Math 300 Class 23

Monday 4th March 2019

Definition 1 — Reflexivity, symmetry and transitivity
Arelation Ronaset X is...

e .. . .reflexiveifaRaforalla e X,
e ...symmetric if, for all a,b € X, if aR b, then bRa;

o ...transitive if, forall a,b,c € X, ifaRband bR, thenaRc;

e ...an equivalence relation if it is reflexive, symmetric and transitive.

Equivalence relations behave in some ways like equality (indeed, equality is reflexive, symmetric
and transitive!)—so we will often use symbols like ~ or = or =, instead of letters like R or §, to
denote equivalence relations.

Example 2
Fix n € Z. Define a relation =, on Z by letting a =, # mean ‘n divides » — a’ for each a,b € Z.

Prove that =, is an equivalence relation.
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Definition 3 — Equivalence class, quotient
Let ~ be an equivalence relation on a set X. The ~-equivalence class of an element x € X is the
subset [x].. of X defined by

Xl.={aeX|x~a}

If the relation ~ is obvious from context, we may just say ‘equivalence class’ and write [x], rather
than referring to ~ every time.

Example 4
We proved last time that the relation ~ on R defined by letting a ~ b mean ‘a — b € @’ is an
equivalence relation. Show that [0} = Q.
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Example 5

Find the equivalence classes of the integers 0, 1 and 2 with respect to the relation =3 on Z, as defined
in Example 2.
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Definition 6 — Quotient )
The quotient of a set X by an equivalence relation ~ on X is the set X/~ of all ~-equivalence
classes of elements of X. That is

X/~ = {equivalence classes of ~} ={[x]. |x€ X}

The quotient of a set by an equivalence relation identifies equivalent elements: the relation ~ on X
‘becomes’ equality on X /~, in the sense that

Ya,beX, a~b & [a]. = [b]~ “@el T"a*t:w —\P_

Example 7
Describe the set Z/=3.
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Example 8
Prove that |Z/=,| = n for all n > (.
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Definition 9
A partition of a set X is a collection ./ of inhabited subsets of X such that each x € X is an element

of a unique set U € &

The next two results prove that partitions and equivalence relations are essentially the same thing:
the equivalence classes give a partition of the set, and each partition of X is the quotient of X by a
unique equivalence relation.

Example 10
Let X be a set and let ~ be an equivalence relation on X. Prove that & = X/~ is a partition of X.
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Theorem 11
Let % be a partition of a set X. There is a unique equivalence relation ~ on X such that X/~ =
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