Math 290-2 Class 15

Wednesday 13th February 2019

Limits

Consider a function f from (some subset of) \mathbb{R}^n to \mathbb{R} . Given a vector **a** in \mathbb{R}^n , the **limit** of $f(\mathbf{x})$ as **x** tends to **a**, if it exists, is the value ℓ that the function becomes arbitrary close to whenever **x** is an arbitrarily small positive distance from **a**. In this case, we write

$$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \ell \quad \text{or} \quad f(\mathbf{x}) \to \ell \text{ as } \mathbf{x} \to \mathbf{a}$$

Limits do not always exist.^[a] Some ways that limits can fail to exist include:

- The usual '1-dimensional' reasons, such as the denominator of a fraction tending to zero while its numerator does not.
- The function might approach multiple values depending on the 'path' along which the variable **x** approaches **a**. If this is the case, a limit does not exist.

For example, if you suspect a limit of f(x, y) does not exist as $(x, y) \rightarrow (0, 0)$ because the limit is not 'independent of path', some suggestions include:

- Set x = 0 and compute the limit as $y \to 0$, and set y = 0 and compute the limit as $x \to 0$.
- Set y = mx for some real number *m* and compute the limit as $x \to 0$.
- Set $y = x^k$ for some power k and compute the limit as $x \to 0$.

If any of the above limits do not equal any of the others, the limit does not exist.

As a rule of thumb, if f is built out of nice, continuous functions (such as polynomials, exponentials and trig functions) using arithmetic operations, and the denominators involved do not tend to zero, then a limit exists. If not, some more care is needed.

If you're struggling to compute a limit (or show it doesn't exist), try converting to a different system of coordinates, such as polar coordinates (in \mathbb{R}^2), or cylindrical or spherical coordinates (in \mathbb{R}^3).

A related concept is *continuity*:

- The limit $\lim_{x \to a} f(\mathbf{x})$ might not actually be equal to $f(\mathbf{a})$.
- If $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$, we say f is continuous at a.
- If f is continuous at **a** for all **a** in its domain, we say f is **continuous**.

[[]a]https://youtu.be/oDAKKQuBtDo?t=45

1. For each of the following, either evaluate the limit or show it does not exist.

(a)
$$\lim_{(x,y,z)\to(0,1,\pi)} \frac{e^{x+y^2}\cos(x^2+2z)+xyz}{x^2+y^2+z^2}.$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{2x^2+3y^2}{x^2+y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - y^4}{x^2 + y^2}$$

[Colley, §2.2 Q15]

(d)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

(f)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy + y^2}{x^2 + y^2}$$

[Colley, §2.2 Q30]

(g)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy + y^2}{\sqrt{x^2 + y^2}}$$