Math 300 Class 20

Monday 25th February 2019

Strategy (Double counting)

In order to prove that two expressions involving natural numbers are equal, it suffices to define a set X and devise two counting arguments to show that |X| is equal to both expressions.

Example 1

Let $n, k \in \mathbb{N}$ with $k \leq n$. Prove that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Example 2

Let
$$a, b, k \in \mathbb{N}$$
. Prove that $\sum_{i=0}^{k} {a \choose i} {b \choose k-i} = {a+b \choose k}$.

Recall that a set *X* is *finite* if there is a bijection $[n] \rightarrow X$ for some $n \in \mathbb{N}$ —this captured the idea that the elements of *X* can be listed one-by-one in such a way that the list eventually ends. Removing the requirement that the list end reveals the following definition.

Definition 3 — Countably infinite, countable and uncountable sets A set X is **countably infinite** if there is a bijection $\mathbb{N} \to X$. A set is **countable** if it is finite or countably infinite, and is **uncountable** if it is not countable.

Exercise 4 Prove that \mathbb{N} is countably infinite.

Exercise 5 Prove that \mathbb{Z} is countably infinite.

Exercise 6

Prove that $\mathscr{P}(\mathbb{N})$ is uncountable.