostatistics 8, 632–653.

YAO, F. F. 1980. Efficient dynamic programming using quadrangle inequalities. In Proceedings of the twelfth
annual ACM symposium on Theory of computing. STOC ’80. ACM, New York, NY, USA, 429–435.

YAO, F. F. 1982. Speed-up in dynamic programming. SIAM Journal on Algebraic and Discrete Methods 3, 4,
532–540.

ZHANG, F., GU, W., HURLES, M. E., AND LUPSKI, J. R. 2009. Copy number variation in human health,
disease, and evolution. Annual Review of Genomics and Human Genetics 10, 451–481.

Received February 2011; revised March 2011; accepted June 2011

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: March 2011.

