
Math 290-2 Class 7
Monday 22nd January 2019

Orthogonal change-of-basis and conic sections

Recall that if B is a basis of Rn, then the transition matrix S, whose columns are the vectors in
B, allows us to translate between standard coordinates and B-coordinates: applying S ‘decodes’
B-coordinates (S[~x]B =~x), and applying S−1 ‘encodes’ into B-coordinates (S−1~x = [~x]B).

When the vectors in B are orthonormal, the matrix S is orthogonal, and so angles and lengths are
preserved when we view the world through the lens of B-coordinates.

For example, let B=
1√
2

(
1
1

)
,

1√
2

(
−1
1

)
, and consider the equation

5x2−4xy+5y2 = 1

Letting
(

a
b

)
be the B-coordinate vector of

(
x
y

)
, it turns out that

3a2 +7b2 = 1

We see from the point of view of B-coordinates that the equation
describes an ellipse, whose principal axes are the vectors in B.

Quadratic forms

A quadratic form is a function q : Rn→ R such that q(~x) is a linear combination of terms of the
form xix j. For example, in R2, all quadratic forms take the form q(x,y) = ax2 +bxy+ cy2.

Every quadratic form can be expressed (uniquely!) as q(~x) =~xT A~x for some symmetric matrix A.
For example

ax2 +by2 + cz2 + pxy+qxz+ ryz =

x
y
z

T  a p/2 q/2
p/2 b r/2
q/2 r/2 c

x
y
z


Let B is an orthonormal eigenbasis of A, whose respective eigenvalues are λ1,λ2, . . . ,λn, and let S
be the (orthogonal) transition matrix of B. For any vector~x, let~c be its B-coordinate vector and let
D = ST AS be the diagonal matrix with diagonal entries λ1,λ2, . . . ,λn. Then

q(~x) = ~xT A~x = (S~c)T A(S~c) = ~cT ST AS~c = ~cT D~c = λ1c2
1 +λ2c2

2 + · · ·+λnc2
n

This gives us very useful information about the quadratic form and about A.



Definiteness

Let A be a symmetric n×n matrix and let q(~x) =~xT A~x be its associated quadratic form. Then

• We say A is positive definite if q(~x) > 0 for all~x 6=~0, and positive semidefinite if q(~x) > 0
for all~x.

• We say A is negative definite if q(~x)< 0 for all~x 6=~0, and negative semidefinite if q(~x)6 0
for all~x.

• We say A is indefinite if q(~x) takes both positive and negative values.

Knowing the definiteness of a symmetric matrix allows us to reason about whether its associated
quadratic form has global maxima and minima—when we study vector calculus, this will allow us
to classify local extrema of surfaces described by multivalued functions.

Some useful facts:

• A is positive definite⇔ all its eigenvalues are positive, and A is positive semidefinite⇔ all
its eigenvalues are nonnegative. [Likewise for negative (semi)definiteness.]

• A is positive definite ⇔ det(A(k)) > 0 for all 1 6 k 6 n, where A(k) is the top left k× k
submatrix of A (called a principal submatrix).

It turns out that the definiteness of a matrix gives us useful information about surfaces of the form

ax2 +bxy+ cy2 = 1 in R2. Indeed, let A =

(
a b/2

b/2 c

)
be the associated symmetric matrix. Then

• ax2 +bxy+ cy2 = 1 describes an ellipse if and only if A is positive definite;

• ax2 +bxy+ cy2 = 1 describes a hyperbola if and only if A is indefinite;

• In both cases, the principal axes of the curve in question are given by the eigenspaces of A.

More generally, the principal axes of a quadratic form q(~x) =~xT A~x, where A is a symmetric matrix
with distinct eigenvalues, are the eigenspaces of A.



1. For each of the following quadratic forms, find a matrix A such that q(~x) =~xT A~x.

(a) q(x,y) = x2−2xy−4y2

(b) q(x,y,z) =−2x2 + y2−3z2−4xy−6xz+8yz

2. [Bretscher §8.2 Ex 1, modified]
Find the global maxima and minima of the function f : R2→ R defined by

f (x,y) = 8x2 +5y2−4xy+1



3. For each of the following symmetric matrices, determine whether it is positive definite, pos-
itive semidefinite, negative definite, negative semidefinite, or indefinite.

(a)
(

1 −1
−1 1

)

(b)
(

3 2
2 3

)

(c)

 9 −1 2
−1 7 −3
2 −3 3

 [taken from Bretscher §8.2 Ex 2]



4. Sketch the curve in R2 defined by 8x2−4xy+5y2 = 1.

5. Sketch the curve in R2 defined by 3x2 +8xy−3y2 = 1.


