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Abstract. In this note we introduce a new randomized algorithm for counting
triangles in graphs. We show that under mild conditions, the estimate of our algo-
rithm is strongly concentrated around the true number of triangles. Specifically,
let G be a graph with n vertices, t triangles and let ∆ be the maximum number of
triangles an edge of G is contained in. Also, let N = 1/p the number of colors we

use in our randomized algorithm. We show that if p ≥ max (∆ log n
t ,

√
log n
t ) then

for any constant ε > 0 our unbiased estimate T is concentrated around its expec-
tation, i.e., Pr [|T − E [T ] | ≥ εE [T ]] = o(1). Finally, our algorithm is amenable
to being parallelized. We present a simple MapReduce implementation of our
algorithm.

1. Introduction

Triangle counting is a fundamental algorithmic problem with many applications.
The interested reader is urged to see [17] and references therein. The fastest exact
triangle counting algorithm to date (in terms of number of edges in the graph) is due

to Alon, Yuster and Zwick [3] and runs in time O(m
2ω
ω+1 ), where currently the matrix

multiplication exponent ω is 2.371 [9]. For planar graphs linear time algorithms are
known, e.g., [18]. Practical methods for exact triangle counting use enumeration
techniques, see e.g., [19] and references therein. For many applications, especially
in the context of large social networks, an exact count is not crucial but rather a
fast, high quality estimate. Most of the work on approximate triangle counting is
sampling-based and has considered a (semi-)streaming setting [5, 6, 7, 14, 23]. A
different line of research is based on a linear algebraic approach [4, 21]. Currently
to the best of our knowledge, the state-of-the-art approximate counting method
relies on a hybrid algorithm that first sparsifies the graph and then samples triples
according to a degree based partitioning trick [17].

In this short note, we present a new sampling approach to approximating the
number of triangles in a graph G(V,E), that significantly improves existing sampling
approaches. Furthermore, it is easily implemented in parallel. The key idea of our
algorithm is to correlate the sampling of edges such that if two edges of a triangle
are sampled, the third edge is always sampled. This decreases the degree of the
multivariate polynomial that expresses the number of sampled triangles. We analyze
our method using a powerful theorem due to Hajnal and Szemerédi [11]. This note
is organized as follows: in Section 2 we discuss the theoretical preliminaries for
our analysis and in Section 1.1 we present our randomized algorithm. In Section 3
we present our main theoretical results, we analyze our algorithm and we discuss
some of its important properties. In Section 4 we present an implementation of our
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Algorithm 1 Colorful Triangle Sampling

Require: Unweighted graph G([n], E)
Require: Number of colors N = 1/p

Let f : V → [N ] have uniformly random values
E ′ ← {{u, v} ∈ E | f(u) = f(v)}
T ← number of triangles in the graph (V,E ′)
return T/p2

algorithm in the popular MapReduce framework. Finally, in Section 5 we conclude
with future research directions.

1.1. Algorithm. Our algorithm, summarized as Algorithm 1, samples each edge
with probability p, where N = 1/p is integer, as follows. Let f : [n] → [N ] be a
random coloring of the vertices of G([n], E), such that for all v ∈ [n] and i ∈ [N ],
Pr [f(v) = i] = p. We call an edge monochromatic if both its endpoints have the
same color. Our algorithm samples exactly the set E ′ of monochromatic edges,
counts the number T of triangles in ([n], E ′) (using any exact or approximate triangle
counting algorithm), and multiplies this count by p−2.

Previous work [22, 23] has used a related sampling idea, the difference being
that edges were sampled independently with probability p. Some intuition why
this sampling procedure is less efficient than what we propose can be obtained by
considering the case where a graph has t edge-disjoint triangles. With independent
edge sampling there will be no triangles left (with probability 1−o(1)) if p3t = o(1).
Using our colorful sampling idea there will be ω(1) triangles in the sample with
probability 1− o(1) as long as p2t = ω(1). This means that we can choose a smaller
sample, and still get a accurate estimates from it.

2. Theoretical Preliminaries

In Section 3.2 we use the following version of the Chernoff bound [8].

Lemma 1 (Chernoff Inequality). Let X1, X2, . . . , Xk be independently distributed
{0, 1} variables with E[Xi] = p. Then for any ε > 0, we have

Pr

[
|1
k

k∑
i=1

Xi − p| > εp

]
≤ 2e−ε

2pk/2

Hajnal and Szemerédi [11] proved in 1970 the following conjecture of Paul Erdös:

Theorem 1 (Hajnal-Szemerédi Theorem). Every graph with n vertices and maxi-
mum vertex degree at most k is k + 1 colorable with all color classes of size at least
n/k.

3. Analysis

We wish to pick p as small as possible but at the same time have a strong concen-
tration of the estimate around its expected value. How small can p be? In Section 3.1
we present a second moment argument which gives a sufficient condition for picking
p. Our main theoretical result, stated as Theorem 3 in Section 3.2, provides a suf-
ficient condition to this question. In Section 3.3 we analyze the complexity of our
method.
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3.1. Second Moment Method. Using the Second Moment Method we are able
to obtain the following strong theoretical guarantee:

Theorem 2. Let n, t, ∆, T denote the number of vertices in G, the number of
triangles in G, the maximum number of triangles an edge of G is contained and the
number of monochromatic triangles in the randomly colored graph respectively. Also

let N = 1
p

the number of colors used. If p ≥ max (∆ logn
t

,
√

logn
t

), then T ∼ E [T ]

with probability 1− 1
logn

.

Proof. By Chebyshev’s inequality, if Var [T ] = o(E [T ]2) then T ∼ E [T ] with prob-
ability 1 − o(1) [2]. Let Xi be a random variable for the i-th triangle, i = 1, . . . , t,
such that Xi = 1 if the i-th triangle is monochromatic. The number of monochro-
matic triangles T is equal to the sum of these indicator variables, i.e., T =

∑t
i=1Xi.

By the linearity of expectation and by the fact that Pr [Xi = 1] = p2 we obtain
that E [T ] = p2t. We set ∆ =

∑
i∼j Pr [Xi ∧Xj] where the sum is over ordered

pairs and i ∼ j denotes that the corresponding indicator variables are dependent.
It is easy to check that the only case where two indicator variables are dependent is
when they share an edge. In this case the covariance is non-zero and for any p > 0,
Cov [Xi, Xj] = p3 − p4 < p3.

Hence, we obtain the following upper bound on the variance of T , where δe is the
number of triangles edge e is contained and ∆ = maxe∈E(G) δe:

Var [T ] ≤ E [T ] + ∆ ≤ p2t+ p3
∑
e

δ2
e ≤ p2t+ 3p3t∆

We pick p large enough to get Var [X] = o(E [X]2). It suffices:

p4t2 � p2t+ 3p3t∆⇒ p2t� 1 + 3p∆ (1)

We consider two cases:
• Case 1 (p∆ < 1/3):

It suffices that p2t = ω(n) where ω(n) is some slowly growing function. We pick

ω(n) = log n and hence p ≥
√

logn
t

.

• Case 2 (p∆ ≥ 1/3):

It suffices to pick pt
∆

= log n.
Combining the above two cases we get that if

p ≥ max (
∆ log n

t
,

√
log n

t
)

Equation (1) is satisfied and hence by Chebyshev’s inequality X ∼ E [X] with
probability 1− 1

logn
.

�

3.1.1. Extremal Cases and Tightness of Theorem 2. Given the assumptions of The-
orem 2, is the condition on p tight? The answer is affirmative as shown in Figure 1.
Specifically, in Figure 1(a) G consists of t/∆ “books” of triangles, each of size ∆.
This shows that p has to be at least ω(n)∆

t
to hope for concentration, where ω(n)

is some growing function of n. Similarly, when G consists of t disjoint triangles as
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(a) (b)

Figure 1. Conditions of Theorem 2 are tight. In order to hope for
concentration p has to be greater than (a) ∆

t
and (b) t−1/2.

shown in Figure 1(b) p has to be at least ω(n)t−1/2. Therefore, unless we know more
about G, we cannot hope for milder conditions on p, i.e., Theorem 2 provides an
optimal condition on p.

3.2. Concentration via the Hajnal-Szemerédi Theorem. Here, we present
a different approach to obtaining concentration, based on partitioning the set of
triangles/indicator variables in sets containing many independent random indicator
variables and then taking a union bound. Our theoretical result is the following
theorem:

Theorem 3. Let tmax be the maximum number of triangles a vertex v is contained
in. Also, let n, t, p, T be defined as above and ε a small positive constant. If p2 ≥
16tmax logn

ε2t
, then Pr [|T − E [T ] | > εE [T ]] ≤ n−1.

Proof. Let Xi be defined as above, i = 1, . . . , t. Construct an auxiliary graph H
as follows: add a vertex in H for every triangle in G and connect two vertices
representing triangles t1 and t2 if and only if they have a common vertex. The
maximum degree of H is 3tmax = O(δ2), where δ = O(n) is the maximum degree in
the graph. Invoke the Hajnal-Szemerédi Theorem onH: we can partition the vertices
of H (triangles of G) into sets S1, . . . , Sq such that |Si| > Ω( t

tmax
) and q = Θ(tmax).

Let k = t
tmax

. Note that the set of indicator variables Xi corresponding to any set Sj
is independent. Applying the Chernoff bound for each set Si, i = 1, . . . , q we obtain

Pr

[
|1
k

k∑
i=1

Xi − p2| > εp2

]
≤ 2e−ε

2p2k/2

.
If p2kε2 ≥ 4d′ log n, then 2e−ε

2p2k/2 is upper bounded by n−d
′
, where d′ > 0 is a

constant. Since q = O(n3) by taking a union bound over all sets Si we see that the
triangle count is approximated within a factor of ε with probability at least 1−n3−d′

Setting d′ = 4 completes the proof. �

It’s worth noting that for any constant K > 0 the above proof gives that if

p2 ≥ 4(K+3)tmax logn
ε2t

then Pr [|T − E [T ] | > εE [T ]] ≤ n−K .
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3.3. Complexity. The running time of our procedure of course depends on the
subroutine we use on the second step, i.e., to count triangles in the edge set E ′. Let
deg(i) denote the degree of vertex i. Assuming we use an exact method that examines
each vertex independently and counts the number of edges among its neighbors
(a.k.a. Node Iterator method [19]) our algorithm runs in O(n+m+p2

∑
i∈[n] deg(i))

expected time 1 by efficiently storing the graph and retrieving the neighbors of v
colored with the same color as v in O(1 + p deg(v)) expected time. Note that this
implies that the speedup with respect to the counting task is 1/p2.

3.4. Discussion. The use of Hajnal-Szemerédi Theorem in the context of proving
concentration is not new, e.g., [12, 17]. Despite the fact that the second moment
argument gave us strong conditions on p, the use of Hajnal-Szemerédi has the poten-
tial of improving the ∆ factor. The condition we provide on p is sufficient to obtain
concentration. Note –see Figure 2– that it was necessary to partition the triangles
into vertex disjoint rather than edge disjoint triangles since we need mutually inde-
pendent variables per chromatic class in order to apply the Chernoff bound. Were
we able to remove the dependencies in the chromatic classes defined by edge disjoint
triangles, probably the overall result could be improved. It’s worth noting that for
p = 1 we obtain that t ≥ nω(n), where ω(n) is any slowly growing function of n.
This is –to the best of our knowledge– the mildest condition on the triangle density
needed for a randomized algorithm to obtain concentration.

Furthermore, the powerful theorem of Kim and Vu [15, 24] that was used in
previous work [22] is not immediately applicable here: let Ye be an indicator variable
for each edge e such that Ye = 1 if and only if e is monochromatic, i.e., both its
endpoints receive the same color. Note that the number of triangles is a boolean
polynomial T = 1

3

∑
∆(e,f,g)

(
YeYf + YfYg + YeYg

)
but the boolean variables are

not independent as the Kim-Vu [15] theorem requires. It’s worth noting that the
degree of the polynomial is two. Essentially, this is the reason for which our method
obtains better results than existing work [22] where the degree of the multivariate
polynomial is three [16, 22]. It’s worth noting that previous work [17, 22] sampled
edges independently whereas our new method samples subsets of vertices but in
a careful manner in order to decrease the degree of the multivariate polynomial.
Finally, it’s worth noting that using a simple doubling procedure [22] and the median
boosting trick of Jerrum, Valiant and Vazirani [13] we can pick p effectively in
practice despite the fact that it depends on the quantity t which we want to estimate
by introducing an extra logarithm in the running time.

Finally, from an experimentation point of view, it’s interesting to see how well
the upper bound 3∆t matches the sum

∑
e∈E(G) δ

2
e and the typical values for ∆ and

tmax in real-world graphs. The following table shows these numbers for five graphs 2

taken from the SNAP library [1]. We see that ∆ and tmax are significantly less than
their upperbounds and that typically 3∆t is significantly larger than

∑
e∈E(G) δ

2
e

except for the collaboration network of Arxiv Astro Physics. The results are shown
in Table 1.

1We assume that uniform sampling of a color takes constant time. If not, then we obtain the
term O(n log ( 1

p ) for the vertex coloring procedure.
2AS:Autonomous Systems, Oregon: Oregon route views, Enron: Email communication network,

ca-HepPh and AstroPh:Collaboration networks. Self-edges were removed.
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Figure 2. Consider the indicator variable Xi corresponding to the
i-th triangle. Note that Pr [Xi|rest are monochromatic] = p 6=
Pr [Xi] = p2. The indicator variables are pairwise but not mutually
independent.

Name Nodes Edges Triangle Count ∆ tmax

∑
e∈E(G) δ

2
e 3∆t

AS 7,716 12,572 6,584 344 2,047 595,632 6,794,688
Oregon 11,492 23,409 19,894 537 3,638 2,347,560 32,049,234
Enron 36,692 183,831 727,044 420 17,744 75,237,684 916,075,440
ca-HepPh 12,008 118,489 3,358,499 450 39,633 1.8839 ×109 4.534×109

AstroPh 18,772 198,050 1,351,441 350 11,269 148,765,753 1.419×109

Table 1. Values for the variables involved in our formulae for five
real-world graphs.

4. A MapReduce Implementation

MapReduce [10] has become the de facto standard in academia and industry for
analyzing large scale networks. Recent work by Suri and Vassilvitskii [20] proposes
two algorithms for counting triangles. The first is an efficient MapReduce imple-
mentation of the Node Iterator algorithm, see also [19] and the second is based on
partitioning the graph into overlapping subsets so that each triangle is present in at
least one of the subsets.

Our method is amenable to being implemented in MapReduce and the skeleton
of such an implementation is shown in Algorithm 23. We implicitly assume that in a
first round vertices have received a color uniformly at random from the N available
colors and that we have the coloring information for the endpoints of each edge.
Each mapper receives an edge together with the colors of its edgepoints. If the edge
is monochromatic, then it’s emitted with the color as the key and the edge as the
value. Edges with the same color are shipped to the same reducer where locally
a triangle counting algorithm is applied. The total count is scaled appropriately.

3It’s worth pointing out for completeness reasons that in practice one would not scale the
triangles after the first reduce. It would emit the count of monochromatic triangles which would
be summed up in a second round and scaled by 1/p2.



COLORFUL TRIANGLE COUNTING AND A MAPREDUCE IMPLEMENTATION 7

Algorithm 2 MapReduce Colorful Triangle Counting G(V,E), p = 1/N

Map: Input 〈e = (u, f(u), v, f(v)); 1〉 {Let f be a uniformly at random coloring
of the vertices with N colors}
if f(u) = f(v) then emit 〈f(u); (u, v)〉
Reduce: Input 〈c;Ec = {(u, v)} ⊆ E〉 { Every edge (u, v) ∈ Ec has color c, i.e.,
f(u) = f(v)}
Scale each triangle by 1

p2
.

Trivially, the following lemma holds by the linearity of expectation and the fact that
the endpoints of any edge receive a given color c with probability p2.

Lemma 2. The expected size to any reduce instance is O(p2m) and the expected
total space used at the end of the map phase is O(pm).

5. Conclusions

In this note we introduced a new randomized algorithm for approximate trian-
gle counting, which is implemented easily in parallel. We showed such an imple-
mentation in the popular MapReduce programming framework. The key idea
that improves the existing work is that by our new sampling method the degree of
the multivariate polynomial expressing the number of triangles decreases by one,
compared to previous work, e.g., [16, 22]. We used the powerful result of Hajnal-
Szemerédi Theorem to obtain a concentration result which is unlikely to be the best
possible. We observe that our result extends to any subset of triangles satisfying
some predicate (e.g., containing a certain vertex), in the sense that counting such
triangles in the sample leads to a concentrated estimate of the number in the original
graph.

In future work we plan to investigate sampling methods for counting triangles in
weighted graphs, other types of subgraphs and several systems-oriented aspects of
our work.
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