Math 300 Class 7

Friday 18th January 2019

So far the only tool we have at our disposal for proving that a proposition is *false* is to assume that it is true and derive a contradiction. In this class we'll use logical equivalence to derive other means of proving when something is false.

Definition 1 — Maximally negated logical formulae

A logical formula is **maximally negated** if the only instances of the negation operator \neg appear immediately before a predicate (other proposition involving no logical operators or quantifiers).

Example 2

Identify which of the following logical formulae are maximally negated.

$$\begin{split} \left[p \land (q \Rightarrow (\neg r)) \right] \Leftrightarrow (s \land (\neg t)) & (\neg \neg q) \Rightarrow q \\ (\neg p(x)) \Rightarrow \forall y \in X, \neg (r(x,y) \land s(x,y)) & (\neg p(x)) \Rightarrow \forall y \in X, (\neg r(x,y)) \lor (\neg s(x,y)) \\ \in \mathbb{R}, \left[x > 1 \Rightarrow (\exists y \in \mathbb{R}, \left[x < y \land \neg (x^2 \leqslant y) \right]) \right] & \neg \exists x \in \mathbb{R}, \left[x > 1 \land (\forall y \in \mathbb{R}, \left[x < y \Rightarrow x^2 \leqslant y \right]) \right] \end{split}$$

Theorem 3

 $\forall x$

Every logical formula (built using only the logical operators and quantifiers we have seen so far) is logically equivalent to a maximally negated logical formula. \Box

The precise proof of Theorem 3 is not yet in our reach, but we can derive an algorithm for maximally negating a logical formula by working out how to maximally negate each logical operator and quantifier.

The	eorem 4 — Law of double negation
Let	t p be a propositional variable. Then $p \equiv \neg \neg p$.

Proof

Theorem 5 — *de Morgan's laws for logical operators* Let *p* and *q* be logical formulae. Then: (a) $\neg(p \land q) \equiv (\neg p) \lor (\neg q)$; and (b) $\neg(p \lor q) \equiv (\neg p) \land (\neg q)$.

Proof

Theorem 6 Let *p* and *q* be logical formulae. Then $\neg(p \Rightarrow q) \equiv p \land (\neg q)$.

Proof

Theorem 7 — *de Morgan's laws for quantifiers* let p(x) be a logical formula with free variable *x* ranging over a set *X*. Then: (a) $\neg \forall x \in X, p(x) \equiv \exists x \in X, \neg p(x)$; and (b) $\neg \exists x \in X, p(x) \equiv \forall x \in X, \neg p(x)$.

Proof of (b)

Part (a) of Theorem 7 is so important that the proof strategy it suggests has a name.

Strategy (Proof by counterexample)

To prove that a proposition of the form $\forall x \in X$, p(x) is false, it suffices to find a single element $a \in X$ such that p(a) is false. The element a is called a **counterexample** to the proposition.

Piecing this all together, we obtain the following, which summarises everything we just proved:

Negation outside		Negation inside	Proof
$ eg (p \wedge q)$	≡	$(\neg p) \lor (\neg q)$	Theorem 5(a)
$\neg(p \lor q)$	\equiv	$(\neg p) \land (\neg q)$	Theorem 5(b)
$\neg(p \Rightarrow q)$	\equiv	$p \wedge (\neg q)$	Theorem 6
$\neg(\neg p)$	\equiv	р	Theorem 4
$\neg \forall x \in X, p(x)$	\equiv	$\exists x \in X, \neg p(x)$	Theorem 7(a)
$\neg \exists x \in X, p(x)$	\equiv	$\forall x \in X, \neg p(x)$	Theorem 7(b)

We can use these equivalences to maximally negate logical formulae by iteratively pushing the negation operator inside the logical formula.

Example 8

Find a maximally negated propositional formula that is logically equivalent to $\neg(p \Leftrightarrow q)$. [It might help you to recall that $p \Leftrightarrow q$ is defined to mean $(p \Rightarrow q) \land (q \Rightarrow p)$.]

What strategy does this equivalecne suggest for proving that a proposition of the form $p \Leftrightarrow q$ is false?

Example 9

Maximally negate the following logical formula, then prove that it is true or prove that it is false.

 $\exists x \in \mathbb{R}, \, [x > 1 \land (\forall y \in \mathbb{R}, \, [x < y \Rightarrow x^2 \leqslant y])]$