Math 290-1 Class 11 — review for midterm 1

Monday 22nd October 2018

1. Find the matrix of the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which reflects each vector through the line 2x + 3y = 0.

[You may use the fact that the reflection of a vector \vec{x} through a line ℓ with direction \vec{a} is given by the formula $\operatorname{ref}_{\ell}(\vec{x}) = 2\left(\frac{\vec{x} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}\right)\vec{a} - \vec{x}$.]

Is *T* invertible? If not, explain why; if so, find the matrix of T^{-1} .

- 2. For each of the following statements about $n \times n$ matrices *A*, *B* and *C*, determine whether it is always true, sometimes true, or never true.
 - (a) If AB = C, then $B = CA^{-1}$.

(b) For each vector \vec{v} in \mathbb{R}^n , the vector $A\vec{v}$ is a linear combination of the columns of A.

(c) rank(AB) = rank(A)rank(B)

(d) If rank(A) < n, then the system $A\vec{x} = \vec{0}$ has infinitely many solutions.

(e) If *ABC* is invertible, then *B* is invertible.

(f) If A is the matrix of orthogonal projection onto a line, then $A^2 \neq A$.

3. (a) Find the inverse of the matrix
$$\begin{pmatrix} 2 & 0 & -1 \\ 2 & 3 & -5 \\ -1 & -1 & 2 \end{pmatrix}$$

(b) Express
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 as a linear combination of the vectors $\begin{pmatrix} 2\\2\\-1 \end{pmatrix}$, $\begin{pmatrix} 0\\3\\-1 \end{pmatrix}$ and $\begin{pmatrix} -1\\-5\\2 \end{pmatrix}$

4. Find the matrices of the linear transformations $T \circ S$ and $S \circ T$, where $S : \mathbb{R}^3 \to \mathbb{R}^2$ projects each vector onto its first two coordinates and $T : \mathbb{R}^2 \to \mathbb{R}^3$ embeds \mathbb{R}^2 into the (x, z)-plane:

$$S\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\y\end{pmatrix}$$
 $T\begin{pmatrix}a\\b\end{pmatrix} = \begin{pmatrix}a\\0\\b\end{pmatrix}$