Out: Sept. 27th, 2013

Homework 1

In: Oct. 11th, 2013

Lecturer: Charalampos E. Tsourakakis

Comments

If you write more than 100 points, they will count as bonus. You are all required to solve 1.2(B), 1.3(A) through (E) and 1.3(H).

1.1 Probabilistic inequalities [30 points]

(A) Cauchy-Schwartz inequality [10 points] Prove the Cauchy-Schwartz inequality for random variables X, Y

 $\left|\mathbb{E}\left[XY\right]\right| \leq \sqrt{\mathbb{E}\left[X^2\right]} \sqrt{\mathbb{E}\left[Y^2\right]}.$

(B) Bonferonni Inequalities [10 points] Let E_1, E_2, \ldots, E_n be events in a sample space. We have been using the union bound a lot in our class:

$$\mathbf{Pr}\left[E_1\cup\ldots\cup E_n\right]\leq \sum_{i=1}^n \mathbf{Pr}\left[E_i\right].$$

In this exercise you will prove a more general result. Define

$$S_1 = \sum_{i=1}^{n} \mathbf{Pr} [E_i]$$
$$S_2 = \sum_{i < j} \mathbf{Pr} [E_i \cap E_j]$$

and for $2 < k \leq n$,

$$S_k = \sum_{(i_1,\dots,i_k)} \mathbf{Pr} \left[E_{i_1} \cap \dots \cap E_{i_k} \right],$$

where the summation is taken over all ordered k-tuples of distinct integers.

<u>Prove</u> for *odd* $k, 1 \le k \le n$

$$\mathbf{Pr}\left[E_1\cup\ldots\cup E_n\right] \leq \sum_{j=1}^k (-1)^{j+1} S_j.$$

and for even $k, 2 \leq k \leq n$

$$\mathbf{Pr}\left[E_1\cup\ldots\cup E_n\right] \ge \sum_{j=1}^k (-1)^{j+1} S_j.$$

(C) [10 points] Let $\mathcal{A} = \{A_1, \ldots, A_m\}$ be a collection of events in a probability space. Let $\mu = \sum_{i=1}^{m} \Pr[A_i]$ be the expected number of events from \mathcal{A} that occur. Given a fixed integer l, let Q be the event that some set of l independent events from \mathcal{A} occur. In other words, Q is the event that, among the events in \mathcal{A} that occur, there are l that are mutually independent. Show that

$$\mathbf{Pr}\left[Q\right] \le \frac{\mu^l}{l!}.$$

1.2 Erdös-Rényi graphs [55 points]

(A) Practicing the first moment method [5 points] Let $G \sim G(n, p)$ where $p = o(n^{-3/2})$. Prove that G consists of isolated vertices and independent edges.

(B) Cycles in G(n,p) [30 points] Prove that the threshold for the emergence of cycles in G(n,p) is $p^* = \frac{1}{n}$.

(C) Perfect matchings in random bipartite graphs B(n, n, p) [20 points] Let $p = \frac{\log n + c}{n}$ where c is a constant. Let G be a random subgraph of the complete bipartite graph $K_{n,n}$. given by taking each edge with probability p, where choices are made independently. Show that

 $\mathbf{Pr}[G \text{ has a perfect matching}] \rightarrow e^{-2e^{-c}}$

as $n \to +\infty$.

Hints: (a) Use the Bonferroni inequalities to "sandwich" the probability of the event "no vertex is isolated". [10 points] (b) Then, prove that the main reason why there can be no perfect matching in G are isolated vertices. In other words, show that the probability that Hall's theorem is violated for any other reason is o(1). [10 points]

1.3 Empirical Properties of Networks [65 points]

In this problem you will study empirically various properties of networks¹. First, download the following graphs^2

- 1. Amazon product co-purchasing network from March 2 2003 from http://www.cise.ufl.edu/research/sparse/matrices/SNAP/amazon0302.html
- Arxiv High Energy Physics paper citation network from http://www.cise.ufl.edu/research/sparse/matrices/SNAP/cit-HepPh.html
- Road network of Pennsylvania from http://www.cise.ufl.edu/research/sparse/matrices/SNAP/roadNet-PA.html
- 4. Web graph of Notre Dame from http://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-NotreDame.html
- 5. Gnutella peer to peer network from August 9 2002 from http://www.cise.ufl.edu/research/sparse/matrices/SNAP/p2p-Gnutella09.html.

You may use your favorite programming language to code up the following tasks. You may re-use existing software (actually, you should). Check the Web page under the Resources tab to find links to useful packages.

(A) [2 points] For each graph: if it is directed, make it undirected, by ignoring the direction of each edge. Remove multiple edges and self-loops.

(B) [8 points] For each graph:

- Report the number of vertices and edges. Compute the average degree and the variance of the degree distribution.
- Generate the following frequenty plot: the x-axis will correspond to degrees and the y-axis to frequencies. The function you will plot is f(x) = #vertices with degree x. Re-plot the same function in log-log scale.
- Use the code available at http://tuvalu.santafe.edu/~aaronc/powerlaws/ to fit a power-law distribution to the degree sequence of the graph. Report the output of the *plfit* function.

(C) [10 points] Plot a histogram of the sizes of the connected components of each graph.

(D) [10 points] For each graph, pick any vertex v in the connected component of the largest order. Report the id of the vertex you chose and compute for each k = 1, 2, ..., f(k) = # vertices at distance k from v. Plot f(k) versus k.

(E) [5 points] For each graph compute the diameter of the largest connected component.

¹Send me your code by e-mail.

 $^{^{2}}$ The files are .mat. If you are not using MATLAB you can download the same graphs in different format from http://snap.stanford.edu/data/.

(F) [10 points] For each graph:

- 1. Compute for each vertex v in how many K_{3s} it participates in.
- 2. Compute the local clustering coefficients and plot their distribution.
- 3. Let k=degree, f(k) =average number of triangles over all vertices of degree k. Plot f(k) versus k in log-log scale, including error bars for the variance. Fit a least squares line and report the slope.
- 4. How can you use the previous answer to find outliers in a network?

(G) [5 points] For each graph report the top-20 eigenvalues of the adjacency matrix.

(H) [5 points] For each of the five (5) graphs, generate a random binomial graph on the same number of vertices n_i , where n_i is the number of vertices in G_i , i = 1, ..., 5 with $p = \frac{2 \log n_i}{n_i}$. Answer questions (A) through (G) for these graphs.

(I) [10 points] Make a high-level evaluation of your findings. For instance, how different is the road network from the Web graph? Also, compare your findings between real-world networks and random binomial graphs.