Math 300 Class 4

Friday 11th January 2019

Recall from your pre-class reading:

Definition 1

A **predicate** is a symbol *p* together with a specified list of **free variables** $x_1, x_2, ..., x_n$ and, for each free variable x_i , a specification of a **domain of discourse** of x_i . We will typically write $p(x_1, x_2, ..., x_n)$ in order to make the variables explicit.

Definition 2

A **logical formula** is an expression that is built from predicates using logical operators and quantifiers; it may have both free and bound variables.

The two most important quantifiers are the **universal quantifier** \forall and the **existential quantifier** \exists :

- The expression ' $\forall x \in X, \ldots$ ' denotes 'for all $x \in X, \ldots$ ';
- The expression ' $\exists x \in X, \ldots$ ' denotes 'there exists $x \in X$ such that \ldots '.

Proving universally quantified logical formulae

When *X* is finite, we can prove that a property p(x) is true of all the elements $x \in X$ just by checking them one by one. But what if *X* is infinite?

Example 3

Prove that the square of every odd integer is odd.

The key to Example 3 was introducing a new variable *n* that refers to an odd integer and, without assuming anything about *n* other than that it is an odd integer, proving that n^2 is even. We say that *n* is an *arbitrary* odd integer.

A proof of $\forall x \in X$, p(x) typically looks a bit like this:

- Introduce a variable *x*, which refers to an element of *X*.
- Prove p(x), assuming nothing about *x* except that it is an element of *X*.

Useful phrases for introducing an arbitrary variable include 'fix $x \in X$ ' or 'let $x \in X$ ' or 'take $x \in X$ '.

Example 4

Prove that every integer is rational.

Example 5

Prove that, for all irrational numbers x and y, the numbers x + y and x - y are not both rational.

Proving existentially quantified logical formulae

In order to prove that an element of a set X satisfying a property p(x) exists, all we need to do is find one! (Well, and prove that p(x) truly does hold of that element.)

Example 6

Prove that there is a natural number that is a perfect square and is one more than a perfect cube.

The following exercise involves both a universal and an existential quantifier.

Example 7

Prove that, for all $x, y \in \mathbb{Q}$, if x < y then there is some $z \in \mathbb{Q}$ with x < z < y.

Uniqueness

Sometimes we want to know not just that an object with a certain property *exists*, but that there is *exactly one* of them. This property is called *uniqueness*. We write $\exists !x \in X, p(x)$ to mean that there is exactly one $x \in X$ making p(x) true.

Proving that there is one and only one element x of a set X making a property true is typically done in two stages:

• (Existence) Prove that *at least* one $x \in X$ makes p(x) true:

 $\exists x \in X, p(x)$

• (Uniqueness) Prove that *at most* one $x \in X$ makes p(x) true:

$$\forall a, b \in X, [p(a) \land p(b) \Rightarrow a = b]$$
 or $\forall y \in X, [p(y) \Rightarrow y = x]$

relative to the *x* we proved *exists*

Example 8

Prove that for all $a \in \mathbb{R}$, there is a unique $x \in \mathbb{R}$ such that $x^2 + 2ax + a^2 = 0$.

Pre-class assignment for Class 5 (Mon, Jan 14)

Read §1.3 *Logical equivalence* up to and including Example 1.3.3, and then answer the questions on Canvas (go to Assignments \rightarrow Class 5).

Strategies for proving statements involving quantifiers

Strategy (Proving universally quantified statements) To prove a proposition of the form $\forall x \in X$, p(x), it suffices to prove p(x) for an **arbitrary** element $x \in X$ —in other words, prove p(x) whilst assuming nothing about the variable x other than that it is an element of X.

Strategy (Proving existentially quantified statements) To prove a proposition of the form $\exists x \in X$, p(x), it suffices to prove p(a) for some **specific** element $a \in X$, which should be explicitly defined.

Strategy (Proving unique-existentially quantified statements)

A proof of a statement of the form $\exists ! x \in X$, p(x), consists of two parts:

- **Existence** prove that $\exists x \in X, p(x)$ is true;
- Uniqueness let $a, b \in X$, assume that p(a) and p(b) are true, and derive a = b.

Alternatively, prove existence to obtain a fixed $a \in X$ such that p(a) is true, and then prove $\forall x \in X$, $[p(x) \Rightarrow x = a]$.

Strategies for using statements involving quantifiers as assumptions

Strategy (Assuming universally quantified statements) If an assumption in a proof has the form $\forall x \in X, p(x)$, then we may assume that p(a) is true whenever *a* is an element of *X*.

Strategy (Assuming existentially quantified statements)

If an assumption in the proof has the form $\exists x \in X, p(x)$, then we may introduce a new variable $a \in X$ and assume that p(a) is true.