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1 Introduction

An invariant is something that doesn’t change after some process. A monovariant is something that changes in one
direction after a process, for instance something that increases.

2 Examples

1. (USAMO 1999) Let a1, . . . , an (n > 3) be real numbers such that

a1 + · · ·+ an ≥ n and a21 + · · ·+ a2n ≥ n2

Prove that max{a1, . . . , an} ≥ 2.

Solution: Assume a1, . . . , an < 2. We use an algorithm that keeps a1 + · · · + an =: s invariant and strictly
increases a21 + · · ·+ a2n =: t. For i = 1, 2, . . . , n− 1, replace ai, ai+1 with 2, ai + ai+1 − 2. Clearly s is invariant,
and t gains a total value of

22 + (ai + ai+1 − 2)2 − a2i − a2i+1 = 8 + 2aiai+1 − 4ai − 4ai+1 = 2(ai − 2)(ai+1 − 2) > 0

since ai, ai+1 < 2. One small technicality to check is that after this swap, the new value of ai+1 is also less
than 2 (else the inequality won’t hold). But that’s okay, because ai +ai+2− 2 < 2 + 2− 2 = 2. So at the end of
all this swapping we get 2, . . . , 2, s− 2(n− 1). In particular, s− 2(n− 1) ≥ −n+ 2 by assumption. Therefore,

n2 ≤ a21 + · · ·+ a2n < 22 + · · ·+ 22 + (s− 2(n− 1))2 ≤ 4(n− 1) + (−n+ 2)2 = n2

contradiction.

2. (USAMO 2003) At the vertices of a regular hexagon are written six nonnegative integers whose sum is 20032003.
Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there
by the absolute value of the difference between the numbers written at the two neighboring vertices. Prove
that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.

Solution: Let (a1, . . . , a6) be the numbers on the hexagon at a given time. All numbers henceforth will
be taken modulo 2. First, show any hexagon with odd sum can turn into (1, 0, 0, 0, 0, 0). We have four
cases: (1, 0, 1, 0, 1, 0) → (1, 0, 0, 0, 0, 0); (1, 1, 1, 0, 1, 1) → (1, 0, 1, 0, 1, 0); (1, 1, 0, 0, 0, 1) → (0, 1, 0, 0, 0, 1) →
(0, 0, 0, 0, 0, 1); (1, 1, 0, 1, 0, 0)→ (1, 1, 0, 0, 0, 1). So we can assume a1 is odd and a2, . . . , a6 are even.

Now we show such a hexagon can be turned into another hexagon of odd sum with a smaller maximum (or
all zeros). That is, max{a1, . . . , a6} will be a decreasing monovariant. We need to do casework on where the
maximum is. If it is even, then take (1, 0, 0, 0, 0, 0) → (1, 0, 0, 0, 0, 1) → (1, 0, 0, 0, 1, 1) → (1, 0, 0, 1, 1, 1) →
(1, 0, 1, 1, 1, 1) → (1, 0, 1, 1, 1, 1). If it is odd, then take (1, 0, 0, 0, 0, 0) → (1, 0, 0, 0, 0, 1) → (1, 1, 0, 0, 0, 1) →
(0, 1, 0, 0, 0, 1)→ (0, 0, 0, 0, 0, 1). It’s easy to check that it was decreased in both cases. Eventually the maximum
will hit 0.

3. (IMOSL 1994) Peter has three bank accounts, each with an integral number of dollars. He is only allowed to
transfer money from one account to another so that the amount of money in the latter is doubled. Prove that
Peter can always transfer all his money into two accounts. Can Peter always transfer all his money into one
account?
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Solution: The second part is easier: if the accounts have an odd sum, then the final account cannot be
doubled, so the answer is no. For the first part: let the accounts have 0 < A ≤ B ≤ C dollars each.
We prove B can be reduced to B (mod A). Let B = mA + n, and consider the binary representation of
m = mk . . .m1m02. Consider the algorithm where at the ith step, for 0 ≤ i ≤ k, take from B if mi = 1
or from C if mi = 0. It works because at the beginning of the ith step, there are 2iA dollars in the first
account. Thus, after the ith step, we subtract 2imiA from B. After the k + 1 steps, the second account has
B − (20m0 + 21m1 + · · ·+ 2kmk) = B −mA = n. Since n ≡ B (mod A), we are done.

4. (China 2010) There are some finite number of cards placed at the points A1, A2, . . . , An and O, where n ≥ 3.
We can perform one of the following operations in each step:

(a) If there are more than 2 cards at some point Ai, we can remove 3 cards from this point and place one
each at Ai−1, Ai+1, and O. Note that indices are taken modulo n.

(b) If there are at least n cards at O, we can remove n cards from O and place one each at A1, A2, . . . , An.

Show that the if total number of cards is at least n2 + 3n+ 1, we can make the number of cards at each vertex
at least n+ 1 after finitely many steps.

Solution: Apply the first operation until each vertex has at most 2 cards. The center must have at least
n2 + 3n+ 1− 2n = n2 + n+ 1 cards in it. Apply the second operation so that each vertex has 1, 2, or 3 cards.
Then let a be the number of vertices with 1 card, b with 2, and c with 3. We have a+ b+ c = n, so the center
must have at least

n2 + 3n+ 1− (a+ 2b+ 3c) = n2 + 3n+ 1− (2n− a+ c) = n2 + n1 + a− c

Once we apply the second operation n times, each vertex will have at least n + 1 cards, and the center will
have n2 + n + 1 + a − c − n2 = n + 1 + a − c cards. It suffices to prove that a ≥ c... or force the inequality
to be true! One way to do this is by showing that between any two 3s, there is at least one 1, but there is a
problem when the 3s are consecutive. Turn any string x, 3, 3, . . . , 3, y (x, y 6= 3) into x+ 1, 1, 2, 2, . . . , 2, 1, y+ 1.
This removes consecutive 3s. Turn all x, 3, 2, 2, . . . , 2, 3, y into x+ 1, 1, 1, . . . , 1, y + 1. Noting that this doesn’t
produce consecutive 3s, we have a ≥ c.

3 Problems

1. (UK 2011) Initially there are m balls in one bag, and n in the other, where m,n > 0. Two different operations
are allowed:

(a) Remove an equal number of balls from each bag

(b) Double the number of balls in one bag.

Is it always possible to empty both bags after a finite sequence of operations? Operation 2 is now replaced with
“Triple the number of balls in one bag.” Is it now always possible to empty both bags after a finite sequence
of operations?

2. (CGMO 2011) There are n boxes B1, B2, . . . , Bn from left to right, and there are n balls in these boxes.

(a) If there is at least 1 ball in B1, we can move one to B2.

(b) If there is at least 1 ball in Bn, we can move one to Bn−1.

(c) If there are at least 2 balls in Bk, 2 ≤ k ≤ n− 1 we can move one to Bk−1, and one to Bk+1.

Prove that, for any arrangement of the n balls, we can achieve that each box has one ball in it.

3. (Putnam 2010) There are 2010 boxes labeled B1, . . . , B2010, and 2010n balls have been distributed among them,
for some positive integer n. You may redistribute the balls by a sequence of moves, each of which consists of
choosing an i and moving exactly i balls from Bi into any other box. For which values of n is it possible to
reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?
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4. (IMOSL 1989) A natural number is written in each square of an m × n chess board. The allowed move is to
add an integer k to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two
squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible
for all the numbers to be zero after finitely many operations.

5. (USAMO 2015) Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each square
can have an arbitrarily high pile of stones. After he finished piling his stones in some manner, he can then
perform stone moves, defined as follows. Consider any four grid squares, which are corners of a rectangle, i.e.
in positions (i, k), (i, l), (j, k), (j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists
of either removing one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,j or
removing one stone from each of (i, l) and (j, k) and moving them to (i, k) and (j, l) respectively. Two ways of
piling the stones are equivalent if they can be obtained from one another by a sequence of stone moves. How
many different non-equivalent ways can Steve pile the stones on the grid?

6. We have 2m sheets of paper, with the number 1 written on each of them. We perform the following operation.
In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase these
numbers and write the number a + b on both sheets. Prove that after m2m−1 steps, the sum of the numbers
on all the sheets is at least 4m.

7. (MEMO 2008) On a blackboard there are n ≥ 2, n ∈ Z+ numbers. At each step, we select two numbers from
the blackboard and replace both of them by their sum. Determine all numbers n for which it is always possible
to yield n identical numbers after a finite number of steps.

8. (IMOSL 2013) A crazy physicist discovered a new kind of particle wich he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can
participate in many entanglement relations. The physicist has found a way to perform the following two kinds
of operations with these particles, one operation at a time.

(a) If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy
it.

(b) At any moment, he may double the whole family of imons in the lab by creating a copy I ′ of each imon I.
During this procedure, the two copies I ′ and J ′ become entangled if and only if the original imons I and
J are entangled, and each copy I ′ becomes entangled with its original imon I; no other entanglements
occur or disappear at this moment.

Prove that the physicist may apply a sequence of much operations resulting in a family of imons, no two of
which are entangled.

9. (IMO 2010) Each of the six boxes B1, B2, B3, B4, B5, B6 initially contains one coin. The following operations
are allowed

(a) Choose a non-empty box Bj , 1 ≤ j ≤ 5, remove one coin from Bj and add two coins to Bj+1;

(b) Choose a non-empty box Bk, 1 ≤ k ≤ 4, remove one coin from Bk and swap the contents (maybe empty)
of the boxes Bk+1 and Bk+2.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes B1, B2,
B3, B4, B5 become empty, while box B6 contains exactly 20102010

2010

coins.

4 Solutions

1. (UK 2011) Initially there are m balls in one bag, and n in the other, where m,n > 0. Two different operations
are allowed:

(a) Remove an equal number of balls from each bag

(b) Double the number of balls in one bag.
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Is it always possible to empty both bags after a finite sequence of operations? Operation 2 is now replaced with
“Triple the number of balls in one bag.” Is it now always possible to empty both bags after a finite sequence
of operations?

Solution: If m = n remove all balls in the bag. WLOG m > n. Remove n− 1 balls from each bag. Iteratively
double the bag with 1 ball in it to get 2 balls, and remove 1 ball from each bag. Repeat until both bags have 1
ball and finish. For the second part, note that these moves preserve m+n (mod 2), so if we have m = 2, n = 1
for instance, we can never get m = n = 0.

2. (CGMO 2011) There are n boxes B1, B2, . . . , Bn from left to right, and there are n balls in these boxes.

(a) If there is at least 1 ball in B1, we can move one to B2.

(b) If there is at least 1 ball in Bn, we can move one to Bn−1.

(c) If there are at least 2 balls in Bk, 2 ≤ k ≤ n− 1 we can move one to Bk−1, and one to Bk+1.

Prove that, for any arrangement of the n balls, we can achieve that each box has one ball in it.

Solution: We use the following algorithm:

(a) Perform the second and third operation until they can no longer be performed. This leaves boxes
B2, B3, . . . , Bn−1 with at most 1 ball and Bn with at most 0 balls.

(b) Consider the smallest k such that Bk has 0 balls. That is, (B1, B2, B3, . . . , Bk−1, Bk) = (x, 1, 1, . . . , 1, 0).

(c) Apply the first operation to get (x− 1, 2, 1, . . . , 1, 0).

(d) Apply the third operation on B2, B3, . . . , Bk−1 to end up with (x, 1, 1, . . . , 1, 1, 0, 1).

(e) Repeat (b) and (c) enough to get (x, 1, 1, . . . , 1, 1, 0) → (x, 1, 1, . . . , 1, 0, 1) → (x, 1, 1, . . . , 0, 1, 1) →
. . . (x, 0, 1, 1, . . . , 1, 1).

(f) Apply the first step to get (x− 1, 1, 1, 1, . . . , 1, 1).

(g) Apply (b) through (f) to get the desired result.

The only issue is proving that (a) always terminates. To do this, weight the boxes to create a monovariant,
then show that the weighted sum is bounded above. In fact, any application of the second or third operation
strictly increases the sum

B02n +B12n−1 +B22n−2 + · · ·+Bn−121 +Bn20

because
2(Bn−1 + 1) + (Bn − 1) = 2Bn−1 +Bn + 1 > 2Bn−1 +Bn

and

2n−i+1(Bi−1 + 1) + 2n−i(Bi − 2) + 2n−i−1(Bi+1 + 1) = Bi−12n−i+1

+Bi2
n−i +Bi+12n−i−1 + 2n−i+1 − 2 · 2n−i + 2n−i−1

> Bi−12n−i+1 +Bi2
n−i +Bi+12n−i−1

from 2n−i+1 − 2 · 2n−i + 2n−i−1 = 2n−i−1 > 0. Finally, since

B02n +B12n−1 +B22n−2 + · · ·+Bn−121 +Bn20 ≤ n · 2n

this algorithm must terminate, so we are done.
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3. (Putnam 2010) There are 2010 boxes labeled B1, . . . , B2010, and 2010n balls have been distributed among them,
for some positive integer n. You may redistribute the balls by a sequence of moves, each of which consists of
choosing an i and moving exactly i balls from Bi into any other box. For which values of n is it possible to
reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?

Solution: This happens precisely when n ≥ 1005. When n ≤ 1005, we can find a construction of the sort
B1 ≤ 0, B2 ≤ 1, . . . , B2010 ≤ 2009. Otherwise, perform the first operation on Bi for i > 1 until it can’t be
performed. There will be at least 2010n− (1 + 2 + · · ·+ 2009) = 2010(n− 1004.5) ≥ 1005 balls in B1. Then if
any Bi has > n but < i balls, add enough from B1 to make it have i balls, bring those back to B1, and add n
balls from B1 to Bi. We can continue this until all boxes have n balls in them.

4. (IMOSL 1989) A natural number is written in each square of an m × n chess board. The allowed move is to
add an integer k to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two
squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible
for all the numbers to be zero after finitely many operations.

Solution: Apply the chess board coloring. Let b and w be the sums in the black and white squares. We see
that b− w is invariant, and at the end b− w = 0, so b = w is necessary.

Now we prove it is sufficient. Consider the numbers in squares (x, y, z) adjacent in that order, and we want
to find an algorithm to make x = 0. If x ≤ y, apply (x, y, z) → (0, y − x, z). If x ≥ y, apply (x, y, z) →
(x, x, z + x− y)→ (0, 0, z + x− y). We can apply this algorithm first to all the rows from left to right, then to
all the columns from top to bottom to reduce the problem to a 2× 2 square.

In the 2 × 2 square, we can make at least one number in each row 0. If they are in the same column, then
b = w implies that the remaining numbers are equal, so eliminate them. If they are in opposite columns, then
one of b, w is 0, so all entries must be 0.

5. (USAMO 2015) Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each square
can have an arbitrarily high pile of stones. After he finished piling his stones in some manner, he can then
perform stone moves, defined as follows. Consider any four grid squares, which are corners of a rectangle, i.e.
in positions (i, k), (i, l), (j, k), (j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists
of either removing one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,j or
removing one stone from each of (i, l) and (j, k) and moving them to (i, k) and (j, l) respectively. Two ways of
piling the stones are equivalent if they can be obtained from one another by a sequence of stone moves. How
many different non-equivalent ways can Steve pile the stones on the grid?

Solution: The invariant is the column and row sums. To prove that row and column sums form equivalence
classes, consider two boards B,C with the same row/column sums, and let A = B − C be the term-wise
difference of the number of stones on each square of the grid. Note that entries of A can be negative. At the
leftmost column, starting from the top, perform some stone moves until you get a full column of 0s in A. Then
do that for second leftmost column, etc., to get only 0s on the board of A. The number of possible column

sums and row sums, using the stars and bars method, is
(
m+n−1

m

)2
.

6. We have 2m sheets of paper, with the number 1 written on each of them. We perform the following operation.
In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase these
numbers and write the number a + b on both sheets. Prove that after m2m−1 steps, the sum of the numbers
on all the sheets is at least 4m.

Solution: Consider the product of the number on all of the sheets. Since (x + y)2 ≥ 4xy, each step increases

the product by at least a factor of 4. Thus, at the end, the product is at least 4m·2
m−1

. By AM-GM, the sum
is at least 2m

2m
√

4m·2m−1 = 4m.

7. (MEMO 2008) On a blackboard there are n ≥ 2, n ∈ Z+ numbers. At each step, we select two numbers from
the blackboard and replace both of them by their sum. Determine all numbers n for which it is always possible
to yield n identical numbers after a finite number of steps.

Solution: For odd n, we quickly notice the counterexample (2, 2, . . . , 2, 1). Let m be the maximum among the
numbers. The invariant here is the parity of the number of terms that are equal to m, which must end up even.
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We assert that all even numbers work. Let a1, a2, . . . , a2n be the numbers on the board. Since n is even, we can
group the terms into pairs: (a1, a2), (a3, a4), . . . , (a2n−1, a2n). Furthermore, let b1, b2, . . . , b2n be a1, a2, . . . , a2n
divided by the largest power of 2 that divides all terms. Then, perform the following algorithm:

(a) For each 1 ≤ i ≤ n, replace (a2i−1, a2i) with (a2i−1 + a2i, a2i−1 + a2i). Now a2i−1 = a2i for 1 ≤ i ≤ n.

(b) For each 1 ≤ i ≤ n, if a2i−1 = a2i is odd, replace (a2i, a2i) with (2a2i, 2a2i). Repeat this step until each of
a1, a2, . . . , a2n has the same common power of 2, i.e., b1, b2, . . . , bn are all odd. This step can be referred
to as “dividing” a pair (b2i−1, b2i) by 2.

(c) Add the largest pair with the smallest pair.

(d) Return to step 2.

This algorithm may look somewhat complex, but it is actually fairly easy:

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6
3 4 4 2 3 3 3 4 4 2 3 3 initial
7 7 6 6 6 6 7 7 6 6 6 6 (1)
14 14 6 6 6 6 7 7 3 3 3 3 (2)
20 20 20 20 6 6 10 10 10 10 3 3 (3)
20 20 20 20 12 12 5 5 5 5 3 3 (2)
32 32 20 20 32 32 8 8 5 5 8 8 (3)
32 32 160 160 32 32 1 1 5 5 1 1 (2)
192 192 192 192 32 32 6 6 6 6 1 1 (3)
192 192 192 192 256 256 3 3 3 3 1 1 (2)
256 256 192 192 256 256 4 4 3 3 4 4 (3)
256 256 768 768 256 256 1 1 3 3 1 1 (2)
1024 1024 1024 1024 256 256 4 4 4 4 1 1 (3)
1024 1024 1024 1024 1024 1024 1 1 1 1 1 1 (2)

Now we have to prove that this algorithm terminates. Consider a set of (b1, b2, . . . , bn) with all odd elements
and b1 +b2 + · · ·+bn > 6 (else we are already done). It’s clear that we can such a state from any given position.
After applying (3) and (2), we assert that b1 +b2 + · · ·+bn has decreased. Without loss of generality, let (b1, b2)
be the maximum pair and (b3, b4) the minimum pair. After the operation, we have b′1, b

′
2, . . . , b

′
n. We know

that for some k, since b1 + b3 is even,

b′1 + b′3 = b′1 + b′3 =
b1 + b3

2k
≤ b1 + b3

and similarly with b2 + b4. Therefore, the sum always decreases, so it will always decrease to 6.

8. (IMOSL 2013) A crazy physicist discovered a new kind of particle wich he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can
participate in many entanglement relations. The physicist has found a way to perform the following two kinds
of operations with these particles, one operation at a time.

(a) If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy
it.

(b) At any moment, he may double the whole family of imons in the lab by creating a copy I ′ of each imon I.
During this procedure, the two copies I ′ and J ′ become entangled if and only if the original imons I and
J are entangled, and each copy I ′ becomes entangled with its original imon I; no other entanglements
occur or disappear at this moment.

Prove that the physicist may apply a sequence of much operations resulting in a family of imons, no two of
which are entangled.

Solution: Let the imons be the vertices of a graph, and connect two vertices of the graph G with an edge if the
two are entagled. We assert that we can always decrease the chromatic number χ(G) (the minimum number of
colors to color the vertices of a graph such that no two adjacent vertices are the same color) with an algorithm:
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(a) Apply the first operation until all vertices have an even degree to get G′. Clearly χ(G′) ≤ χ(G).

(b) Apply the second operation to get G′′. We can still color this graph with χ(G′) colors: each instance a
vertex on G′ was colored with ci (out of the χ(G′) colors c1, c2, . . . , cχ(G′)), we can color the copied vertex
with ci+1, for example. The degree of each vertex of G′′ is thus odd.

(c) Delete the vertices of some color c one by one. Since no two vertices of c are connected, the degrees don’t
change as we perform this. The resulting graph has χ(G′′) = χ(G′)− 1 ≤ χ(G)− 1.

9. (IMO 2010) Each of the six boxes B1, B2, B3, B4, B5, B6 initially contains one coin. The following operations
are allowed

(a) Choose a non-empty box Bj , 1 ≤ j ≤ 5, remove one coin from Bj and add two coins to Bj+1;

(b) Choose a non-empty box Bk, 1 ≤ k ≤ 4, remove one coin from Bk and swap the contents (maybe empty)
of the boxes Bk+1 and Bk+2.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes B1, B2,
B3, B4, B5 become empty, while box B6 contains exactly 20102010

2010

coins.

Solution: Let N = 20102010
2010

. Let the boxes have (a1, a2, . . . , a6) coins at a given moment. We assert that
(1, 1, 1, 1, 1, 1) can be turned into (0, 0, 0, 0, 0, N). To do this, we shall prove two statements first.

We assert that (x, 0, 0) can go to (x− y, 2y, 0). Indeed, (x, 0, 0)→ (x− 1, 21, 0) and

(x− y, 2y, 0)→ (x− y, 2y − 1, 2)→ (x− y, 2y − 1, 4) . . . (x− y, 0, 2y+1)→ (x− y − 1, 2y+1, 0)

In particular, (x, 0, 0) can go to (0, 2x, 0).

Now let Tn = 22
2...︸ ︷︷ ︸
n

. We assert that (x−y, 0, 0, 0) can go to (0, Ty, 0, 0). Indeed, (x, 0, 0, 0)→ (x−1, 2, 0, 0) and

(x− y, Ty, 0, 0)→ (x− y, 0, 2Ty = Ty+1, 0)→ (x− y − 1, Ty+1, 0, 0)

In particular, (x, 0, 0, 0) can go to (0, Tx, 0, 0).

To solve the original problem, consider

(1, 1, 1, 1, 1, 1)→ (1, 1, 1, 1, 0, 3)→ (1, 1, 1, 0, 3, 0)→ (1, 1, 0, 3, 0, 0)→ (1, 0, 3, 0, 0, 0)

→ (0, 3, 0, 0, 0, 0)→ (0, 0, 16, 0, 0, 0)→ (0, 0, 0, T16, 0, 0)

Notice that

20102010
2010

< (211)2010
2010

= 211·2010
2010

< 22010
2011

< 2(2
11)2011 = 22

11·2011
< 22

215

< T16

so apply the second operation on the last 3 boxes to reach (0, 0, 0, N/4, 0, 0). Finally, apply the first operation
sufficiently to reach

(0, 0, 0, N/4, 0, 0)→ (0, 0, 0, 0, N/2, 0)→ (0, 0, 0, 0, 0, N)
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