Math 300 Class 8

Tuesday 22nd January 2019

Definition 1 — Sets and elements

A set is a collection of elements from a specified universe of discourse. The collection of everything in the universe of discourse is called the **universal set**, denoted by \mathscr{U} .

We will avoid referring explicitly to $\mathscr U$ whenever possible, but it will always be there in the background. This is convenient because we can abbreviate ' $\forall x \in \mathcal{U}$, p(x)' by ' $\forall x, p(x)$ ', and $\exists x \in \mathcal{U}, p(x)$ by $\exists x, p(x)$. Note that under this convention:

- $\forall x \in X$, p(x) is logically equivalent to $\forall x, (x \in X \Rightarrow p(x))$; and
- $\exists x \in X$, p(x) is logically equivalent to $\exists x, (x \in X \land p(x))$.

Some ways of specifying a set include:

- Lists {1,2,3,4,5} or {red, green, blue}
- Implied lists $\{2,3,5,7,11,13,...\}$ or $\{1,2,4,...,2^n\}$
- Set-builder notation $\{n \in \mathbb{N} \mid n \text{ is prime}\}\$ or $\{2^k \mid k \in \mathbb{N} \text{ and } k \leq n\}$

Example 2

A dyadic rational is a rational number that can be expressed as an integer divided by a power of 2. Express the set of all dyadic rationals using set-builder notation.

Definition 3

A set X is inhabited if $\exists x, x \in X$ is true; otherwise, it is empty.

Example 4

Prove that $\{x \in \mathbb{R} \mid x^2 = 2\}$ is inhabited and $\{x \in \mathbb{Q} \mid x^2 = 2\}$ is empty.

- · SZETR and 52=2, so SZE {xER/x2=2}. Herce $\frac{9}{2} \times ER / x^2 = 23$ is inhabited.
- Suppose $\frac{9}{5} \times \in \mathbb{Q} \mid x^2 = 2\frac{9}{5}$ is inhabited, and let x be an element. Then $x = \pm 52$, both of which are invational, contradicting the fact that $x \in \mathbb{Q}$. So $\{x \in \mathbb{Q} \mid x^2 = 2\}$ is empty.

It turns out that there is only one empty set, which is denoted by \emptyset .

Subsets and set equality

Definition 5

Let X be a set. A subset of X is a set U such that $\forall a, (a \in U \Rightarrow a \in X)$. We write $U \subseteq X$ to denote the assertion that U is a subset of X.

Example 6

Prove that $\mathbb{Z} \subseteq \mathbb{Q}$ and $\mathbb{Q} \not\subseteq \mathbb{Z}$.

- · Let $n \in \mathbb{Z}$. Then $n = \frac{n}{1} \Rightarrow n \in \mathbb{Q}$. So $\mathbb{Z} \subseteq \mathbb{Q}$.
- The negation of $\forall a, (a \in U \Rightarrow a \in X)$ in $\exists a, a \in U \land a \notin X$. So define $a = \frac{1}{2}$. Then $a \in \mathbb{Q}$ (evidently) but $a \notin \mathbb{Z}$, so $\mathbb{Q} \notin \mathbb{Z}$

Axiom 7

Two sets X and Y are equal if and only if $\forall a, (a \in X \Leftrightarrow a \in Y)$.

Strategy (Proof of set equality by double containment) In order to prove X = Y, it suffices to prove that $X \subseteq Y$ and $Y \subseteq X$.

Example 8

Prove that $\{x \in \mathbb{R} \mid x^2 < x\} = (0, 1)$.

• (\subseteq) Let $a \in \{x \in R \mid x^2 \in x\}$ Then $a \in \mathbb{R}$ and $a^2 \in a \Rightarrow a = a^2 = a(1-a) > 0$. So either a > 0 and $1-a > 0 \Rightarrow 0 < a < 1 \Rightarrow a \in (0,1)$ or a < 0 and $1-a < 0 \Rightarrow a > 1$ (contradicting a < 0). So we must have $a \in (0,1)$.

 \triangleleft

(2) Let $a \in (0,1)$. Then $0 < a < 1 \Longrightarrow 0 < a^2 < a$ and so $a \in \{x \in \mathbb{R} \mid x^2 < x^3\}$, as required.

Definition 9 — Intervals of the real line

Let $a, b \in \mathbb{R}$. The open interval (a, b), the closed interval [a, b], and the half-open intervals [a, b)and (a,b] from a to b are the subsets of \mathbb{R} defined by

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$
 $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$
 $[a,b) = \{x \in \mathbb{R} \mid a \le x \le b\}$
 $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$

$$(a,b] = \{ x \in \mathbb{R} \mid a < x \leqslant b \}$$

$$[a,b) = \{ x \in \mathbb{R} \mid a \leqslant x < b \}$$

$$[a,b] = \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}$$

We further define the **unbounded intervals** $(-\infty, a)$, $(-\infty, a]$, $[a, \infty)$ and (a, ∞) by

$$(-\infty, a) = \{x \in \mathbb{R} \mid x < a\}$$

$$(a, \infty) = \{x \in \mathbb{R} \mid x > a\}$$

$$(-\infty, a] = \{x \in \mathbb{R} \mid x \leq a\}$$

$$[a, \infty) = \{x \in \mathbb{R} \mid x \geq a\}$$

$$(a, \infty) = \{ x \in \mathbb{R} \mid x > a \}$$

$$(-\infty, a] = \{ x \in \mathbb{R} \mid x \leqslant a \}$$

$$[a, \infty) = \{x \in \mathbb{R} \mid x \geqslant a\}$$

Example 10

For each of the following illustrated intervals of the real line, label it according to the interval that it represents. A filled circle • indicates that an end-point is included in the interval, whereas a hollow circle o indicates that an end-point is not included in the interval.

Definition 11 — Intersection, union and relative complement Let *X* and *Y* be sets.

- The intersection of *X* and *Y* is defined by $X \cap Y = \{a \mid a \in X \land a \in Y\}$.
- The **union** of *X* and *Y* is defined by $X \cup Y = \{a \mid a \in X \lor a \in Y\}$.
- The relative complement of *X* in *Y* is defined by $Y \setminus X = \{a \mid a \in Y \land a \notin X\}$.

Example 12

Find expressions for each of the following sets as intervals of the real line:

- (a) $[-2,5) \cap (4,7] = (4,5)$
 - (C) Let $x \in [-2,5) \cap (4,7]$. Then $x \in [-2,5)$, so x < 5, and $x \in (4,7]$, so x > 4: Hence $x \in (4,5)$.
 - (2) Let $x \in (4,5)$. Then x>4 and x<557, so $x \in (4,7]$. And x<5 and x>47,-2, so $x \in [-2,4)$. Hence $x \in [-2,5) \cap (4,7]$.
- (b) $[-2,5) \cup (4,7] = [-2,7]$
 - (C) Let $x \in [-2,5) \cup (4,7]$. Then $x \in [-2,5)$ or $x \in (4,7]$. Now $x \in (4,7] \quad \text{Now}$ $x \in (4,7] \quad \text{Now}$ $x \in (4,7], \text{ then } -2 \leq x < 5 \in 7 \implies x \in [-2,7]$ $x \in (4,7], \text{ then } -2 \leq 4 < x \leq 7 \implies x \in [-2,7]$ So $x \in [-2,7]$ in both cases.
 - (2) Let $x \in [-2,7]$. Then $-2 \le x \le 7$. Now [If x < 5, then $x \in [-2,5)$ since x > -2 all x > 5, then x > 4, so $x \in (4,7]$ since $x \le 7$. In both cases we have $x \in [-2,5) \cup (4,7]$
- (c) $[-2,5)\setminus(4,7] = [-2,4]$
 - (G) Let $x \in [-2,5) \setminus (4,7]$. Then $x \in [-2,5)$ and $x \notin (4,7]$. Now x > -2 since $x \in [-2,5)$ if we had x > 4, then we'd have $4 < x < 5 \le 7 \Rightarrow x \in (4,7]$, contradicting the fact that $x \notin (4,7]$. So $x \le 4$, and have $x \in [-2,4]$.
 - (2) Let $x \in [-2, 4]$. Then $-2 \le x \le 4 < 5$, so $x \in [-2, 5)$; and $x \le 4$, so $x \notin (4,7]$.
 Hence $x \in [-2, 5) \setminus (4,7]$.