Math 300 Class 8

Tuesday 22nd January 2019

[Definition 1 — Sets and elements
A set is a collection of elements from a specified universe of discourse. The collection of
everything in the universe of discourse is called the universal set, denoted by % .

We will avoid referring explicitly to % whenever possible, but it will always be there in the
background. This is convenient because we can abbreviate ‘Vx € %, p(x)’ by ‘Vx, p(x)’, and
‘dx € %, p(x)’ by *3x, p(x)’. Note that under this convention:

® Vx € X, p(x) is logically equivalent to Vx, (x € X = p(x)); and

e dx € X, p(x) is logically equivalent to Jx, (x € X A p(x)).
Some ways of specifying a set include:

e Lists — {1,2,3,4,5} or {red, green, blue}

o Implied lists — {2,3,5,7,11,13,...} or {1,2,4,...,2"}

e Set-builder notation — {# € N | nis prime} or {2¢ |k € Nand k < n}

Example 2
A dyadic rational is a rational number that can be expressed as an integer divided by a power of 2.
Express the set of all dyadic rationals using set-builder notation.
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Definition 3
A set X is inhabited if Jx, x € X is true; otherwise, it is empty.

Example 4
Prove that {x € R | x> =2} is inhabited and {x € Q | x2 = 2} is empty.
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It turns out that there is only one empty set, which is denoted by @. -
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Subsets and set equality

Definition 5
Let X be a set. A subset of X is a set U such that Va, (a € U = a € X). We write U C X to denote
the assertion that U is a subset of X.

Example 6
Provethat ZC Qand Q Z Z.
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| Axiom 7
‘Two sets X and Y are equal if and only if Va, (e € X ©a €7).

Strategy (Proof of set equality by double containment)
In order to prove X =Y, it suffices to prove that X CY and ¥ C X. <

Example 8
Prove that {x € R |x* < x} = (0,1).
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Definition 9 — Intervals of the real line
Let a, b € R. The open interval (a,b), the closed interval [a, 5], and the half-open intervals [a,b)
and (a, b] from a to b are the subsets of R defined by

(a,b) = {xc R |a<x<b} (a,b)={xcR|a<x<b}
[a,b)={xeR|ag<x<b} a6 ={xeR|a<x< b}

We further define the unbounded intervals (—oo,a), (—oo,q], [a,00) and (a,c) by

(—eoya) ={xeR|x<a} (g,0) ={xeR | x> a}
(—o0,a]={x€R|x<a} [a,¢) ={x€R|x>a}

Example 10

For each of the following illustrated intervals of the real line, label it according to the interval that it
represents. A filled circle o indicates that an end-point is included in the interval, whereas a hollow
circle o indicates that an end-point is not included in the interval.
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Definition 11 — Intersection, union and relative complement
Let X and ¥ be sets.

o The intersection of X and ¥ is definedby XNY ={a|acXAac ¥}

e The union of X and Y is defined by XUY = {a |a € X Va €Y}

¢ The relative complement of X in ¥ is defined by Y\X = {a|a €Y Aa € X }.




Example 12

Find expressions for each of the following sets as intervals of the real line:
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