Math 300 Class 23 ## Monday 4th March 2019 **Definition 1** — Reflexivity, symmetry and transitivity A relation R on a set X is... - ... **reflexive** if aRa for all $a \in X$; - ... symmetric if, for all $a, b \in X$, if aRb, then bRa; - ... transitive if, for all $a,b,c \in X$, if aRb and bRc, then aRc; - ... an equivalence relation if it is reflexive, symmetric and transitive. Equivalence relations behave in some ways like equality (indeed, equality is reflexive, symmetric and transitive!)—so we will often use symbols like \sim or \equiv or \approx , instead of letters like R or S, to denote equivalence relations. #### Example 2 Fix $n \in \mathbb{Z}$. Define a relation \equiv_n on \mathbb{Z} by letting $a \equiv_n b$ mean 'n divides b-a' for each $a,b \in \mathbb{Z}$. Prove that \equiv_n is an equivalence relation. So n divides $$a=a$$ \Rightarrow $a = a = 0 = 0 \times n$ Then $$b-a = \ln f$$ some $k \in \mathbb{Z}$ $\Rightarrow a-b=(-k)n$ $\Rightarrow b = a$. $$= n \text{ is transitive}: Let a,b,ce $\mathbb{Z} \text{ and assume}$ $$a = n \text{ b and } b = n \text{ c.} \quad \text{Then } b - a = kn \text{ and }$$ $$c - b = ln \text{ fer some } k, l \in \mathbb{Z}. \text{ So}$$ $$c - a = (c - b) + (b - a) = kn + ln = (k+l)n$$ $$= a = n \text{ c.}$$$$ **Definition 3** — Equivalence class, quotient Let \sim be an equivalence relation on a set X. The \sim -equivalence class of an element $x \in X$ is the subset $[x]_{\sim}$ of X defined by $$[x]_{\sim} = \{ a \in X \mid x \sim a \}$$ If the relation \sim is obvious from context, we may just say 'equivalence class' and write [x], rather than referring to \sim every time. Example 4 We proved last time that the relation \sim on $\mathbb R$ defined by letting $a \sim b$ mean ' $a - b \in \mathbb Q$ ' is an equivalence relation. Show that $[0]_{\sim} = \mathbb Q$. (C) Let $$x \in [0]_n$$. Then $0 \sim x$, so $x \sim 0$, and hence $x - 0 = x \in \mathbb{Q}$. (2) Let $$x \in \mathbb{Q}$$. Then $x - 0 \in \mathbb{Q}$, so $x \sim 0$, and so $0 \sim x \Rightarrow x \in [0]_{\sim}$. Example 5 Find the equivalence classes of the integers 0, 1 and 2 with respect to the relation \equiv_3 on \mathbb{Z} , as defined in Example 2. For $$\Gamma \in \{0,1,2\}$$, we have $\alpha \in \mathbb{Z}$, we have $\alpha \in [\Gamma]_{\equiv 3} \implies \Gamma \sim \alpha \implies 3$ divides $\alpha - \Gamma$ $\Rightarrow \alpha - \Gamma = 3q$ for some $q \in \mathbb{Z} \implies \alpha = 3q + \Gamma$ for some $q \in \mathbb{Z}$ So $[O]_{\equiv 3} = \{\alpha \in \mathbb{Z} \mid \alpha = 3q \}$ for some $q \in \mathbb{Z} \} = \{\dots, -6, -3, 0, 3, 6, 9, \dots\}$ $[1]_{\equiv 3} = \{\alpha \in \mathbb{Z} \mid \alpha = 3q + 1 \}$ for some $q \in \mathbb{Z} \} = \{\dots, -5, -2, 1, 4, 7, 10, \dots\}$ $[2]_{\equiv 3} = \{\alpha \in \mathbb{Z} \mid \alpha = 3q + 2 \}$ for some $q \in \mathbb{Z} \} = \{\dots, -4, -1, 2, 5, 8, 11, \dots\}$ (Note: $$[3]_{=3} = [0]_{=3}$$, $[4]_{=3} = [4]_{=3}$, $[5]_{=3} = [2]_{=3}$, etc...) **Definition 6** — Quotient The quotient of a set X by an equivalence relation \sim on X is the set X/\sim of all \sim -equivalence classes of elements of X. That is $$X/\sim = \{\text{equivalence classes of } \sim \} = \{[x]_{\sim} \mid x \in X\}$$ The quotient of a set by an equivalence relation *identifies* equivalent elements: the relation \sim on X 'becomes' equality on X/\sim , in the sense that The sense that $\forall a,b \in X,\ a \sim b \Leftrightarrow [a]_{\sim} = [b]_{\sim}$ The preventions yourself. Example 7 Describe the set \mathbb{Z}/\equiv_3 . We saw before that, for all $a \in \mathbb{Z}$, $[a]_{\equiv 3} = \{ \text{ integers having the same remainder} \\ \text{as a when divided by } 33$ The only possible remainders when divided by 3 are 0, 1 and 2, so $\mathbb{Z}/_{\equiv 3} = \{ [0]_{\equiv 3}, [1]_{\equiv 3}, [2]_{\equiv 3} \}$ Example 8 Prove that $|\mathbb{Z}/\equiv_n|=n$ for all n>0. As noted above for n=3, each $a \in \mathbb{Z}$ leaves a remainder of r when divided by n for a unique $r \in \{0, 1, ..., n-1\}$; but then $a \in [r] = Rr$ a unique $r \in \{0, 1, ..., n-1\}$. So $\mathbb{Z}/== \{[0] = \{[0] = n, [1] = n\}$ $\Rightarrow |\mathbb{Z}/== n$ ### **Definition 9** A partition of a set X is a collection \mathscr{A} of inhabited subsets of X such that each $x \in X$ is an element of a unique set $U \in \mathscr{A}$. The next two results prove that partitions and equivalence relations are essentially the same thing: the equivalence classes give a partition of the set, and each partition of X is the quotient of X by a unique equivalence relation. # Example 10 Let X be a set and let \sim be an equivalence relation on X. Prove that $\mathscr{A} = X/\sim$ is a partition of X. - Each $A \in \mathcal{A}$ is inhabited: Let $A \in \mathcal{A}$. Then A = [x] for some $x \in X$. But then $x \in A$, since $x \sim x$ by reflexivity of \sim - Each xeX is an element of a unique A = sto. (Existence) Let x & X. Then x ~ x, so x e[x] & A. (Uniqueress) Let x & X and assume A, B & A with x & A and x & B. Then: \Box Theorem 11 Let $\mathscr U$ be a partition of a set X. There is a unique equivalence relation \sim on X such that $X/\sim = \mathscr A$.