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5.1 Overview

• In the first part of today’s lecture we will practice Chernoff bounds. Last time, we saw three problems on
which we applied Chernoff bounds: the simple coin tossing problem and two applications on random
graphs. Today, we will see three more applications of Chernoff bounds. They illustrate a simple
parameter learning problem, approximation algorithm design and the probabilistic method respectively.

• In the second part of the lecture, we will see the Azuma-Hoeffding inequality in the context of discrete
time martingales. We will use it in the lecture after the midterm to analyze the degree sequence of
the preferential attachment model. Today we will see an application of it on the chromatic number of
G(n, 1/2) [Shamir and Spencer, 1987].

5.2 Chernoff Applications

5.2.1 A simple learning problem

Suppose we have a thumbtack and we are interested into the probability of falling with the nail up when
we flip it. Our goal is to estimate this probability accurately. Specifically, let p be the probability that we
want to estimate, and p̃ the estimator we will use. We will flip the thumbtack n times and we will output
as our estimator the average number of times that the thumbtack landed with the nail up. The estimator
p̃ is unbiased. To see why notice that after n flips the expected number E [Xu] of nail-up tosses Xu is np.
It is worth mentioning that this is also the estimator you obtain by maximizing the log-likelihood. Let D
be the observed sequence of the n tosses. Let nu, nd be the number of tosses with the nail up and down
respectively, nu + nd = n. The principle of maximum likelihood estimation (MLE) picks as the estimator

p̃ = arg max
p

Pr [D|p] = arg max
p

log Pr [D|p].

In our setting p̃ = arg maxp log
(
pnu(1 − p)nd

)
= arg maxp nu log p + nd log(1 − p). As you expect, this

objective is maximized for p̃ = nu

n .

Our goal is to find how many tosses n we need to perform such that p, p̃ are within distance ε with probability
at least 1− δ. We can use the Chernoff bound to find a lower bound on n.

Pr [|p− p̃| ≥ ε] ≤ δ = Pr
[
|Xu − np| ≥ ε

p
np

]
≤ 2e

−np ε2

3p2 ≤ 2e−ε2n/3.

Hence, it suffices to set n to the smallest possible value that satisfies 2e−ε2n/3 ≤ δ, namely n = d 3
ε2 log

(
2
δ

)
e.
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5.2.2 Approximation algorithm design

We will see an example of an important technique for designing approximation algorithms. The analysis is
based on Chernoff bounds. Let F = {a1, . . . , an} be a family of n binary strings with n bits, i.e., ai ∈ {0, 1}n

for i = 1, . . . , n. Our goal is to find a string s ∈ {0, 1}n such that it maximizes the minimum distance from
all strings in F . We define the distance of two strings to be their Hamming distance, i.e., the number of
coordinates in which they disagree. Our goal is to find

s∗ = arg max
x∈{0,1}n

min
1≤i≤n

dist(x, ai).

We can formulate the problem as an integer program (IP) as follows.

d∗ = min d

s.t. d ≥
∑

i:aj(i)=1

(1− xi) +
∑

i:aj(i)=0

xi ∀j ∈ {1, .., n}

s.t. xi ∈ {0, 1} ∀i ∈ {1, .., n}

(5.1)

Due to the hardness of the problem, we relax the constraint x ∈ {0, 1}n to the constraint x ∈ [0, 1]n1 and
therefore we obtain is a linear program (LP).

min d

s.t. d ≥
∑

i:aj(i)=1

(1− xi) +
∑

i:aj(i)=0

xi ∀j ∈ {1, .., n}

s.t. 0 ≤ xi ≤ 1 ∀i ∈ {1, .., n}

(5.2)

Relaxation 5.2 is called the linear programming relaxation of the integer program 5.1. Notice that s is a
feasible solution of the relaxation and therefore the optimal value of the IP is lower bounded by the optimal
value of the LP, i.e., OPTLP ≤ OPTIP . Let’s call the optimal vector of the LP x∗. However, the solution of
the LP is not going to be a valid solution to the IP: in general some of the coordinates of x∗ are not going to
be 0 or 1. Therefore, we create a solution s̄ by rounding x∗. Let d̄ be the resulting objective value. Clearly,
since s̄ ∈ {0, 1}n, d̄ ≥ d∗. To prove an approximation gurantee, we need to upper bound d̄ as a function of
d∗.

Theorem 5.1 Consider the following rounding scheme. For each i we flip a coin and with probability x∗i
we set s̄i = 1. With the remaining probability we set s̄∗i = 0. Then, whp

1This notation means that the i-th coordinate of x satisfies 0 ≤ xi ≤ 1 for all i.
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d̄ ≤ d∗ + 3
√

n log n,

where C is a sufficiently large constant.

Proof:

Consider the distance between a fixed string aj ∈ F and the random string s̄. For coordinate i we define an
indicator variable Yi which equals 1 if s̄(i) 6= aj(i). There are two cases when they disagree. If aj(i) = 1 and
s̄(i) = 0 which happens with probability 1−x∗i , and if aj(i) = 0 and s̄(i) = 1 which happens with probability
x∗i . Therefore,

E [|s̄− aj |1] =
n∑

i=1

E [Yi] =
∑

i:aj(i)=1

(1− x∗i ) +
∑

i:aj(i)=0

x∗i .

Notice that since x∗ is a feasible solution to the LP, OPTLP = d̄ ≥ E [|s̄− aj |1] for all j = 1, . . . ,m by the
linear contraints. The Chernoff bound applies to the random variable Zj = |s̄− aj |12.

Pr
[
Zj ≥ OPTIP + C

√
n log n

]
≤ Pr

[
Zj ≥ E [Zj ] + C

√
n log n

]
≤ n−C2/3.

For C = 3 and a union bound over the n strings results in

Pr
[
∃j : Zj ≥ OPTIP + 3

√
n log n

]
= o(1).

The claim follows directly.

5.2.3 Discrepancy

This section illustrates the probabilistic method and randomized algorithm design in the context of a neat
problem. Consider a set system, a.k.a. hypergraph, (V,F) where V = [n] is the ground set and F =
{A1, . . . , Am} where Ai ⊆ V . We wish to color the ground set V with two colors, say red and blue, in such
way that all sets in the family are colored in a “balanced” way, i.e., each set has nearly the same number of
red and blue points. As it can be seen from the family F = 2[n] this is not possible, since by the pidgeonhole
principle at least one color will appear at least n/2 times and all the possible subsets of those points will
be monochromatic. We formalize the above ideas immediately. It shall be convenient to use in the place of
red/blue colorings, the coloring

χ : V → {−1,+1}.

For any A ⊆ V define

2The previous time we proved the Chernoff bound when all indicator variables were identically distributed as Bernoulli
variables with parameter p. This is not the case where, since we have two types of Bernoulli variables appearing in the
summation. The Chernoff bound still applies. You are going to prove this in homework 2.
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χ(A) =
∑
i∈A

χ(i).

Define the discrepancy of F with respect to χ by

discχ(F) = max
Ai∈F

|χ(Ai)|.

The discrepancy of F is

disc(F) = min
χ

discχ(F).

We will not make any use of the following observation but it is worth outlining that the discrepancy can be
defined in a linear algebraic way. Specifically, let A be the m× n incidence matrix of F . Then,

disc(F) = min
x∈{−1,+1}

||Ax||+∞.

Let’s prove the next theorem by applying union and Chernoff bounds.

Theorem 5.2
disc(F) ≤

√
2n log (2m).

Proof: Select a coloring χ uniformly at random from the set of all possible random colorings. Let us call Ai

bad if its discrepancy exceeds t =
√

2n log 2m. Applying the Chernoff-Hoeffding bound for set Ai we obtain:

Pr [Ai is bad] = Pr [|χ(Ai)| > t] < 2 exp
(
− t2

2|Ai|

)
≤ 2 exp

(
− t2

2n

)
=

1
m

.

Using a simple union bound we see that

Pr [disc(F) > t] = Pr [∃ bad Ai] < m× 1
m

.

Theorem 5.2 serves as our basis for a randomized algorithm that succeeds with as high probability as we
want. Let t =

√
2n log 2m. Since the probability of obtaining a coloring that gives discrepancy larger than t

is less than 1√
m

, we can boost the success probability by repeating the random coloring k times. The failure
probability is at most 1

mk/2 . Assume m = n. We have proved that the discrepancy is O(
√

n log n). Again,
for the sake of completeness, a famous result of Joel Spencer states that disc(F ) = O(

√
n).

5.3 Azuma-Hoeffding Inequality

In one of the next lectures, where we are going to work out the degree sequence of the preferential attachment
model. The theory of discrete time martingales will be the key to establish concentration.
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Figure 5.1: Joel Spencer proved his favorite result [Spencer, 1985] known as “six standard deviations suffice”
while being in the audience of a talk.

Definition 5.3 (Martingale sequence) A martingale is a sequence X0, . . . , Xn of random variables so
that for 0 ≤ i < n

E [Xi+1|X0, . . . , Xi] = Xi.

An easy example of a martingale is related to gambling. Imagine a player who plays a fair game and let Xi

be the amount of money he/she has after i rounds, i ≥ 0. Initially, the player has X0 dollars. No matter
what playing strategy the player will follow, the expected money after i + 1 rounds is equal to the money
after i rounds.

Martingales satisfy concentration inequalities similar to the Chernoff bounds. However, as we saw in the
previous lecture, Chernoff bounds apply to a random variable which is the sum of independent random
variables. Here, the increments Xi+1 −Xi are allowed to be dependent.

Theorem 5.4 (Azuma-Hoeffding inequality) Let X0, X1, . . . , Xn be a martingale with |Xi −Xi−1| ≤ 1
for each i. Then

Pr [|Xn −X0| ≥ α] ≤ 2e−
α2
2n .

First, notice that by symmetry (−X0,−X1, . . . is also a martingale) it suffices to prove Pr [Xn −X0 ≥ α] ≤
e−

α2
2n . The proof is based on the exponential moment method, but we will control the moment generating

function using inductively conditional expectations.

Proof Sketch 5.5 Using the exponential moment method we get

Pr [Xn −X0 ≥ α] ≤ Pr
[
et(Xn−X0) ≥ etα

]
≤ e−tαE

[
et(Xn−X0)

]
.

We obtain a good estimate of E
[
et(Xn−X0)

]
using the conditional expectation

E
[
et(Xn−X0)

]
= E

[
et(Xn−1−X0)E

[
et(Xn−Xn−1)|X0, . . . , Xn−1

]]
.

Then we use the convexity of the function etx to upper bound etx ≤ 1+x
2 et + 1−x

2 e−t for |x| ≤ 1. As you
expect, we use x = Xn−Xn−1. Using the martingale hypothesis, we obtain E

[
et(Xn−Xn−1)|X0, . . . , Xn−1

]
≤

cosh(t) ≤ et2/2. By induction on n we get E
[
et(Xn−X0)

]
≤ ent2/2. The claim follows by setting t = α

n .
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5.3.1 Vertex and edge exposure martingales

There are two types of martingales we are going to use in this class3 . Consider the random Erdös-Rényi
graph as a vector with

(
n
2

)
coordinates, where the i-th coordinate corresponds to the i-th edge (assume an

arbitrary ordering of the edges of the complete graph Kn). Our probability space Ω consists of all possible
such vectors. Well, this is not 100% exact. Formally speaking, a probability space is defined by a triple of
things: Ω which is the sample space and which we sometimes call probability space when no confusion is
caused by this abuse of terminology, F which is the algebra of all subsets of Ω and the probability measure
P. We denote the probability space as (Ω,F , P).

In general when we have a probability space Ω and a partition of it P = {P1, . . . , Pk}, an algebra A(P) is
naturally defined as the family of all unions of the events from P. Vice versa, any algebra of subsets of Ω
induces a partition. We will call a partition P finer than a partition P ′ of Ω if A(P ′) ⊆ A(P). We write
P < P ′. A key property is the tower property of conditional expectations: if P < P ′ and X is a random
variable defined on Ω then

E [X|P] = E [E [X|P ′] |P] .

Suppose we are interested in some random variable X : Ω → R. Typically, X will be a graph theoretic
invariant such as the chromatic number, see Section 5.3.2. In the case of the vertex exposure martingale,
we will expose the graph by revealing vertices with the edges incident to them in an arbitrary order. As we
expose vertices, the partition of the sample space gets refined. This creates a filtration, a sequence of refined
partitions F = P0 < P1 < . . .. We start from the trivial partition P0 and we end up in the Pn partition
where all the information has been revealed. The sequence X0, X1, . . . , Xk, . . . , Xn of random variables is a
martingale, where Xk = E [X|Pk]. This is known as the exposure martingale or Doob martingale. Intuitively,
we obtain in each step information about our graph, the partition of the sample space gets refined, and we
are interested in the expectation of our graph invariant during this process. Initially, since we know nothing
about the graph X0 = E [X|P0] = E [X] and when everything has been revealed Xn = E [X|Pn] = X. The
idea of edge exposure martingale as you expect is the same but rather than revealing all edges incident to
each vertex we reveal one edge per time.

The following definition is useful.

Definition 5.6 A function f(Z1, . . . , Zn) is called c-Lipschitz if when changing the coordinate of any coor-
dinate of f causes f to change by at most ±c.

The following lemma holds for c-Lipschitz functions.

Lemma 5.7 If f is c-Lipschitz function and Zi is independent of Zi+1, . . . , Zn conditioned on Z1, . . . , Zi−1,
then the Doob martingale Xi of f with respect to Zi satisfies |Xi −Xi−1| ≤ c.

This lemma is useful since if we the conditions of the lemma hold, we can invoke the Azuma-Hoeffding
inequality.

5.3.2 Chromatic number of G(n, 1
2
)

We start with a reminder. A proper vertex coloring of graph G or just proper coloring is an assignment
of colors to the vertex set V (G) in such way that any two adjacent vertices receive different colors. The

3 Note: this section is presented deliberately in an informal way, insisting more on the intuition rather than the formal
details of a filtration.
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chromatic number χ(G) of a graph G is the minimum number of colors required to properly color G.

Theorem 5.8 ([Shamir and Spencer, 1987]) Let X be the chromatic number of G ∼ G(n, 1
2 ). Then,

Pr [|X − E [X] | ≥ λ] ≤ e−
λ2
2n .

Proof: Use the vertex exposure martingale where X = X(Z1, . . . , Zn) where

Zj = {(i, j) ∈ E(G) : i < j}.

Then X is 1-Lipschitz. The result follows directly from Azuma-Hoeffding.
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